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New mechanisms are discovered regarding the effects of inertia in the transient Moffatt-
Pukhnachov problem (1977) on the evolution of the free surface of a viscous film coating
the exterior of a rotating horizontal cylinder. Assuming two-dimensional evolution of
the film thickness (i.e. neglecting variation in the axial direction), a multiple-timescale
procedure is used to obtain explicitly parameterized high-order asymptotic approxima-
tions of solutions of the spatio-temporal evolution equation. Novel, hitherto-unexplained
transitions from stability to instability are observed as inertia is increased. In particular,
a critical Reynolds number Rec is predicted at which occurs a supercritical pitchfork
bifurcation in wave amplitude that is fully explained by the new asymptotic theory.
For Re < Rec, free-surface profiles converge algebraically-cum-exponentially to a steady
state and, for Re > Rec, stable temporally periodic solutions with leading-order ampli-
tudes proportional to (Re−Rec)

1/2 are found, i.e. in the régime in which previous related
literature predicts exponentially divergent instability. For Re = Rec, stable solutions are
found that decay algebraically to a steady state. A model solution is proposed that not
only captures qualitatively the interaction between fundamental and higher-order wave
modes but also offers an explanation for the formation of the lobes observed in Moffatt’s
original experiments. All asymptotic theory is convincingly corroborated by numerical
integrations that are spectrally accurate in space and 8th/9th-order accurate in time.

1. Introduction

Although the influences of gravitational and capillary effects on the stability of coating
and rimming flows have been the subject of numerous asymptotic and numerical stud-
ies, the explicit influence of inertia has been less widely considered, e.g. as in Hosoi &
Mahadevan (1999), Benilov & O’Brien (2005), Noakes, King & Riley (2006), Kelmanson
(2009b), Pougatch & Frigaard (2011) and Benilov & Lapin (2013). As a result, there
remain unresolved questions about both the qualitative and quantitative influences of
inertia on the mechanisms describing the transition between stable and unstable flow
régimes and, in particular, about the flow evolution in the latter. Whilst the present re-
sults — and those in a plethora of related theoretical studies — are derived from analyses
of two-dimensional coating/rimming models that neglect axial effects, it is well-known
that the experiments of, e.g., Moffatt (1977) and Hynes (1978) reveal an onset of in-
stability that results in the development of three-dimensional axially-and-azimuthally
isolated “lobe-like” profiles. This naturally invites the question of the extent to which
two-dimensional analyses are physically realistic. However, there is to date — see, e.g.,
the three-dimensional studies of Hosoi & Mahadevan (1999), Pougatch & Frigaard (2011)

† Email address for correspondence: mark@maths.leeds.ac.uk



2 C. M. Groh and M. A. Kelmanson

and Benilov & Lapin (2013) — neither a computational nor theoretical conclusive an-
swer to the question, which is revisited at the end of section 5, of the exact nature of the
axial-azimuthal interaction that induces three-dimensional instability. With this in mind,
it is hoped that the accurate numerical and theoretical approaches presented herein —
which yield (see section 5.3) large-time azimuthally isolated lobe-like profiles similar to
those observed in the above-cited experiments — will initiate further studies that are
able to incorporate appropriate axial effects in order to resolve this important question.
Interpreting the influence of inertia is a subtle matter that has invited contradicting

conclusions drawn from thin-film approximations obtained via different scalings: for ex-
ample, the asymptotic analysis of Kelmanson (2009b) resolves apparent conflicts between
predictions in Benilov & O’Brien (2005) and Noakes et al. (2006), which respectively con-
clude that inertial effects destabilize and stabilize rimming flows. Specifically, Kelmanson
(2009b) reveals that the different scalings inherent in the two prior studies yield results
that should not be compared because their underlying asymptotics are not uniformly
valid in the same parameter régime. Pougatch & Frigaard (2011) implicitly corroborate
this observation through numerically obtained growth rates determined via a linearized
stability analysis; they conclude that “inertia may stabilize or destabilize the flow de-
pending on the values of other parameters”.
The qualitative consequences of different scalings is investigated in Kelmanson (2009b)

via an explicit reconstruction and comparison of the asymptotic coating/rimming-flow
analyses of Benjamin, Pritchard & Tavener (1993), Ashmore, Hosoi & Stone (2003) and
Benilov & O’Brien (2005). The comparison reveals a scaling-dependent promotion and de-
motion† of two different types of inertial contributions, christened in Kelmanson (2009b)
as “pure-inertial” and “mixed-gravitational inertial”. That is, the promotion and de-
motion of inertial terms in the thin-film evolution equation is dictated by the a priori

rescaling of all physical and geometric parameters.
Much previous work on two- and three-dimensional coating and rimming flows con-

siders stability via the numerical computation of the relationship between wave numbers
and growth rates (e.g., Benilov & O’Brien (2005), Pougatch & Frigaard (2011), Benilov
& Lapin (2013)); occasionally (e.g., Hosoi & Mahadevan (1999), Evans, Schwarz & Roy
(2004, 2005)), finite-time free-surface profiles are numerically computed. By their nature,
such numerical studies cannot yield qualitative information regarding spatio-temporal,
finite-time coating/rimming-flow dynamics. However, the use of algebraic manipulators
has enabled the development and implementation of increasingly powerful automated
multiple-timescale asymptotic methods (Hinch & Kelmanson (2003), Hinch, Kelmanson
& Metcalfe (2004), Kelmanson (2009a, 2009b), Groh & Kelmanson (2009, 2012)), in the
last of which all results are validated against spectrally accurate transient numerical
methods‡. Through such asymptotic studies, many qualitative and quantitative results
have been found relating to the temporal dynamics of coating flow, and the present study
is conducted in the spirit of these papers, of which Kelmanson (2009b) forms the primary
motivation.
In Kelmanson (2009b), explicit formulae obtained via two-timescale asymptotics are

validated against extrapolated finite-difference numerical results. It is found therein that
inertia destabilizes coating flow (in agreement with Noakes et al. (2006)) when the
Reynolds number Re exceeds a critical threshold, Rec say, for which an explicit for-

† Respectively, into dominant and sub-dominant positions in the asymptotically ordered hi-
erarchy whose leading-order component is the spatio-temporal evolution equation for the film
thickness.

‡ Karabut (2007) and Pougatch & Frigaard (2011) employ an exponentially convergent col-
location method on steady-state problems.
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mula is obtained. For Re < Rec, the asymptotic solution is exponentially convergent to a
stable steady state; for Re > Rec, the solution diverges exponentially, and; for Re = Rec,
cyclic— i.e. temporally periodic and bounded — solutions are discovered that neither de-
cay nor become unstable. That is, the two-timescale asymptotics of Kelmanson (2009b)
predict the existence of cyclic solutions at only the critical value Re = Rec. Clearly,
such a unique neutral stability will be predicted by any linearized stability analysis that
assumes a pure-exponential perturbation from the steady state.

By contrast, using a spectrally accurate computational technique developed and vali-
dated in Groh & Kelmanson (2009, 2012), new numerical integrations (discussed in §2.2)
of the thin-film evolution equation derived in Kelmanson (2009b) presently reveal the ex-
istence of cyclic solutions for a range Re > Rec, in which both the linearized stability anal-
ysis and the two-timescale asymptotics predict full-blown instability. As demonstrated
in this paper, the transient perturbation is in fact not purely exponential, as assumed in
all previous stability analyses, and it transpires that asymptotics using more than two
timescales are required to determine the correct—in the sense of quantitative agreement
with computations—form of transient perturbation. Specifically, by using the highly flex-
ible “m-timescale” asymptotics developed and validated in Groh & Kelmanson (2012),
explicit formulae are presently obtained for a newly discovered algebraic-cum-exponential
transient perturbation that yields results which are in excellent agreement with those of
validating spectrally accurate numerics.

The remainder of this paper is structured as follows. Section 2.1 contains a coating-flow
problem formulation that presents only those aspects that are relevant and distinctive to
the present consideration of inertial effects†. A discussion is undertaken of the competing
physical influences of capillarity, gravity, hydrostatic pressure and inertia, including a mo-
tivation for the scalings used. With the theoretical framework established, intermediate
numerical computations are performed in section 2.2 in order to motivate the remainder
of the study. In section 3.1, an explicit (asymptotic) steady-state solution is derived to
quantify the effects of inertia, and a simple yet apparently new physical explanation of
its destabilizing effect on the steady state is presented. This is followed in section 3.2
by a linearized analysis, about the asymptotic steady-state solution, in order to gain an
insight into the stability properties of the thin-film steady-state profile with respect to
infinitesimally small disturbances. A more complete insight into the finite-time transient
behaviour of the free-surface evolution is gained in section 4, where the inertial evolution
equation of Kelmanson (2009b) is studied by using seven timescales in the m-timescale
method of Groh & Kelmanson (2012). In particular, the stable and unstable régimes
of the solution are classified and the transition between these régimes is discussed. The
predicted class of unstable solutions is corroborated by spectral numerics, with which
asymptotic predictions are found to be in excellent agreement. Results in section 5 fall
naturally into three distinct subsections. In section 5.1, a qualitative validation of the
asymptotics is undertaken in terms of physical effects. In section 5.2, a quantitative vali-
dation is conducted, and all asymptotic results are demonstrated to be in excellent agree-
ment with those of spectrally accurate numerical computations. Additionally, convincing
evidence is provided that higher-order physical effects such as hydrostatic pressure and
mixed gravitational-inertial terms can be ignored in the modelling of this and related
problems. A detailed investigation of the nature of the transition from asymptotically
stable to cyclic solutions is made in section 5.3, in which leading-order asymptotics re-
veal that the fundamental wave mode, the only one surviving to large times, undergoes

† Full derivations and asymptotic arguments underpinning thin-film evolution equations for
coating/rimming flows are given in almost all of the above-cited literature.
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a supercritical pitchfork bifurcation at the critical Reynolds number Re = Rec, the am-
plitude thereafter growing as (Re−Rec)

1/2. Section 6 concludes with an investigation of
higher-mode instability in an attempt to explain modal interactions observed in spec-
tral numerical solutions. A model form of solution is proposed which not only captures
well the qualitative behaviour of the numerics but also proposes (for future work) how
asymptotic methods might be developed to model the higher-mode interactions in a more
accurate quantitative fashion.

2. Thin-film evolution equation

2.1. Formulation

The evolution of a two-dimensional azimuthal section of a viscous capillary film coating
the exterior of a horizontal rotating cylinder is analyzed in standard cylindrical-polar
coordinates (r, θ) centred on the axis of the cylinder, which has radius a and rotates
about its horizontal axis with constant angular velocity Ω. The coating film, of thick-
ness h(θ, t) at station θ and time t, comprises homogeneous fluid of dynamic viscosity,
density and surface tension µ, ρ and σ respectively, and g is the acceleration due to
gravity. If length, time, velocity, flux and pressure are respectively non-dimensionalized
with respect to a, Ω−1, aΩ, a2Ω and ρa2Ω2, the equations of motion introduce four non-
dimensional parameters; three of these are the Weber, Reynolds and Galileo numbers,
respectively corresponding to capillarity, inertia and gravity, and given by

We =
ρa3Ω2

σ
, Re =

a2Ωρ

µ
and Ga =

g

aΩ2
. (2.1)

Using these, we define (cf. Hinch & Kelmanson (2003)) parameters

α0 ≡ Re

We
=

1

Ca
and γ0 ≡ ReGa = St, (2.2)

in which Ca and St are respectively the capillary and Stokes numbers. A fourth non-
dimensional parameter, denoted by ǫ, is defined using a characteristic dimensional film
height h̄ (defined in (2.6)) with

0 < ǫ ≡ h̄

a
≪ 1. (2.3)

Any asymptotic analysis will be valid in only a limited region† of parameter space, hence
scalings must be fixed a priori in terms of prespecified physical parameters. Peterson,
Jimack & Kelmanson (1999) and Hinch & Kelmanson (2003) respectively undertake
computational and asymptotic investigations of non-inertial coating flows using param-
eters α0 = 10.0, γ0 = 12.5 and ǫ = 0.11298, for which both ǫ α0 and ǫ γ0 are strictly of
order O(1).
From (2.1) and (2.2), specification of α0 and γ0 fixes a and Ω, and hence the Reynolds

number, as

a =

(
γ0 σ

α0 ρ g

)1/2
, Ω =

(
ρ g σ

γ0 α0 µ2

)1/2
and Re =

(
γ0 σ

3 ρ

α3
0 g µ

4

)1/2
. (2.4)

With the numerical values of α0, γ0 and ǫ given above, (2.4) reveals that Re ≈ O
(
ǫ−1

)
for

silicone oil DMS-10 at 288K (see Hinch et al. (2004, p.2990) for data source reference).

† For example, the asymptotics that capture the smooth flows in Hinch & Kelmanson (2003)
require fundamental ab initiomodification (Hinch et al. (2004)) to accommodate shock formation
as α0 is reduced.
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Accordingly, ǫRe may be justifiably assumed to be strictly of order O(1). Thus non-
dimensional capillary, inertial and gravitation parameters respectively defined as

α = ǫ α0 , β′ = ǫRe and γ = ǫ γ0 , (2.5)

are all strictly, and physically consistently, of order O(1).
The characteristic film height h̄ introduced in (2.3) is computed from the dimensional

film height h(θ, t) via

h̄ ≡ 1

2π

∫ 2π

0

{
h(θ, t) +

1

2a
h(θ, t)2

}
dθ , (2.6)

because this definition, based upon mass conservation, not only ensures that ǫ is constant,
but also that it is independent of fluid properties and geometric parameters; as such, h̄
is computed using the initial profile by setting t = 0 in (2.6).

Introducing the intermediate variable ĥ in the non-dimensionalization and the rescal-
ing h = a ǫ ĥ, the non-dimensional rescaled film thickness η(θ, t) defined via

η ≡ ĥ+
1

2
ǫĥ2

is strictly of order O(1), and it satisfies the one-dimensional, non-linear, spatio-temporal
evolution equation

∂η

∂t
+
∂η

∂θ
+

1

3

∂

∂θ

{
− ǫ γ η3 cos θ − ǫ2 γ η3

∂η

∂θ
sin θ

+ ǫ2 α η3
∂

∂θ

(
∂2η

∂θ2
+ η

)
+ ǫ2 β′ η3

∂η

∂θ
− 2

5
ǫ2 β′γ η5 sin θ

}
= 0 ,

(2.7)

in which the nondimensional parameters α, β′ and γ are all strictly of order O(1), so
that the relative interplay between capillary, gravitational and inertial effects is dictated
by the residual unabsorbed powers of the small parameter ǫ in (2.7).
Further discussion is facilitated by labelling terms in (2.7) as follows,

∂η

∂t
+
∂η

∂θ
+

1

3

∂

∂θ

{
− σ1ǫ γ η

3 cos θ − σ2ǫ
2 γ η3

∂η

∂θ
sin θ

+ σ3ǫ
2 α η3

∂

∂θ

(
∂2η

∂θ2
+ η

)
+ σ4ǫ

2 β′ η3
∂η

∂θ
− σ5

2

5
ǫ2 β′γ η5 sin θ

}
= 0 ,

(2.8)

in which each σi is a binary flag (i.e. σi = 0 or 1) that multiplies a term corresponding
to a distinct physical effect, namely: σ1—first-order gravity; σ2—second-order gravity
(hydrostatic pressure); σ3—second-order capillary; σ4—second-order pure-inertial, and;
σ5—second-order mixed-gravitational-inertial. Hence, under this scaling, viscous entrain-
ment is the only leading-order effect. Terms corresponding to σ1,2,3 are explicitly iden-
tified as thus in the differently scaled evolution equation of Ashmore et al. (2003, eqn
(2.13)). By labelling all terms ab initio in the derivation of the evolution equation, it
can be shown that the sources of the two different inertial terms flagged by σ4 and σ5
in (2.8) are respectively the radial and tangential components of the polar form of the
Navier-Stokes equations.
If an evolution equation is now assigned a Boolean signature Σ ≡ σ1σ2σ3σ4σ5, the

scaling-dependent promotion and demotion of inertial terms discovered in Kelmanson
(2009b) dictates the distribution of the binary flags σi. For example equation (3.14) in



6 C. M. Groh and M. A. Kelmanson

Pukhnachev (1977) has signature Σ = 10100, equation (2.13) in Ashmore et al. (2003)
has signature Σ = 11100, equation (2.36) in Kelmanson (2009b) has signature Σ = 10110,
and equation (2.7) has signature Σ = 11111.

2.2. Motivation: cyclic solutions

In Kelmanson (2009b), two-timescale asymptotics are applied to (2.8) with signature Σ =
10110 to obtain a critical Reynolds number Rec above which the asymptotic theory
predicts unbounded exponentially growing solutions η(θ, t). However, using the spectrally
accurate numerical method of Groh & Kelmanson (2009, 2012), bounded cyclic solutions
of (2.8) are discovered for Re > Rec; these are now discussed.
Figure 1 (a)–(c) shows the spectral numerical solution of (2.8), with Σ = 10110

and θ = 0, for parameters α0 = 10.0, γ0 = 12.5, ǫ = 0.11298 and Re = 4.0. This Reynolds
number exceeds the critical value Rec ≈ 2.4911 computed in (5.5), yet the solution ev-
idently remains periodic and bounded for large integration times. This is confirmed in
Figure 1 (d), which shows the amplitude of oscillations at the arbitrary station θ = 0:
although the difference between consecutive maxima η̂(0, t) and minima η̌(0, t) first in-
creases, the amplitude in the time interval t ∈ [0, 5000] asymptotes to a constant value.
That is, spectrally accurate integrations of (2.8) find new cyclic solutions that are neither
unstable nor asymptotically stable, as predicted by all previous studies. The analysis of
this transient flow régime constitutes the remainder of this paper.

3. Inertial destabilization

3.1. Inertial perturbation of the steady state

The steady-state equation corresponding to (2.8) is

η +
1

3

{
− σ1ǫ γ η

3 cos θ − σ2ǫ
2 γ η3

∂η

∂θ
sin θ

+ σ3ǫ
2 α η3

∂

∂θ

(
∂2η

∂θ2
+ η

)
+ σ4ǫ

2 β′ η3
∂η

∂θ
− σ5

2

5
ǫ2 β′γ η5 sin θ

}
= q ,

(3.1)

in which the flux q is a constant. An asymptotic solution of (3.1) is sought in the form

ηs(θ) = 1 +

n∑

k=1

ǫkηk(θ) and q = 1 +

n∑

k=1

ǫkqk , (3.2)

in which the unknown coefficients ηk and qk are readily determined by an automated
process; the first three are small enough to present explicitly and are

η1(θ) =
1

3
σ1γ cos θ , (3.3)

η2(θ) =
1

6
σ2
1γ

2 cos 2θ (3.4)

and

η3(θ) =
1

6
σ3
1γ

3 cos θ +
1

18
σ1σ2γ

2 cos 2θ +
1

9
σ3
1γ

3 cos 3θ

+
1

9
σ1σ4γβ

′ sin θ +
8

45
σ1σ5γ

2β′ sin 2θ . (3.5)

The binary flags σi facilitate identification of the interplay between different physical
mechanisms in the formation of the steady-profile components ηk. It can be seen that η1
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Figure 1: (a)–(c) Numerical solution of inertial equation (2.8) for Σ = 10110 using pa-
rameters α0 = 10.0, γ0 = 12.5, Re = 4.0 and ǫ = 0.11298 at the station θ = 0. The faint
vertical bars correspond to times t = 2nπ (n ∈ N) at which the station θ = 0 on the solid

cylinder returns to its original position. The monotonically increasing separation be-
tween successive minima and the bars illustrates the cumulative gravitationally induced
drift, of the free surface relative to the cylinder, resulting from the phase perturbation
(4.15). (d) The upper and lower envelopes, respectively η̂ and η̌, over the time integration
range t ∈ [0, 5000], superposed by shaded regions indicating the time intervals of figures
(a), (b) and (c). Clearly η̂(0, t)− η̌(0, t) 6→ 0 as t→ ∞, suggesting the absence of a sta-
ble steady state, yet the divergent large-time solutions predicted by previous asymptotic
analyses are not encountered.

arises through first-order gravity acting on the fundamental wave mode of the steady
profile, η2 through gravitational self-excitation of the fundamental mode (cf. Hinch &
Kelmanson (2003)), and η3 through a second gravitational self-excitation of the funda-
mental mode compounded by the interaction between first-order gravity and hydrostatic
pressure. Hence, under the present scaling, the steady-state profile responds predomi-
nantly to gravitational effects, and is only weakly dependent upon capillarity and inertia
(cf. Hansen & Kelmanson (1994)), as demonstrated by the computed inertial variations
presented in figure 2.
It is this inertial deformation that renders the steady-state solution unstable for suf-

ficiently large β′, as quantified in, e.g., Kelmanson (2009b). Inertia first appears in the
asymptotic steady-state solution (3.2) in η3, in which (3.5) reveals that β′ is a positive
coefficient of sin θ. Thus inertia is predicted to increase the film height in the ranges [0, π],
i.e. above the cylinder, and to decrease it in the range [π, 2π], i.e. below the cylinder: these
predictions are confirmed by the numerical results depicted in figure 2. Inertia therefore
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Figure 2: Spectrally accurate numerical steady-state solutions of (3.1) for Reynolds num-
bers increasing (in direction of arrows) from Re = 0.0 to Re = 4.0 in increments of 0.5,
obtained with N = 64 collocation points and parameter values of α0 = 10.0, γ0 = 12.5
and ǫ = 0.11298. The discrepancy between the solutions for Re = 0.0 and Re = 4.0 is
barely visible on the scale presented in (a), and becomes visible only when zooming in
around (b) the minimum at θ ≈ π, and (c) the maximum at θ ≈ 2π. Inertia respectively
raises and lowers the surface height in the ranges [0, π] and [π, 2π].

lifts the thin-film profile, thereby raising the centre of mass of the fluid vertically (by
the appropriate symmetry of sin θ) above the centre of the cylinder; this configuration
is physically analogous to the unstable equilibrium of an upright mass pendulum on a
metal rod. Although the analogy provides a new heuristic physical interpretation of the
cause of inertial instability, it cannot be used in isolation to quantify a critical stability
threshold based on β′, because of the additional competing effects of gravity, capillarity
and pressure on the steady-state profile. Derivation and validation of such a threshold
are now undertaken.

3.2. Linearized analysis about the steady state

The stability of the steady state ηs(θ) with respect to infinitesimally small transient
disturbances λ(θ, t) is analyzed by setting η(θ, t) = ηs(θ) + λ(θ, t) in (2.8), expanding in
powers of λ and linearizing to obtain the evolution equation

∂λ

∂t
+

∂

∂θ

{
A(θ)λ +B(θ)

∂

∂θ

(
∂2λ

∂θ2
+ λ

)
+ C(θ)

∂λ

∂θ

}
= 0 , (3.6)
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for the perturbation λ. Here

A(θ) =1− σ1ǫγη
2
s cos θ − σ2ǫ

2γη2s
∂ηs
∂θ

sin θ + σ3ǫ
2αη2s

∂

∂θ

(
∂2ηs

∂θ2
+ ηs

)
,

+ σ4ǫ
2β′η2s

∂ηs
∂θ

+
2

3
σ5ǫ

2β′γη4s sin θ

B(θ) =
1

3
σ3ǫ

2αη3s ,

C(θ) =− 1

3
σ2ǫ

2γη3s sin θ +
1

3
σ4ǫ

2β′η3s ,

in which ηs is found in section 3.1. A solution of (3.6) is sought in the form

λ = exp(−iωt)φ(θ) ,
in which the eigenvalue ω and corresponding eigenfunction φ are expressed as the asymp-
totic expansions

ω =

n∑

k=0

ǫkωk and φ(θ) =

n∑

k=0

ǫkφk(θ) . (3.7)

Using (3.2) and (3.7), the decay rate κ = ℑ(ω) for the fundamental mode is readily
obtained via an automated procedure to have the asymptotic approximation

κ1 =
1

3
σ4ǫ

2β′ − ǫ4γ2
(
σ2
1

(
3σ3α− 19

18
σ4β

′

)
+

2

5
σ2σ5β

′

)
+O

(
ǫ5
)
, (3.8)

in which there is now revealed an ǫ2 disparity between the leading-order influences of
inertia and those of gravity and capillarity. This suggests the further inertial rescaling

β′ = ǫ2β , (3.9)

in order to establish the dominant balance that admits the fullest possible interaction be-
tween all competing physical effects for the least-stable (fundamental) mode. The revised
version of (3.8) is

κ1 =

(
−3σ2

1σ3αγ
2 +

1

3
σ4β

)
ǫ4 + ψ5ǫ

5 + ψ6ǫ
6 +O

(
ǫ7
)
, (3.10)

where

ψ5 =
1

3
σ1σ2σ3αγ

2 ,

ψ6 = − 1

270
γ2

(
−120σ2

2σ3α+ 5565σ4
1σ3αγ

2 − 285σ2
1σ4β + 108σ2σ5β

)
.

By (3.10), the interplay between leading-order physical effects requires binary flags σ1,
σ3 and σ4 to be unity, whence the inertial parameter β enters the decay rate (3.10) with
a positive sign, identifying inertia as a destabilizing effect. Hence, there exists a Reynolds
number βc above which the steady-state solution becomes unstable. With σ2 and σ5 still
unspecified, the critical Reynolds number βc for the fundamental mode is found to be

βc =
5αγ2

(
54− 6 σ2ǫ+ 371 γ2ǫ2 − 8 ǫ2σ2

2
)

30− 36 γ2ǫ2σ2σ5 + 95 γ2ǫ2
+O

(
ǫ3
)
, (3.11)

which, to leading order, is equivalent (upon translation of notation) to the asymptotic
approximations derived via independent routes in Noakes et al. (2006) and Kelmanson
(2009b). What remains unresolved is the spatio-temporal evolution of the thin film once
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the critical Reynolds number is exceeded; in this régime, the two-timescale asymptotics of
Kelmanson (2009b) find an unbounded exponential growth of the free-surface instability
which is, however, not corroborated by the present spectral numerical solutions shown
in figure 1. The inference is that more than two timescales are required to resolve the
correct form of the instability.

4. Multiple-timescale asymptotic solution

Using the multiple-timescale asymptotic method of Groh & Kelmanson (2009, 2012),
new light is now shed on both the transition from stable to unstable solutions and the
transient flow dynamics in the unstable régime motivated by, and discussed in, sec-
tion 2.2. The evolution equation† of Kelmanson (2009b) is studied for two reasons. First,
it allows direct comparison of results with those of the asymptotic analysis of Kelmanson
(2009b). Second, it is the evolution equation including the simplest leading-order balance
between all competing independent physical effects, thereby minimizing the complexity
of asymptotic results in the pursuit of novel qualitative properties of the free-surface
evolution. Indeed, in section 5.2 it is demonstrated beyond doubt that effects induced
by the higher-order terms with factors σ2 and σ5 in (2.8), i.e. hydrostatic-pressure and
mixed inertial-gravitational interaction respectively, are negligible by comparison with
those induced by the terms present in (2.8) with signature Σ = 10110.
Equation (2.8) with signature Σ = 10110 and β rescaled by (3.9),

∂η

∂t
+
∂η

∂θ
− 1

3

∂

∂θ

{
ǫγη3 cos θ − ǫ2αη3

∂

∂θ

(
∂2η

∂θ2
+ η

)
− ǫ4βη3

∂η

∂θ

}
= 0 , (4.1)

is solved using the automated multiple-timescale method of Groh & Kelmanson (2009,
2012), a brief outline of which is now given. An asymptotic solution of (4.1) is sought in
the form

η(θ, t0, ts) = 1 +

n∑

k=1

ǫk ηk(θ, t0, ts) , (4.2)

in which t0 = t is the non-dimensional O(1) timescale associated with the rotation of
the cylinder, and ts = (ǫt0, . . . , ǫ

mt0) is a slow-timescale m-vector. At order O
(
ǫk
)
, the

transient solution component ηk(θ, t0, ts) in (4.2) is found to be of the form

ηk(θ, t0, ts) = ηk(θ) +
k∑

j=1

fj(ts) cos(jθ − jt0 − gj(ts)) + η
(p)
k (θ, t0, ts) , (4.3)

in which: the component ηk(θ) of the steady state ηs(θ) is defined in, e.g., (3.3)–(3.5);
slow-timescale functions fj(ts) and gj(ts) respectively modulate the amplitude and drift,
relative to the cylinder, of the jth wave mode of the free-surface profile, and; the term

η
(p)
k (θ, t0, ts) is a particular integral. We remark that f1(ts) determines the amplitude of
the fundamental mode, as described in Groh & Kelmanson (2012).
For the first and higher harmonic modes, j ≥ 2, amplitude-modulation functions fj(t)

are found from linear secularity conditions with exponentially decaying solutions

fj(t) = exp(κj t) , (4.4)

in which the decay rate κj is

κj = −1

3
α ǫ2j2(j2 − 1)− 1

9
ǫ4j2

(
αγ2

(
23j2 + 4

)
− 3β

)
+O

(
ǫ6
)
, (4.5)

† Which, translated into the present notation, is (2.8) with signature Σ = 10110.



Inertially Induced Cyclic Flows 11

as a direct result of which

fj(t) → 0 , t→ ∞ , j ≥ 2 , (4.6)

provided that the Reynolds number is less than a critical value, β < βc,j, at which κj = 0.
The critical Reynolds number for higher harmonics is obtained from (4.5) as

βc,j =
α

ǫ2
(
j2 − 1

)
+

1

3
αγ2

(
23j2 + 4

)
+O

(
ǫ2
)
, j ≥ 2 , (4.7)

which is a quadratically increasing function of j; that is, higher modes become increas-
ingly more stable with respect to inertial perturbations. For β > βc,j, the asymptotic
solution becomes exponentially divergent. However, (3.11) and (4.7) reveal that βc, the
critical Reynolds number for the fundamental mode, satisfies

βc ≪ βc,j , j ≥ 2 , (4.8)

and hence the fundamental mode is more unstable than all higher harmonics; accord-
ingly, f1 determines the evolution of the amplitude of the thin film when (4.8) is satisfied.

The amplitude-modulation function f1 takes the form f1(ǫ
4t) = f1(t4) because it arises

in the O
(
ǫ5
)
non-secularity condition, namely

df1
dt4

= κ1f1 − κ̂1f
3
1 , f1(0) = 1 , (4.9)

with solution

f1(t4) =

{(
1− κ̂1

κ1

)
exp(−2κ1t4) +

κ̂1
κ1

}
−1/2

, (4.10)

in which

κ1 = −3αγ2 +
1

3
β and κ̂1 =

25

324

γ6

α
,

and hence the parameter κ1 in (4.10) assumes the role of a decay rate. Note that set-
ting β = 0 in the formally derived (4.9)–(4.10) recovers the heuristically proposed “tran-
sition equation”† in Hinch et al. (2004, eqn.(5.5)). Augmenting κ1 by terms arising from
the analysis at orders O

(
ǫ5
)
and O

(
ǫ6
)
, we obtain the more accurate decay rate

κ1 = −3αγ2 +
1

3
β − ǫ2γ2

(
371

18
αγ2 − 19

18
β

)
, (4.11)

from which κ1 = 0 yields

βc = αγ2
54 + 371ǫ2γ2

6 + 19ǫ2γ2

in agreement with (3.11)—after σ2 and σ5 have been set to zero—which was derived
via an independent linearized stability analysis. In the case κ1 < 0, the solution (4.10)
is asymptotically stable, in the sense that f1(t4) → 0 as t4 → ∞, in agreement with
Kelmanson (2009b). Note that, in the rimming-flow counterpart of the present analysis,
the sign of β reverses in (4.11), making the flow unconditionally unstable with respect
to inertial variations, in keeping with Noakes et al. (2006) and Kelmanson (2009b).

Critical solutions of (4.1) occur when κ1 → 0 in (4.10); considering the limit formally

† Connecting smooth and shock-like solutions across disparate parameter ranges as α is re-
duced.
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reveals that

f1(t4) →
1√

1 + 2κ̂1t4

, κ1 → 0 . (4.12)

Hence the 7-timescale solution predicts that f1 decays algebraically at the critical Reynolds
number approximated by (3.11), in stark contrast with the non-decaying, periodic critical
solutions either predicted or implied by prior studies: that is, (4.12) portends a hitherto-
undiscovered flow mechanism.

By increasing inertia so that β > βc, unstable solutions are obtained, but not in
the unbounded sense of prior studies. Here, the algebraic-cum-exponential amplitude
function f1 in (4.10) is bounded for all values of κ1 > 0 and has the large-time limit

f1(t4) →
√
κ1
κ̂1

, t4 → ∞ , κ1 > 0 , (4.13)

as a consequence of which, using (3.3), (4.3) and (4.6), and noting that f1(0) = 1, the
large-time profile of the film with uniform unit initial height is†

η(θ, t) → 1 +
1

3
γǫ
(
cos θ −

√
κ1
κ̂1

cos
(
θ − (1 + g1)t

))
, t→ ∞ , (4.14)

in which the fundamental-mode drift coefficient g1 is determined as

g1 = −5

6
γ2ǫ2 − 25

24
γ4ǫ4 − 2275

972
ǫ6γ6 − 12ǫ6γ2α2 +O

(
ǫ8
)
, (4.15)

which is independent of the inertial parameter β to the presented order.

By (4.14), a steady-state profile cannot be attained; the flow assumes a periodic state

dominated by the fundamental mode. Such (explicitly parameterized) periodic states,
although having been identified numerically and experimentally, have been neither ex-
plicitly analyzed nor quantified in previous asymptotic studies and so constitute a novel
discovery. However, experimental and numerical evidence, which is not quantitatively
analyzed, of such states is respectively given in Thoroddsen & Mahadevan (1997) and
Hosoi & Mahadevan (1999), in which they are referred to as “sloshing solutions”.

5. Results and discussion

5.1. Qualitative validation of the asymptotic theory

Results obtained from the asymptotics of section 4 are first corroborated on a qualitative
physical basis and then quantitatively validated against the spectrally accurate numerics
of Groh & Kelmanson (2009, 2012). The three-term asymptotic solution obtained using 7
timescales and Σ = 10110 in (4.2) is

η(θ, t) = 1 + ǫ η1(θ, t) + ǫ2 η2(θ, t) +O
(
ǫ3
)
, (5.1)

in which

η1(θ, t) =
1

3
γ cos θ − 1

3
γf1(t) cos(θ − t− g1t)

† After rescaling, here and subsequently, all slow timescales using tj = ǫjt.



Inertially Induced Cyclic Flows 13

and

η2(θ, t) =
1

6
γ2 cos 2θ − 1

3
γ2f1(t) cos(2θ − t− g1t)

− 5

108

γ4

α
f1(t)

2 cos(2θ − 2t− g1t) , (5.2)

wherein f1(t) and g1 are given by (4.10) and (4.15) respectively. Previous asymptotic
studies have used only two timescales, which is tantamount to setting κ̂1 = 0 in (4.10);
in this case, the algebraic-cum-exponential amplitude f1(t) has the pure-exponential limit

f∗

1 (t) ≡ lim
κ̂1→0

f1(t) = exp(κ1ǫ
4t) ,

which fully explains all observations based on the 2-timescale asymptotics of Kelmanson
(2009b). Asymptotic solutions (5.1) using both f1 and f∗

1 can now be compared. Since
our interest is in inertial perturbations of amplitude, and because inertial effects are
absent from g1 in (4.15) to the presented order, the same slowly varying phase-drift
coefficient g1 is used in both cases. The comparison is depicted in figure 3, in which
inertia exceeds the predicted critical value (3.11). Both f1 and f∗

1 are seen to be in good
agreement at early times, but they diverge at t = O(400); the exponentially divergent
solution incorporating f∗

1 results in the free surface penetrating the cylinder surface at
times t = O

(
103

)
, when the two-timescale results are no longer physically viable. Most

strikingly, the qualitative behaviour of the solutions of (5.1) incorporating f1 is entirely
consistent with that of the “motivating” solutions in figure 1(a)–(c), which were computed
using independent spectrally accurate numerics. That is, the advanced multiple-timescale
procedure has identified and explained a new physical mechanism, one that has remained
beyond the reach of all previous related studies. A quantitative validation of the new
asymptotic results is now conducted using the authors’ spectrally accurate numerical
method (Groh & Kelmanson (2009, 2012)).

5.2. Quantitative validation of the asymptotic theory

Quantification of the asymptotic results is effected with reference to the motivating
computations shown in figure 1(d), which shows the loci η̂(0, t) and η̌(0, t) that in-
terpolate respectively the maxima and minima of η(0, t) in figures 1(a)–(c). It follows
from (3.2), (3.3), (4.15) and (5.1) that

η(θ, t) = ηs(θ)−
1

3
ǫγf1(t) cos(θ − t) +O

(
ǫ2
)
, (5.3)

and hence that

η̂(0, t)− ηs(0) ≈
1

3
ǫγf1(t) , (5.4)

the right-hand (theoretical) and left-hand (numerical) sides of which can be compared.
Before doing so, it is useful to make theoretical predictions and computational estimates
of the critical Reynolds number Rec at which the growth rate κ1 of the fundamental
mode vanishes. By (4.11) and the scalings (2.5) and (3.9), κ1 = 0 when Re assumes the
critical value

Rec ≡ ǫαγ2
54 + 371ǫ2γ2

6 + 19ǫ2γ2
≈ 2.49115 (5.5)

when parameters α0 = 10.0, γ0 = 12.5 and ǫ = 0.11298 are used. The corresponding
critical Reynolds number determined by the leading-order two-timescale asymptotics of
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Figure 3: (a)-(c) Comparison of three-term asymptotic solutions η(0, t) computed us-
ing f∗

1 (dashed line, with exponential amplitude) and f1 (solid line, with exponential-cum-
algebraic amplitude) in (5.1). Here Σ = 10110, and physical parameters are α0 = 10.0,
ǫ = 0.11298, γ0 = 12.5 and Re = 4.0, which value of Re exceeds the theoretical critical
value Rec predicted in (5.5). (d) The upper and lower envelopes, respectively η̂ and η̌,
over the time integration range t ∈ [0, 1400], superposed by shaded regions indicating the
time intervals of figures (a), (b) and (c). Note the different vertical scales in (a,b) and
(c,d). The solid curve should be qualitatively compared with the motivating numerical
solutions, computed using the same parameters, shown in figure 1(a)–(c).

Kelmanson (2009b, eqn. (4.7)) is, translated into the present notation,

Rec =
9ǫαγ2

1 + 16ǫ2α4
≈ 2.28363 , (5.6)

which is comparable with the value Re∗c ≈ 2.29123 obtained by omitting the order O
(
ǫ2
)

terms (due to the third and higher timescales) in the rational fraction in (5.5). For
comparison, a computational search using the spectrally accurate numerics of Groh &
Kelmanson (2009, 2012) yields a “true” critical value of

R̂ec ≈ 2.49661 , (5.7)

relative to which the asymptotic prediction Rec of (5.5) is in error by 0.2 per cent. The
terms in (5.4) are now compared over a range of Reynolds numbers guided by (5.5)–(5.7),
and chosen to highlight distinctive solution behaviour; specifically, Re = Rec±0.01× 2k

for k = 0, . . . , 7, in which the plus and minus signs respectively yield unstable and stable
solutions. Theoretically and numerically determined inertial influences on stability are
respectively presented in figures 4(a) and (b), which provide convincing quantitative
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validation of prediction (5.4). Figures 4(a) and (b) also reveal that the agreement between
theory and numerics continues over large timescales as a result of the correct amplitude
of the fundamental mode being fully captured by the asymptotic solution. Hence the only
discrepancy (which decreases over time) between numerical and asymptotic solutions is
the one induced by the asymptotics not fully capturing the drift; such a discrepancy is
not evident in the amplitude plots of figure 4. It is moreover the inclusion of 7 timescales
that underlies the above-mentioned close agreement between the theoretical Rec of (5.5)

and the “true” numerical R̂ec of (5.7): by using only two timescales, the prediction Rec
of (5.6) underestimates the value of R̂ec by approximately 8.5 per cent.
In figures 4(a) and (b), the solid (blue) and dashed (red) curves correspond respectively

to stable and unstable solutions, and the two stability régimes are divided by the solid
(black) line enumerated ➂ . The dotted lines in figure 4(b) correspond to a numerical

search used to obtain the curve labelled ➃ , at Re = R̂ec given by (5.7). The sensitivity
of the stability behaviour with respect to Reynolds number is evidenced by noting that
the curves labelled ➂ and ➃ in figure 4(b) are computed using values of Re that differ
(see above) by only 0.2 per cent in a relative sense. Also apparent in figures 4(a) and
(b) is that unstable solutions not only remain bounded (whilst remaining constant over
large timescales, cf. figure 1(d)), but also that they have an amplitude that increases
with Re; the functional dependence of the amplitude upon Re is determined in section 5.3.
Note, for comparison, that the equivalent of figure 4(a) for the two-timescale asymptotics
of Kelmanson (2009b) would contain curves for Re > Rec (dashed lines) that diverge
exponentially in the manner of η̂ (the upper envelope) in figure 3(d).

The theoretical average decay rate 〈κ〉 of all instantaneous decay rates κ(t) over the
time interval t ∈ [0, T ] is obtained from (4.10) as

〈κ〉 ≡ 1

T

∫ T

0

d

dτ
ln f(τ) dτ = − 1

2T
ln

{(
1− κ̂1

κ1

)
exp(−2κ1ǫ

4T ) +
κ̂1
κ1

}
. (5.8)

By using Lagrange polynomials to interpolate the numerical solution η(θ, t) over succes-
sive cycles, consecutive extrema of η(θ, t) at some fixed station (here, θ = 0) can be accu-
rately approximated and post-processed to compute a numerical average decay rate 〈κ̂〉
from the envelopes of the extrema. The comparison between 〈κ〉 and 〈κ̂〉 is conducted
in figure 5, in which both decay rates are further compared with the (pure-exponential)
decay rate determined by the two-timescale asymptotics of Kelmanson (2009b). It is
evident that the two-timescale decay rate is a reasonable qualitative approximation in
the stable régime, whereas the 7-timescale result provides both a qualitatively and quan-
titatively good estimate of the averaged decay rate in both the stable and unstable
régimes. The divergence from the linear dependence in the unstable régime is a result of
the algebraic-cum-exponential amplitude dependence of the fundamental mode that has
eluded—indeed, lies beyond the methodology of—all prior studies; it is, moreover, fully
corroborated by quantifying spectral numerics.

The effect of altering the signature Σ in (2.8) is demonstrated in figure 6, which shows
the changes induced in the results depicted in figure 5 when the binary flags σ2 and σ5,
thus far set to zero, are switched on either independently or together. The figure clearly
evidences that the influences of both hydrostatic pressure and gravitational-inertial in-
teraction, although perturbing the results due to the leading-order effects of capillarity,
gravity and “pure” inertia quantitavely, do not do so qualitatively. That is, in the large-
time limit, solutions are exponentially convergent to a steady-state profile in the stable
régime, whereas they approach a time-dependent periodic state in the unstable régime
that is stable to secondary perturbations by subservient physical effects. Consequently,
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Figure 4: Quantitative validation of prediction (5.4): the theoretical values (a) of 1
3ǫγf1(t)

are in excellent quantitative agreement with the corresponding numerical values (b)
of η̂(0, t) − ηs(0) over the integration range t ∈ [0, 106]. Here Σ = 10110, α0 = 10.0,
γ0 = 12.5 and ǫ = 0.11298. The curve enumerated ➀ corresponds to the solution
with Re = 0. Remaining enumerated curves are critical solutions with: ➁ Re = Rec
given by (5.6); ➂ Re = Rec given by (5.5), and; ➃ Re = R̂ec given by (5.7). Solid curves
(blue) correspond to stable solutions obtained for Re = Rec −0.01×2k, and dashed curves
(red) correspond to unstable solutions obtained for Re = Rec+0.01×2k, for k = 1, . . . , 7.
Arrows point in the direction of increasing Re, and dotted lines in (b) are obtained from

a numerical search for the “true” critical Reynolds number Re = R̂ec. The sensitivity
of results to variations in Re is quantified by noting that ∆Re = 5.46× 10−3 separates
the curves labelled ➂ and ➃ in (b), hence the agreement between results in (a) and (b)
quantifies the impressive accuracy of the 7-timescale asymptotics.
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the application of the 7-timescale asymptotics to the simpler evolution equation (4.1)† is
justified.
In order to demonstrate that the 7-timescale asymptotics work well in more extended

parameter régimes than those implicit in figures 5 and 6, a density plot is presented in
figure 7 of numerically integrated large-time decay rates in the Re–γ0 plane for fixed α0

and ǫ. In figure 7, the upper-left (blue) and lower-right (red) regions correspond respec-
tively to stable and unstable solutions, and the theoretically predicted critical separatrix
(solid line) between the two regions is only 0.2 per cent in error, which is almost indis-
tinguishable on this scale from its numerically computed counterpart (dotted line).

5.3. Periodic state

The secularity condition (4.9) for the fundamental-mode amplitude function f1 becomes,
upon using (5.5),

df1
dt4

=
1

3ǫ
(Re−Rec)f1 −

25γ6

324α
f3
1 , (5.9)

which is the canonical equation (Tu (1994, p.198)) of a supercritical pitchfork bifurcation
parameterized by Re−Rec. Solutions of (5.9) are therefore asymptotically stable; they
decay to zero for Re < Rec and become stable limit cycles with an amplitude proportional
to (Re−Rec)

1/2 when Re ≥ Rec. It is also noteworthy that, although 5-timescale asymp-
totics also yield the second term‡ on the right-hand side of (5.9), 7-timescale asymptotics
are the minimum necessary to determine an f1 whose behaviour agrees quantitatively
with numerical integrations, as evidenced in figure 8 and the associated discussion. Al-
though experimental and numerical evidence for the existence of cyclic states is respec-
tively given in Thoroddsen & Mahadevan (1997) and Hosoi & Mahadevan (1999), the
present work comprises the first combined qualitative and quantitative transient analysis
of such régimes for coating (and, by implication, rimming) flows.
By (4.14) and (4.15), the periodic component ηp(θ, t) of the large-time solution is given

at the station θ = 0 by

ηp(0, t) = −A cos(1 + g1)t for t≫ 1 , (5.10)

in which the leading-order amplitude A is

A ∼ 1

3
ǫγF1 , (5.11)

wherein

F1 = lim
t→∞

f1(t) =
6

5γ3

√
3α

ǫ
(Re−Rec) for Re > Rec , (5.12)

in which the argument of the square root is always positive. Figure 8 shows the leading-
order result (5.11)–(5.12) as a dot-dashed line: comparison with the results of spectrally
accurate numerics reveals the correct qualitative amplitude growth, but a quantitative
discrepancy. To reduce the discrepancy between asymptotic results and numerical com-
putations, fundamental-mode contributions from higher-order components ηk for k ≥ 2
must be included in (5.11); this yields the amended amplitude estimate

A ∼ 1

3
ǫγF1

{
1 + γǫ+

1

3
γ2ǫ2

(
(4− F1 +

25

864

γ4

α2
F 2
1

)}
+O

(
ǫ4
)
, (5.13)

† Equivalent to Kelmanson (2009b, eqn. (2.36)) and asymptotically equivalent to a two-di-
mensional restriction of Noakes et al. (2006, eqn. (3.13)).

‡ Born of the higher-harmonic “modal interactions” discussed in section 6; see Groh and
Kelmanson (2012) for details.
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Figure 5: Numerical and asymptotic average decay-rate dependence on the Reynolds
number Re for Σ = 10110, α0 = 10.0, γ0 = 12.5 and ǫ = 0.11298. The two-timescale
asymptotics of Kelmanson (2009b) capture the qualitative behaviour in the stable
régime 〈κ〉 < 0. The present 7-timescale asymptotics capture both the qualitative and
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firmed by spectrally accurate numerics. A value of T = 106 has been used in (5.8).
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same physical parameters as in figure 5, but with the signatures Σ altered by switching
σ2 and σ5 on and off. Imperceptible differences occur in the results, evidencing that the
influences of hydrostatic pressure and gravitational-inertial interaction are dominated by
those due to leading-order capillarity, gravity and “pure” inertia.
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Figure 7: Density plot of decay rate 〈κ〉 in Re–γ0 space for signature Σ = 10110 and
parameters α0 = 10.0, ǫ = 0.11298 and T = 106 in (5.8). Decay rates are obtained from
numerical integrations of the evolution equation: the upper-left (blue) and lower-right
(red) regions correspond respectively to stable and unstable solutions. The dotted line
is the 〈κ〉 = 0 critical-stability separatrix computed from numerical integrations; this
compares well with the solid line obtained from the theoretical result (5.5). It is not
possible to predict the value of Re ≫ Rec at which cyclic solutions eventually yield to
inertially dominated unconditional instability. It is to be noted, however, that Figures 10
(d) and 11 (b) evidence the existence of (spectrally accurate, computed) cyclic solutions
for Re = 60.0, which is (still) of the order Re ≈ O

(
ǫ−1

)
stated below (2.4); increasing

this to Re ≈ O
(
ǫ−2

)
violates the hierarchy within which the present asymptotics are

developed.

in which the terms of order O
(
ǫ4
)
are known explicitly; although they are not pre-

sented because of their cumbersome nature, they are included in (5.13) when deriving
the results presented in figure 8, which clearly illustrates that the higher-order amplitude
dependence (5.13) is now in excellent quantitative agreement with the spectrally accu-
rate results. Thus the parametric influence on the amplitude of the fundamental-mode
component of large-time limit-cycles has been explicitly determined.
Although never before explicitly analyzed, periodic states have been reported in exper-

iments: Benjamin et al. (1993) report that “flows never settle into steady states” and that
they “vary periodically in time”. Moffatt (1977) reports instabilities that form “lobes”,
which rotate with a speed slightly less than that of the cylinder. This is confirmed by
the present theory, in which the period of the motion described by (5.10) is 2π/(1 + g1),
which is greater than the rotation period 2π of the cylinder because, by (4.15), the drift
factor g1 is always negative; hence the maximum of the periodic state lags behind the
rotating cylinder, as illustrated in figures 1 (a)–(c) and 9. Furthermore, the exhaustive
experimental investigation of Thoroddsen & Mahadevan (1997) and the numerical study
of Hosoi & Mahadevan (1999) report “sloshing solutions” and undulations, which are
identified with the periodic state predicted by the present asymptotic theory. Although
the periodic-state solution resembles features that are reported in experiments and nu-
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Figure 8: The amplitude A of the non-decaying periodic state induced by the instability
of the fundamental mode as a function of the Reynolds number Re. Other parameters are
as given in the caption of figure 7. The dot-dashed and solid lines respectively correspond
to leading- and higher-order asymptotic approximations.

merical studies, it is acknowledged that experiments such as those conducted in Moffatt
(1977) and Hynes (1978) may be influenced by three-dimensional effects that are theo-
retically analyzed neither here nor in the great majority of related literature. However,
it is natural to ask how the onset of instability might be affected by such axial varia-
tions, which are precluded by a two-dimensional analysis. Hosoi & Mahadevan (1999),
Pougatch & Frigaard (2011) and Benilov & Lapin (2013) have considered this question by
analysing three-dimensional perturbations from a two-dimensional steady state, h∞(θ)
say, in the form† h(θ, z, t) = h∞(θ)+ f(θ) exp(st+ ikz), determining eigenfunctions f(θ)
and corresponding growth rates s as a function of the axial wave number k. Hosoi &
Mahadevan (1999) find “the existence of unstable [axial] modes only when inertia is suf-
ficiently large”. Benilov & Lapin (2013) find that “the strongest instability occurs for
two-dimensional flows”—i.e. that axial instability does not occur before the azimuthal
one. Pougatch & Frigaard (2011) conclude that “Although we cannot say that for all
flow parameters . . . the 2D steady solution loses stability to a 3D solution, for at least
some parameter sets this is the natural evolution.” Hence, to date, there would appear to
be no comprehensive qualitative and/or quantitative resolution of the interplay between
axial and azimuthal inertial effects on stability. We believe that there is no conceptual
reason why the approach used in this paper cannot be extended to resolve this issue via
an explicit three-dimensional asymptotic analysis.

† Hynes (1978, eqn (3.7)) appears to be the first to do this in a 3-D stability analysis that
includes centrifugal, capillary and gravitational effects.
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Figure 9: Large-time rotation of film-thickness maximum around the cylinder, illustrated
for a periodically unstable flow: the marker pin (short radial line in (a)–(e)) fixed in
the free surface travels anticlockwise with the speed of the cylinder, whereas the film-
thickness maximum lags, as illustrated by the cumulative single-period lag in (f). This
phenomenon was first reported in the experiments of Moffatt (1977), where a lobe formed
on a three-dimensional instability.

Note that, when Re > Rec, the linear term in (5.9) is positive and it can be made
to dominate (in magnitude) the negative cubic term by letting ǫ → 0, in which limit f1
apparently undergoes exponential growth. This arguably counterintuitive result is ex-
plained by noting that, in the limit ǫ → 0, the free-surface profile becomes increasingly
circular, because it approaches the cylinder surface, thereby weakening the stabilizing
effect of capillarity, whose role is that of annihilating first and higher harmonics in the
free-surface profile. That is, as the film gets thinner, it becomes less stable, but in the
sense that it takes longer to approach the steady state; this observation is consistent with
the results of Hinch & Kelmanson (2003), in which two-timescale asymptotics predict an
exponential decay of the fundamental mode to the steady state at a rate proportional
to ǫ7.

6. Higher-mode instability

The discrepancy between leading- and higher-order results in figure 8 invites further
examination of the instability of higher modes exp(ij(θ − t)) (in which both i =

√
−1

and j ≥ 2 are henceforth implied), for which the 7-timescale solution of section 4 and the
asymptotic analysis of Kelmanson (2009b) predict exponentially divergent solutions that
are not corroborated by the present spectral numerics. Specifically, (4.7) predicts that
the amplitude fj of the jth mode in (4.4) increases exponentially when the Reynolds
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number exceeds a critical value Rec,j given by (4.5) as

Rec,j ≡ α0

(
j2 − 1

)
+

1

3
α0γ

2
0(23j

2 + 4)ǫ4 , (6.1)

in which, by (4.8), Rec,j ≫ Rec, reiterating that the fundamental mode is the least
stable with respect to inertial increase. For parameters α0 = 10.0, γ0 = 12.5 and ǫ =
0.11298, (6.1) gives Rec,2 = 38.15 and Rec,3 = 97.91 for the second and third mode
respectively, hence the solution for Re = 60.0 is expected to have unstable fundamental
and second modes, but stable third and higher modes.
The numerical solution at the station θ = 0, for α0 = 10.0, γ0 = 12.5, Re = 60.0

and ǫ = 0.11298, is shown in figure 10(a), in which four distinct intervals are enumerated.
In interval ➀ , the solution is sinusoidal because of the dominant fundamental mode.
At times t = O(40), multi-modal interactions appear; these become increasingly more
prominent in region ➁ , until t = O(120), when further interactions arise in region ➂ .
The solution then appears to settle into a periodic state in region ➃ for times larger
than t = O(200).
The behaviour in intervals ➀ , ➁ and ➃ can be explained by proposing a model solution

(at the arbitrary station θ = 0) of the form

ηm(t) = 1 + c1 f1(t) cos t+ c2 f2(t) cos 2t , (6.2)

in which c1 ≫ c2. The functional dependence of f1 is given in (4.10) and the amplitude
function of the second mode is now proposed to behave not as (4.4) but rather as

f2(t) =

{(
1− κ̂2

κ2

)
exp(−2κ2 t) +

κ̂2
κ2

}
−1/2

, (6.3)

in which κ2 is given by (4.5) and κ̂2 > 0. Guided by (3.3), (3.4) and (4.11), the values

c1 =
1

3
γ0ǫ

2 , c2 =
1

6
γ20ǫ

4 and κ̂2 =
25γ0ǫ

5

324α0
(6.4)

are assigned to the as-yet-unspecified elements of (6.2)–(6.3) in order to effect a compar-
ison with the numerical solution.
A comparison of figures 10(a) and (b) demonstrates that the proposed model solu-

tion ηm(t) depicted in the latter models well the behaviour in time intervals ➀ and ➁ , i.e.
the initial dominance of the fundamental mode in region ➀ and the onset of multi-modal
interactions induced by the growth of the second mode in region ➁ . A periodic state is,
however, attained earlier in (theoretical) figure 10(b) than in (numerical) figure 10(a)
because the growth in the former of third and higher modes in region ➂ is precluded by
the truncated form of (6.2), whereas the numerical solution admits nonlinear interactions
with modes having j ≥ 3.
The agreement between the proposed model solution and the numerical results sug-

gests that the amplitude of the highers modes must in reality also satisfy a differential
equation of the algebraic-cum-exponential form (4.9) rather than the pure-exponential
form (4.4). The implication is that (even) the 7-timescale method cannot determine the
correct form of secularity conditions for the higher modes, and an explanation of this
technical methodological aspect, being beyond the remit of this paper, would merit future
consideration.
Finally, presented in figure 11 is a sequence of temporal snapshots of the 7-timescale

solution η(θ, tk) showing the evolution of the free surface around the full cylinder. The
early solution, with k = 1 in figure 11(a), is the pure-sinusoidal fundamental mode, from
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Figure 10: Evolution of: (a) the numerical solution η(0, t), and; (b) the proposed model
solution ηm(t) given by (6.2)–(6.4). Parameters are α0 = 10.0, γ0 = 12.5, ǫ = 0.11298
and Re = 60.0, so that Re ∈ (Rec,2,Rec,3). The enumeration of temporal sections of the
solution is discussed in the text.
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Figure 11: Evolving snapshots of the free-surface profile with parameters α0 = 10.0,
γ0 = 12.5, Re = 60.0 and ǫ = 0.11298. Early and later profiles are respectively separated
into plots (a) and (b) for clarity. The constant initial profile develops for t ∈ [t0, t2] into a
sinusoidal shape, after which a second, less-pronounced, maximum develops for t ∈ [t2, t5].
As the periodic state is approached for t ∈ [t6, t8], the film profile converges to a near-
constant solution with the exception of a single localized maximum.
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which higher-order modes develop and interact† with increasing t. The late solution,
with k = 8 in figure 11(b), shows a near-uniform solution outside a relatively localized
region in which there is a pronounced unique maximum. Although these lobes have been
predicted via a two-dimensional analysis that ignores axial effects, they are reminiscent
of the cylindro-stationary lobes observed in both the experiments of Moffatt (1977) and
the steady-state results of Karabut (2007) and Pougatch & Frigaard (2011).
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