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Synthesis of General Chebyshev Characteristic Function for Dual 
(Single) Bandpass Filters  

Evaristo Musonda1, Student Member IEEE, Ian Hunter1, Fellow IEEE 
1Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of 

Leeds, Leeds LS2 9JT, UK 

Abstract— A new synthesis method for the generation of the 
generalized Chebyshev characteristic polynomials has been 
presented. The general characteristic function is generated by 
linear combination of elementary Chebyshev characteristic 
functions. The characteristic function is suitable for synthesis of 
dual bandpass filters as well as direct synthesis for single 
bandpass filters. 

Index Terms—Dual-band Filters, Generalised Chebyshev, 
Minimum Phase Networks, 

I. INTRODUCTION 

There has been increasing interest in the past decade in the 
area of multi-passband filters. In particular dual band filters 
offers flexibility as well as efficiency in the utilization of 
communication resources. Many important contributions have 
been made to the methods of designing of dual band filters [1-
3]. 

The previous methods outlined in [2, 3] involve some form 
of frequency transformations to generate a lowpass transfer 
function suitable for dual band filters. Similar lowpass filters 
for dual band filters may be designed using change of variable 
based on classical work in [4]. In this paper, however, 
methods of direct generation of the general Chebyshev 
lowpass transfer function for dual passband filters will be 
explained. The outlined method offers a simple and intuitive 
approach to synthesis of dual (or direct synthesis of single) 
band filter networks by linearly combining simple elementary 
characteristic functions. 

In section II the generation of the basic prototype 
characteristic functions is described followed by the method of 
computing the characteristic polynomials in section III. 
Finally, a design example is given in section IV.  

II. CHARACTERISTIC FUNCTION 

For any given filter network, the power transfer function 
may be defined as [5], ȁܵଶଵሺ߱ሻȁଶ ൌ ͳͳ ൅ ቀ௞ிሺఠሻ௉ሺఠሻ ቁଶ ሺͳሻ 

where k is a constant, the monic polynomials, ܨሺ߱ሻ and ܲሺ߱ሻ 
are the reflection and transmission (containing the transfer 
function’s transmission zeros) characteristic polynomial 
respectively, all dependent on the frequency variable ߱ rad/s. 
Let the characteristic function be defined as 

ேܶሺ߱ሻ ൌ ݇  ሺ߱ሻܲሺ߱ሻ ሺʹሻܨ

where, ܰ is the degree of the filter network. It may be shown 
then that for Chebyshev characteristic functions the 
characteristic function can be found from the linear 
combination of ݉ number of low degree basic characteristic 
functions ܺ௥ሺ߱ሻ based on the following equation, 

ேܶሺ߱ሻ ൌ ݄ݏ݋ܿ ൝෍ሾߙ௥ ሼܺ௥ሺ߱ሻሽሿ௠݄ݏ݋ܿܽ
௥ୀଵ ൡ ሺ͵ሻ 

where  ߙ௥ (integer) is the corresponding weighting number to 
the basic characteristic function ܺ௥ሺ߱ሻ. Thus the problem of 
determining the higher degree rational polynomial ேܶሺ߱ሻ, is 
reduced to determining some unique lower degree basic 
characteristic functions  ܺ௥ሺ߱ሻ which act as basic building 
blocks for higher degree polynomials. Each of the basic 
prototype is defined by the number and positions of 
transmission zeros. The overall characteristic function may be 
obtained by further expansion of ሺ͵ሻ as presented below after 
a bit of mathematical manipulations, 

ேܶሺ߱ሻ ൌ ͳʹ ൝ෑ ቈܺ௥ሺ߱ሻ ൅ ටܺ௥ଶሺ߱ሻ െ ͳ቉ఈೝ௠
௥ୀଵ ൅ ෑ ቈܺ௥ሺ߱ሻ െ ටܺ௥ଶሺ߱ሻ െ ͳ቉ఈೝ௠

௥ୀଵ ൡ Ǥ ሺͶሻ 

Now the term in ሺͶሻ is conveniently re-written as  ܺ௥ሺ߱ሻ േ ටܺ௥ଶሺ߱ሻ െ ͳ ൌ ௥ܷ േ ௥ܹξܸ௥ܲሺ߱ሻ  ሺͷሻ 

where ௥ܷ  is simply the numerator of ܺ௥ሺ߱ሻ and  ܸ ൌ ሺ߱ଶ െ ͳሻሺ߱ െ ሻሺ߱ߙ െ  ሻ ሺ͸ሻߚ

is the polynomial containing the critical (cut-off) points. ௥ܹ is 
the polynomial that results from the factorisation ሺͷሻ and ௥ܲሺ߱ሻ is simply the denominator of ܺ௥ሺ߱ሻ. The next sections 
show how the basic prototypes may be determined. 

A. Basic prototypes for minimum phase lowpass filters 

For minimum phase filter networks, all the transmission 
zeros of the transfer function (1) are either at the origin or 
infinite in the complex plane. For this class of lowpass filter, 
the characteristic function satisfies the general differential 
equation of the form, ݀ ேܶሺ߱ሻ݀߱ ൌ ௡ሺ߱ଶܥ ൅ ߱௠ଶሻඥ ேܶଶሺ߱ሻ െ ͳ߱ඥ߱ସ െ ሺͳ ൅ ߱௖ଶሻ߱ଶ ൅ ߱௖ଶ Ǥ ሺ͹ሻ 



The term ߱ଶ ൅ ߱௠ଶ accounts for a pair of imaginary turning 
points. The other turning points are provided by the term ඥ ேܶଶሺ߱ሻ െ ͳ and the extra zeros provided by this expression 
are just the cut-off points at ߱ ൌ െͳǡ െ߱௖ ǡ ߱௖ ǡ and ͳ, which 
are cancelled out by the denominator term ඥ߱ସ െ ሺͳ ൅ ߱௖ଶሻ߱ଶ ൅ ߱௖ଶ. ܥ௡  is a constant and ߱௖ is the 
inner cutoff in the normalized domain. By solving this 
differential equation, the general solution of the characteristic 
function for minimum phase filter networks is obtained. It 
may be shown that the solution to ሺ͹ሻ may be written as, 

ேܶሺ߱ሻ ൌ ݄ݏ݋ܿ ቐ    ߙଵ ଶߙሼܺଶି଴ି଴ሺ߱ሻሽ൅݄ݏ݋ܿܽ ଷߙሼܺଶି଴ିଵሺ߱ሻሽ൅݄ݏ݋ܿܽ  ሼܺଶି଴ିଶሺ߱ሻሽቑ ሺͺሻ݄ݏ݋ܿܽ

proving the synthesis equation ሺ͵ሻ where the basic prototypes 
are ܺଶି଴ି଴ሺ߱ሻ ൌ ʹ߱ଶ െ ሺͳ ൅ ߱௖ଶሻሺͳ െ ߱௖ଶሻ  ܺଶି଴ିଵሺ߱ሻ ൌ ߱ଶ െ ߱௖ሺͳ െ ߱௖ሻ߱ ܺଶି଴ିଶሺ߱ሻ ൌ ሺͳ ൅ ߱௖ଶሻ߱ଶ െ ʹ߱௖ ଶሺͳ െ ߱௖ଶሻ߱ଶ Ǥ ሺͻሻ 

From (8) for ேܶሺ߱ሻ to be an even ܰ௧௛ degree rational 
polynomial in ɘ, ʹߙଵ ൅ ଶߙʹ ൅ ଷߙʹ ൌ ܰ i.e. ߙଵ ൅ ଶߙ ൅ ଷߙ ൌ ܰȀʹ ሺͳͲሻ 

Thus Ƚଵ, Ƚଶ and Ƚଷ, must be either zero or positive integers. 
Also from ሺͺሻ, the number of transmission zeros at the origin 
for T୒ሺɘሻ is ்ܰ௓ ൌ ை்ܰ௓ ൌ ଶߙ ൅  ଷ ሺͳͳሻߙʹ

By assigning different integer values including zero to Ƚଵ, Ƚଶ 
and Ƚଷ, different linear combinations of functions in ሺͺሻ may 
be obtained as unique solutions to the differential equation ሺ͹ሻ. ேܶሺ߱ሻ given by ሺͺሻ is thus the general solution to the 
differential equation defined by ሺ͹ሻ. There are only two 
equations in Ƚଵ, Ƚଶ and Ƚଷ i.e. ሺͳͲሻ and ሺͳͳሻ. Thus one of the 
three scalars may be chosen and the other two may be 
determined from ሺͳͲሻ and ሺͳͳሻ. One suitable choice is as 
follows: For ை்ܰ௓ ൑ ܰȀʹǡ choose ߙଷ ൌ Ͳ, then solving ሺͳͲሻ 
and ሺͳͳሻ simultaneously yields, ߙଵ ൌ ܰȀʹ െ ை்ܰ௓ ߙଶ ൌ ை்ܰ௓ 

ሺͳʹሻ 

For ை்ܰ௓ ൒ ܰȀʹǡ choose ߙଵ ൌ Ͳ, then solving ሺͳͲሻ and ሺͳͳሻ 
simultaneously yields, ߙଶ ൌ ܰ െ ை்ܰ௓ ߙଷ ൌ ை்ܰ௓ െ ܰȀʹ 

ሺͳ͵ሻ 

 

 

 

The different scalars values are summarized in table I. In this 
work, the nomenclature ܰ െ ி்ܰ௓ െ ை்ܰ௓ is adopted to depict 
an ܰ௧௛ degree characteristic function with ி்ܰ௓ transmission 
zeros at some general complex frequencies, including purely 

real and imaginary (real frequency), and ை்ܰ௓ number of 
transmission zeros at the origin. This yields family of 
solutions based on the number of transmission zeros at the 
origin ( ை்ܰ௓). It is interesting to note that the first 
characteristic function in ሺͻሻ is simply the even degree 
Achieser-Zolotarev characteristic function [6]. The well-
known Chebyshev even degree characteristic functions may 
be obtained from this class by simply setting the parameters ߱௖ ൌ Ͳ and ி்ܰ௓ ൌ ை்ܰ௓ ൌ Ͳ. Additionally, the second 
prototype in ሺͻሻ is a well-known function in the design of 
filters e.g. used in [2] and also used as a conventional 
normalised bandpass transformation [7]. Therefore, Table I 
gives all possible transmission zeros at the origin ( ை்ܰ௓) for 
any given minimum phase lowpass filter of degree ܰ(ܰ even). 

B. Basic prototypes for symmetrical lowpass filters 

The three basic prototypes derived in II (A) are used in design 
of general Chebyshev characteristic function for symmetrical 
networks. In general an ܰ௧௛ basic prototype characteristic 
function may be determined analytically by solving a set of ܰ 
non-linear simultaneous equations based on the behavior of 
the function and its known values at the critical points, (i.e. ߙǡ ǡߚ േͳ as depicted in Fig. 1) using, ܺ௥ଶሺ߱ሻ െ ͳ ൌ Ͳ Ǥ ሺͳͶሻ 

For symmetrical networks, the inner cutoff points are, ߙ ൌ ߚ ൌ ߱௖ ሺͳͷሻ 

 

Fig. 1 Example of a plot of the basic characteristic function in II (B)  

For example consider a second degree basic prototype for 
direct synthesis of bandpass filters or synthesis of symmetrical 
dual band filters shown in Fig. 1 given by, ܺଶିଶି଴ሺ߱ሻ ൌ ௥ܷሺ߱ሻ௥ܲሺ߱ሻ ൌ ߱ଶ ൅ ሺ߱ଶ݀݌ െ ߱௡ଶሻ ሺͳ͸ሻ 

Since from Fig. 1, Xଶିଶି଴ሺേͳሻ ൌ ͳ and Xଶିଶି଴ሺേɘୡሻ ൌ െͳ, 
then two simultaneous equations may be formed and solved 
for unknown coefficients p and ɂ as ͳ ൅ ሺͳߝ݌ െ ߱௡ଶሻ ൌ ͳ ܽ݊݀ ߱௖ଶ ൅ ሺ߱௖ଶߝ݌ െ ߱௡ଶሻ ൌ ͳ where ݌ ൌ ቀʹ߱௖ଶ െ ߱௡ଶሺͳ ൅ ߱௖ଶሻቁ Ȁሺʹ߱௡ଶ െ ߱௖ଶ െ ͳሻ ߝ ൌ ሺ߱௖ଶ െ ͳሻȀሺʹ߱௡ଶ െ ߱௖ଶ െ ͳሻ 

ሺͳ͹ሻ 

TABLE I  POSSIBLE VALUES FOR SCALARS ߙଵ, ߙଶAND ߙଷ 

 
 



Hence the basic symmetrical characteristic function with the 
transmission zeros prescribed at ɘ୬ଶ is given by, 

ܺଶିଶି଴ሺ߱ሻ ൌ ሺʹ߱௡ଶ െ ߱௖ଶ െ ͳሻ߱ଶ ൅ ʹ߱௖ଶ െ ߱௡ଶሺͳ ൅ ߱௖ଶሻሺ߱௖ଶ െ ͳሻሺ߱ଶ െ ߱௡ଶሻ Ǥ ሺͳͺሻ 

In fact all the basic prototypes may be found in this way and 
for symmetrical networks are summarized in Table II. Note 
that for the ܺଶିଶି଴ሺ߱ሻ prototype, ௥ܹ ൐ Ͳ for ȁ߱௡ȁ ൐ ͳ and ௥ܹ ൏ Ͳ for ߱௖ ൏ ߱௡ ൏ ߱௖. 
 
 
 
  
 
 
 
 
 

C. Basic prototypes for asymmetrical lowpass filters 

Similar to the method used for symmetrical prototypes, 
asymmetrical basic prototypes may be determined and are 
tabulated in Table III in terms of the required polynomials. 

TABLE III:  ASYMMETRICAL NETWORK BASIC PROTOTYPES ܸ ൌ ሺ߱ଶ െ ͳሻሺ߱ െ ሻሺ߱ߙ െ  ሻߚ
Prototype (ܰ െ ி்ܰ௓ െ ை்ܰ௓) and Position of Dependent 

Transmission Zero ሺ߱௭ሻ ܤܵܫ ൌ Inner Stopband, ܤܵܮ ൌ Lower Stopband, ܷܵܤ ൌ 
Upper Stopband ૛ െ ૛ െ ૙ ሺ࣓࡮ࡿࡸ ࢠ െ ࡮ࡿࡵȀ࡮ࡿࡵ െ ሻ ߱௭࡮ࡿࢁ ൌ ሾሺʹߚߙ ൅ ߚ െ ሻȀ߱௡ߙ െ ߙ െ ߙሿȀሾሺߚ ൅ ሻȀ߱௡ߚ െ ߙ ൅ ߚ െ ʹሿ ߝ ൌ ሺߙ ൅ ͳሻȀሾሺ߱௭ െ ሻȀ߱௡ߙ ൅ ߱௭ ൅ ͳሿ ௥ܷሺ߱ሻ ൌ ߱ଶ െ ሺ߱௭ߝ ൅ ͳȀ߱௡ሻ߱ ൅ ሺͳߝ ൅ ߱௭Ȁ߱௡ሻ െ ͳ ௥ܲሺ߱ሻ ൌ ൫ሺ߱௭Ȁ߱௡ሻ߱ଶߝ െ ሺ߱௭ ൅ ͳȀ߱௡ሻ߱ െ ߱௭൯ ௥ܹሺ߱ሻ ൌ ͳ if ߱௡  is infinite ௥ܹሺ߱ሻ ൌ ξͳ െ ଶ if ߱௡ߝ  is finite ૛ െ ૛ െ ૙ ሺ࣓࡮ࡿࡸ ࢠ െ ࡮ࡿࡵȀ࡮ࡿࢁ െ ߝ ሻ࡮ࡿࡵ ൌ ሾߚߙ ൅ ͳ െ ሺߙ ൅ ሻ߱௡ሿȀሾͳߚ െ ߚߙ ൅ ሺܽ ൅ ܾ െ ʹ߱௡ሻ߱௡ሿ ߱௭ ൌ ሺߚߙ ൅ ͳ ൅ ሺߚߙ െ ͳሻߝሻȀሺʹ߱ߝ௡ሻ ௥ܷሺ߱ሻ ൌ ߱ଶ െ ሺͳ ൅ ߙሻሺߝ ൅ ʹሻ߱Ȁߚ ൅ ሺߚߙ െ ͳሻȀʹ ൅ ߚߙሺߝ ൅ ͳሻȀʹ ௥ܲሺ߱ሻ ൌ ሺ߱ଶߝ െ ሺ߱௭ ൅ ߱௡ሻ߱ ൅ ߱௭߱௡ሻ ௥ܹሺ߱ሻ ൌ ξͳ െ ଶ  ૜ߝ െ ૚ െ ૙ ሺ૚ െ ࢼ ൐ ࢻ ൅ ૚ሻ ሺ࣓࡮ࡿࡵ ࢠሻ ߱௠ ൌ ሺߙ ൅ ߚ ൅ ʹሻȀʹ ߝ ൌ ሺ߱௠ଶ െ ʹ߱௠ െ ߙ െ ߚ െ ሻȀʹ ߱௭ߚߙ ൌ െሺ߱௠ଶ ൅ ሻ ௥ܷሺ߱ሻߝʹሻȀሺߚߙ ൌ ߱ଷ െ ሺʹ߱௠ ൅ ߙ ൅ ሻ߱ଶȀʹ൅ߚ ሺ߱௠ଶ െ ʹ߱௠ ൅ ߙ ൅ ߚ ൅ ሻ߱Ȁʹ൅ߚߙ ሺ߱௠ଶ െ ሻȀʹ ௥ܲሺ߱ሻߚߙ ൌ ሺ߱ߝ െ ߱௭ሻ ௥ܹሺ߱ሻ ൌ ߱ െ ߱௠  ૜ െ ૚ െ ૙ ሺ૚ െ ࢼ ൐ ࢻ ൅ ૚ሻ ሺ࣓࡮ࡿࡸ ࢠȀ࡮ࡿࢁሻ ߱௠ ൌ ሺߚ െ ߝ ʹሻȀߙ ൌ ሺ߱௠ଶ ൅ ௠߱ߙʹ ൅ ͳሻȀʹ ߱௭ ൌ ሺ߱ߙ௠ଶ ൅ ሻ ௥ܷሺ߱ሻߝʹሻȀሺߚ ൌ ߱ଷ െ ሺʹ߱௠ ൅ ߙ ൅ ʹሻ߱ଶȀߚ ൅ ሺ߱௠ଶ ൅ ௠߱ߙʹ െ ͳሻ߱Ȁʹ൅ ሺെ߱ߙ௠ଶ ൅  ʹሻȀߚ

௥ܲሺ߱ሻ ൌ ሺ߱ߝ െ ߱௭ሻ ௥ܹሺ߱ሻ ൌ ߱ െ ߱௠  ૜ െ ૚ െ ૙ ሺ૚ െ ࢼ ൏ ࢻ ൅ ૚ሻ ሺ࣓࡮ࡿࡵ ࢠሻ ߱௠ ൌ ሺߙ ൅ ߚ െ ʹሻȀʹ ߝ ൌ െሺ߱௠ଶ ൅ ʹ߱௠ ൅ ߙ ൅ ߚ െ ሻȀʹ ߱௭ߚߙ ൌ െሺ߱௠ଶ ൅ ሻ ௥ܷሺ߱ሻߝʹሻȀሺߚߙ ൌ ߱ଷ െ ሺʹ߱௠ ൅ ߙ ൅ ሻ߱ଶȀʹ൅ߚ ሺ߱௠ଶ ൅ ʹ߱௠ െ ߙ െ ߚ ൅ ሻ߱Ȁʹ൅ߚߙ ሺെ߱௠ଶ ൅ ሻȀʹ ௥ܲሺ߱ሻߚߙ ൌ ሺ߱ߝ െ ߱௭ሻ ௥ܹሺ߱ሻ ൌ ߱ െ ߱௠  ૜ െ ૚ െ ૙ ሺ૚ െ ࢼ ൏ ࢻ ൅ ૚ሻ ሺ࣓࡮ࡿࡸ ࢠȀ࡮ࡿࢁሻ ߱௠ ൌ ሺߙ െ ߝ ʹሻȀߚ ൌ ሺ߱௠ଶ ൅ ௠߱ߚʹ ൅ ͳሻȀʹ ߱௭ ൌ ൫߱ߚ௠ଶ ൅ ሻ ௥ܷሺ߱ሻߝʹ൯Ȁሺߙ ൌ ߱ଷ െ ሺʹ߱௠ ൅ ߙ ൅ ʹሻ߱ଶȀߚ ൅ ሺ߱௠ଶ ൅ ௠߱ߚʹ െ ͳሻ߱Ȁʹ൅ ሺെ߱ߚ௠ଶ ൅ ሻȀʹ ௥ܲሺ߱ሻߙ ൌ ሺ߱ߝ െ ߱௭ሻ ௥ܹሺ߱ሻ ൌ ߱ െ ߱௠  ૝ െ ૚ െ ૙ ሺ࣓࡮ࡿࡵ ࢠሻ ݌ ൌ ሺെߙ ൅ ߚ ൅ ʹሻȀʹ ߱௠ଵ ൌ ሾߙ ൅ ߚ െ ଶ݌ െ ߙሺ݌ʹ െ ͳሻሿȀሾʹሺߙ െ ߚ ൅ ݌ െ ʹሻሿ ߱௠ଶ ൌ ߱௠ଵ ൅ ߝ ݌ ൌ ሺʹ߱ߚ௠ଵ ൅ ௠ଶ߱ߙʹ ൅ ሺߚ ൅ ͳሻ߱௠ଵଶ െ ሺߙ െ ͳሻ߱௠ଶଶሻȀʹ ߱௭ ൌ ൫߱ߚ௠ଵଶ ൅ ሻ ௥ܷሺ߱ሻߝʹ௠ଶଶ൯Ȁሺ߱ߙ ൌ ߱ସ െ ሺʹ߱௠ଵ ൅ ʹ߱௠ଶ ൅ ߙ ൅ ʹሻ߱ଷȀߚ ൅ ሺ߱௠ଵଶ ൅ ߱௠ଶଶ ൅ ʹሺߚ ൅ ͳሻ߱௠ଵ ൅ ʹሺߙ െ ͳሻ߱௠ଶ െ ߙ ൅ ʹሻ߱ଶȀߚ െ ൫ሺߚ ൅ ͳሻ߱௠ଵଶ ൅ ሺߙ െ ͳሻ߱௠ଶଶ ൅ ௠ଵ߱ߚʹ െ ʹ௠ଶ൯߱Ȁ߱ߙʹ ൅ ሺ߱ߚ௠ଵଶ െ ௠ଶଶሻȀʹ ௥ܲሺ߱ሻ߱ߙ ൌ ሺ߱ߝ െ ߱௭ሻ ௥ܹሺ߱ሻ ൌ ߱ଶ െ ሺ߱௠ଵ ൅ ߱௠ଶሻ߱ ൅ ߱௠ଵ߱௠ଶ  

III. CHARACTERISTIC POLYNOMIALS 

Once the basic prototypes are determined, the computation 
of the overall characteristic function is fairly straight forward 
from ሺͶሻ. The weighting integer numbers ߙ௥ is the designer’s 
choice depending on the number and positions of transmission 
zeros required from a given elementary function of table II. 
By substituting ሺͷሻ in ሺͶሻ, the reflection polynomial is 
obtained as follows: ܨሺ߱ሻ ൌ ͳʹ ൝ෑൣ ௥ܷ ൅ ௥ܹξܸ൧ఈೝ௠

௥ୀଵ ൅ ෑൣ ௥ܷ െ ௥ܹξܸ൧ఈೝ௠
௥ୀଵ ൡ Ǥ ሺͳͻሻ 

Thus the reflection polynomial is computed by successive 
application of the general recursive technique [5] with initial 
conditions ܺ଴ ൌ ͳ and ଴ܻ ൌ Ͳ and defined by  ܺே ൌ ௥ܷܺேିଵ ൅ ሺ ௥ܹܸሻ ேܻିଵ ேܻ ൌ ௥ܹܺேିଵ ൅ ௥ܷ ேܻିଵ 

ሺʹͲሻ 

where all the parameters are as defined above. ሺʹͲሻ is used for ݉ basic prototypes and repeated ߙ௥ times for each prototype, 
each time using the previous results to compute the ܰ௧௛ polynomials in ሺʹͲሻ. Finally  ܨሺ߱ሻ ൌ ܺே Ǥ ሺʹͳሻ 

The monic polynomial ܲሺ߱ሻ is obtained from the prescribed 
transmission zeros as ܲሺ߱ሻ ൌ ෑ ௥ܲሺ߱ሻǤ௠

௥ୀଵ  ሺʹʹሻ 

ܸ ൌ ሺ߱ଶ െ ͳሻሺ߱ଶ െ ߱௖ଶሻ 
TABLE II:  SYMMETRICAL NETWORK BASIC PROTOTYPES 

 



For monic polynomials ܨሺ߱ሻ and ܲሺ߱ሻǡ their normalizing 
parameter ߤ and ߝ respectively are computed at points in Ȧ - 
plane where both s-parameters ଵܵଵሺ߱ሻ and   ܵଶଵሺ߱ሻ are known 
(e.g. ߱ ൌ ͳ) so that the unitary condition [7] and the 
prescribed return loss level are satisfied. Once the 
characteristic polynomials are determined, the rest of the 
synthesis process follows from the standard filter theory in [8]. 

IV. DESIGN EXAMPLE 

A symmetrical dual passbands with cutoffs at 1710-1785 & 
1920-1995MHz and 20 dB passband return loss were 
designed. Using the lowpass to bandpass transformation, the 
inner cutoff is ߱௖ ൌ ͲǤͷͲʹͷ. The prescribed transmission 
zeros were at ߱ ൌ േͲǤʹͷǡͲǡ േͳǤ͹ͷ. Since the dual band is 
symmetrical, the following lowpass prototypes were linearly 
combined according to ሺ͵ሻ based on the basic prototypes of 
table II: ʹ െ Ͳ െ Ͳ, ʹ െ Ͳ െ ͳ and ʹ െ ʹ െ Ͳ with weighting 
numbers ߙଵ ൌ ଶߙ ,ʹ ൌ ͳ and ߙଷ ൌ ʹ respectively. The first 
prototype only provides transmission zeros at infinite, the 
second provides the required single transmission zero at the 
origin and the last prototype provides the two pairs of 
symmetrical transmission zeros - applied iteratively depending 
on ߙ௥.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This gives an overall ͳͲ െ Ͷ െ ͳ lowpass characteristic 
function. Using the general recursive formulae ሺʹͲሻ the 
characteristic polynomials were determined as in Table IV in 
complex variable ݌ሺ݆߱ሻ. Then cascaded synthesis was used to 
extract the element values and the coupling matrix generated 
as shown below. The bandpass simulation and topology are 
shown in Fig. 2. 

 
Fig. 2 Bandpass Simulation of the dual band filter in IV with its 
topology.  

V. CONCLUSION 

The method of generating the general Chebyshev 
characteristic function used in the design of relatively close-
spaced dual passband filters has been outlined. Linear 
combinations of the elementary characteristic functions (based 
on transmission zeros placement) allow high order 
characteristic functions to be determined.   
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