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The Effects of Noise Reduction on the

Prediction Accuracy of Time Series

S.A. Billings, K.L. Lee

Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract: A new iterative smoothing method based on the extended
Kalman filter is introduced to smooth noisy chaotic time series. T'wo
examples are given to illustrate the smoothing method. The smoothing
method is then employed as a noise reduction pre-processing step to reduce
measurement noise prior to identification and prediction. Three different
prediction methods are introduced and the prediction performance is
compared using three nonlinear examples. Superior predictive performance
is obtained by the prediction method that employs the pre-processing step
on the data.

1. Introduction

One of the most successful and widely used noise reduction methods is Kalman filtering
(Davis 1977, Anderson and Moore 1979, Grewal and Andrews 1993). Recently Walker
and Mees (1997) introduced 2 smoothing method based on the Kalman filter to reduce
noise in chaotic data sets. The authors assumed that either the true model or a noise-free
data set representative of the chaotic time series was available. Under these assumptions
the smoothing method produced excellent noise reduction results. However a clear
limitation in any real noise reduction problem is that the underlying dynamics are not
usually known a priori and the model has to be learned from the noisy data as an integral
part of the noise reduction process. Therefore in the present study an iterative Kalman
smoothing method will be introduced which does not require the true model or a noise-
free data set to be available. The iterative Kalman smoothing method will be tested on

several chaotic examples.

Noise reduction methods are normally applied to reduce measurement noise on

contaminated noisy outputs to enhance the future analysis of the data. For example




reducing the measurement noise on the output can facilitate the identification of

dynamically valid models (Aguirre and Billings 1995, Aguirre et al. 1996) and the
estimation of dynamical invariants of the time seres (Kantz et al. 1993, Schreiber and
Kantz 1996). Therefore it may be reasonable to assume that reducing measurement noise
prior to computing predictions may have an advantageous effect on the prediction
accuracy. Discussions based on a simple nonlinear autoregressive model will be used to
show that the above belief may be true. Three different prediction methods are then
introduced and compared. The first method does not employ any noise-reduction pre-
processing step on the data. The second method employs a noise reduction pre-
processing step on the training data set and the last method requires a noise reduction
pre-processing step to be performed on the training and the testing data sets prior to
identification and prediction. The multi-step ahead prediction performance for the three

prediction methods is compared on three nonlinear examples.

The paper is organized as follows. The iterative Kalman smoothing method is introduced
in Section 2, and simulation studies using this method to smooth two chaotic time series
are presented in Section 3. The effects of reducing measurement noise on the prediction
accuracy of the time series are discussed and three different prediction methods are
introduced in Section 4. Multi-step ahead predictions for the three prediction methods
on three nonlinear examples are performed and the results are presented in Section 5.

Conclusions are given in Section 6.

2. The Iterative Kalman Smoothing Method

Consider the following model for the system equations
X, =8 (x,)+w, )
v, =h(x,)+e, V)
where y, €R is the output, X, € R" is the state of the system, m is the dimension of
the state, g, (O)and h, (-)are nonlinear functions, w, € R"and e, € R are assumed to be
independent and identically distributed noise processes with zero mean and covariances

Q€ R™" and 6} € R respectively. Denote

aX X=X ax x=%,/,
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so that the j’th component of G, represents the partial derivative of the i’th
component, of g,(') with respect to X, and similarly for H,, each derivative being

evaluated at the point indicated.

If the nonlinear functions g,(s) and h, (o) are sufficiently smooth, these can be

and X

expanded in a Taylor series about the conditional expectations X, oo
g[(xi’):gl(ﬁ!.fl)-!-Gf(xf_ifff)+"' (4)
h, (X:)Zhr (ﬁmul)"'Hr(Xr _irfr—l)+"' (3

Neglecting higher order terms and assuming knowledge of X,,,and X,,_,, the signal
model can be approximated as
X, =Gx, +w, +g,%,)-Gx%,, (©6)
v, =HX, +e +h(%,.)-HX,,_ %
The following time update and measurement equations for the extended Kalman filter
can be derived, see for example Davis (1977), Anderson and Moore (1979), Grewal and

Andrews (1993), where %, denotes the covariance of ;

The time update equations are

Xpon = 8 (im) ©)
Zt+li.' :G:ZHIG{T +Q # (9)
where the superscript T denotes transpose. The measurement equations are
Py 3 T T -1 A
xr+ln+1 = xr+1.’r + Zr-H.f.'brrH (Hn‘HZHlHHH—l + R) [yH-l - hr+1 (XHIH )] (10)
i = Epnn =i H i (BB B, + R HZ 11
L] T gl T t+l/t 1+1 1=+ 11t 1+1 + 1=+l 1t ( )

There are many types of Kalman smoother (Anderson and Moore 1979) and the fixed lag
smoother of lag one, whose form is particularly suitable for the later prediction part of

this study, was chosen. The smoothing equations of the fixed lag smoother can be

derived as
M, =%,GTH (H,2,,, H, +R)" (12)
Rysen =Ry + My 300 = B (&, )] (13)
%0 =Zi + 20, 6T Ek Bnienr = Zan e GTZh T (14)




The smoothing procedure using the extended Kalman filter is performed as follows.
Initially the filter is run forwards in time by applying the time update and measurement
equations té filter the data from 7=1 to t =N, where N is the total length of the data.
Then the filter is run backwards in time by using the smoothing equations to smooth the
data from t=N to t=1.Therefore each noise reduction iteraton consists of one

forward and one backward pass of the extended Kalman filter.

The true model of the system (g . (0) and B, (')), are usually unknown and have to be
identified. In this study, polynomial functions are chosen to approximate g,(-) and

h, (') and the Nonlinear AutoRegressive (NAR) model, which is a special case of the
Nonlinear Autoregressive Moving Average (NARMA) model (Leontaritis and Billings
1985a, 1985b, Chen and Billings 1989) of the form

yr zf(yr_zr"'l yr—n},)-i_fr (15)
where n, is the maximum output lag, £ are the residuals and f (0) is some nonlinear

function, will be used. The NAR model allows the use of faster and easier identification
algorithms compared to the NARMA model which requires the use of an iterative
estimation approach. The forward regression orthogonal least squares algorithm (Chen et
al. 1989) will be employed to identify the NAR model. Assume that a piece of data
Z,,t=1..N is available and that the following model has been identiﬁed using the

forward regression orthogonal least squares algorithm
5 =03z, +032,, +& (16)

Then the functions g, (e) and &, (e) can be approximated using

0. L) .
o )=l x [ }

Zr]

ff

05z, +03 0.5z,

with G,_, =ii ’

:l and H, =[1 O]T
Having estimated the unknown functions g,(e) and , (e), two more factors need to be

considered before the Kalman time update, measurement and smoothing equations can

be applied. These are the values of the state and measurement noise covariances Q and

2 : : : P
0, respecuvely. The noise covariances Q and o are assumed to be known or can be

approximated using the method suggested in Heald and Stark (2000). In the present




study the noisy data are assumed to be corrupted by only measurement noise and hence

the value of O should ideally be set to zero. However, the identified model is only an
approximation to the true model and therefore it is advisable not to put Q equal to zero
SO as to compensate for the inaccuracy in the identified model. The value of Q should
be set higher at the initial noise reducton iterations and should decrease at subsequent
tterations to match the reduction in the noise level. In this study, the values of Q for
each noise reduction iteration were simply set as

0" = ﬁwlo_s[ (17)
where i is the noise iteration, 0< f <1 and 7€ R™" is the 1dentity matrix.
If the output data is very noisy, a high value of £ should be selected. A rough guide to

an approprate choice of £ can be obtained by comparing the values of the estimated

noise covariance 0'3 and the minimum mean squared prediction errors estimated from
the testing data set., If the minimum mean squared prediction errors are much larger than
o} (a few times higher than &), this implies that the data are very noisy and the
identified model is very likely to be a poor representation of the true model, therefore Joj
should be set to a high value such as 0.5. Alternatively, if both the values of the

. . ~ . v | A .
minimum mean squared prediction errors and O, are close (the minimum mean squared

prediction errors are less than twice the value of o 7) then a small value of [ can be

used, such as 0.15.

The new iteratve Kalman based smoothing procedure can be summarised as follows.
The data set y,(i} is defined as the smoothed data set obtained at iteration similarly

- 2\() ; : ;
Q{') and (O‘: ) are the estimated covariances of the state and measurement noise at

2

iteration [ respectively. Initially set i=0 and hence y,(0}=y,, (CJ")(Q):O'(_,2 and

" =0.

1) Divide the noisy output equally into training and testing data sets.

i) Set the initial values of n,, I (degree of polynomial function) and n, (number of
terms in the model) to be say n,=1,1=3 and n, =4 (see (iii) below).

i) Use the forward regression orthogonal least squares algorithm (Chen et al. 1989) to

identfy the model from the training data set by selectng the best n, important




terms from the candidate term set in the polynomial expansion and estimate the

associated parameters.

v) Calculate the mean squared prediction errors over the testing data set using the

identified model in step (iii).

v) Increase n, by one and repeat steps (iif) to (v). Go to step (vi) when n, =50.

vi) Increase n, by one, set n,, =4and repeat steps (iii) to (vi). Go to step (vi) when
n,= 15,

vil) Record the values of [,n y, and n, of the model with the minimum mean squared
prediction errors calculated over the testing data set.

vii) Re-identify a global model from all the data y{(r) (tramning +testing data sets) using
the values of I,n, and n, obtained in step (vii).

ix) Apply the extended Kalman time update, measurement and smoothing equations
(eqns (8)-(14)) using g, (0), Hi (0), (0'3 )(i) and Q{i), to smooth the output to get the

(#+1)

first smoothed data set y,""".

x) Increase i by one and calculate (0'3 )(E) =0, -

=z |~

and QY = g*o?y

xi) Repeat steps (vii) to (xi) until (0' ~ )(E) 1s small.
In step (v) the maximum allowable terms in the model has been set to be 50 because
simulations suggest that the smallest mean squared prediction errors calculated over the

test data usually occur at values of n, much smaller than 50. Similarly the maximum
allowable n, which has been set to 15 and [ =3 have been chosen based on practical

application of the algorithm but other choices can be used if these prove unsatisfactory.

In step (xi), the iterative Kalman smoothing procedure is terminated when (O'f )(i) is very

small compared with o*. Sometimes |o> 0 may incorrectly be negative if
P ¢ ¢ y y g

1 i .
EZ (f ,(T))z >0, mn step (x), this means that the amount of noise removed from the
=1

. . . " 2
notsy output 1s greater than the estimated variance ¢, and hence the procedure has to

be terminated.




3. Simulation Studies Using the Iterative Kalman Smoothing Method

The iterative Kalman smoothing method described above will be illustrated using two

well-known examples, the Lorenz time series and the Henon map.

3.1 The Lorenz Time Series

The equations of the Lorenz chaotic time series are

i=0(y-x)
y=rx—y—-xz (18)
Z==bz+ xy

with 0=10,b=8/3 and r=28. A fourth order Runge-Kutta method was employed to

integrate the equations with a fixed step size of 0.001s. One thousand data points of the

X -coordinate were collected with a sampling rate of 0.05s and this served as the noise-

free data x,. A zero mean uncorrelated noise sequence ¢, with O‘f =0.65 was added to

the noise-free data to obtain the noisy output, y, = x, +¢,. The resulting output data set

had a signal-to-noise ratio of 40dB. The first 500 points of the output were then used as
the training data set and the next 500 points were used as the testing data set. The
iterative Kalman smoothing procedure described in Section 2 was then implemented to

smooth the noisy output.

The following model structure gave the minimum mean squared prediction errors over
the testing data set, / =3,n, =11 and n, =13. The minimum mean squared prediction
errors calculated over the testing data set was 1.20, which was less than twice the value of
o, , and therefore the estimated model was assumed to be a good approximation of the
true model. Hence a small value of =0.15 was employed. The extended Kalman time

update, measurement and smoothing equations were then applied to smooth the output

. ; ; (7)
and the procedure was terminated at the seventh iteration because the value of (O' f)

was negative. The smoothed data set yr(ﬁ} was taken as the final smoothed data set. The
phase portrait plots of the noise-free data set, noisy output and the final smoothed data
set are illustrated in Figure 1. A measure of the effectiveness of the smoothing algorithm

can be obtained by computing




le(yr(U) -4 )2

D= |- (19)

> -, f

=1

where y,( ""is the final smoothed data. A higher value of the index D means that more
noise has been removed from the noisy output. Clearly this index D is of theoretical
interest only since, in practice, the noise-free data x, will not be available. The value of

D obtained for the Lorenz example was 3.34. The results above show that the iterative
Kalman smoothing method has successfully reduced the noise contamination in the

Lorenz time series.

(b)

¥(t-2)

(©)

¥(1-2)

Figure 1 Phase portrait plots of the Lorenz time series with a sampling rate of 0.05s for (a) the

noise-free data set, (b) the noisy output and (c) the final smoothed data set.

3.2 The Henon Chaotic Time Series
In this example the well-known Henon map will be studied. The Henon map is described

by the equation
_ 2
x, =1-14x_ +03x,_, (20)
One thousand data points were generated and these points were assumed to be the
noise-free data set. A zero mean uncorrelated noise sequence with o> =0.0055 was

added to the noise-free data set to obtain the noisy output. The resulting output had a




signal-to-noise ratio of 40dB. The first 500 points were used as the training data set and
the next 500 points were used as the testing data set. The minimum mean squared

prediction errors calculated over the testing data set was 0.030. This was much higher
than the value of O'j and hence f was set as 0.5. The iterative Kalman smoothing

procedure described in Section 2 was then applied. The iterative smoothing procedure

. . . (13 3
was terminated at the 13™ iteration because the value of (0’3) was negative. Therefore
the smoothed data at the 12" iteration was taken as the final smoothed data. The phase
portrait plots of the noise-free data, the output and the final smoothed data are shown in

Figure 2. The value of D obtained for the Henon case was 3.71.

i wi=1)
3
R
e
\.-.*‘
7

s F] 05 05 1 15

0
Figure 2 Phase portrait plots of the Henon map for (a) the noise-free data set, (b) the noisy
output and (c) the final smoothed data set.

3.3 Discussion on the Iterative Kalman Smoothing Method

Walker and Mees (1997) noted that if the model has to be identified from the noisy
output, the repeated application of the extended Kalman filter tends to produce a
smoothed data set which displays the dynamics of the identified model rather than the
undetlying dynamics of the time series. However the present paper shows that the
extended Kalman filter can still be used successfully to smooth noisy outputs even

though the true model or a noise-free data set of the time series is not available. An




important point is not to set QU equal to zero, this then compensates for the
inaccuracies in the identified model even though the output is corrupted by measurement
noise only. The iterative Kalman smoothing method has also been tested on other well-
known chaotic time series including Chua’s circuit (Chua et al. 1986), the Mackey-Glass
(Mackey and Glass 1977) and the Duffing-Holmes (Holmes 1979) chaotic time series and
excellent noise reduction results were obtained. From the simulation studies a crucial

factor that can affect the performance of the iterative Kalman smoothing method is to
obtain an accurate estimate of the measurement noise variance O f which is usually
unknown for real time series. Therefore future studies should investigate how such a
parameter will affect the results and should develop methods to estimate o"”. The rest of

the paper will concentrate on the second and main objective of this paper that is to
investigate the effects of reducing measurement noise using the iterative Kalman

smoothing method on the prediction accuracy of the time seres.

4.  Effects of Reducing Measurement Noise on Multi-step Ahead

Predictions for Nonlinear Time Series

One of the most important objectives of time series analysis is to accurately compute
forecasts or predictions of future values. In many application areas, such as economics,
stock prediction, sales data forecasting, electric load forecasting, hydrology, astronomy
etc, obtaining good predictions are usually not trivial because many factors can affect the

predictions.

One factor is the measurement noise contamination of the data set. The measurement
noise contaminated in the output has been shown to hinder the identification of
dynamically valid input-output models (Aguirre and Billings 1995, Aguirre et al. 1996)
and the estimation of dynamical invariants of the time series (Kantz et al. 1993, Schreiber
and Kantz 1996). The measurement noise may also have an adverse effect on the
prediction accuracy of the time series. If the underlying dynamics of the time series are
deterministic, reducing the measurement noise before computing the predictions may
improve the prediction accuracy as shown in Cao et al. (1998). However the objective in
Cao et al. (1998) was to investigate the determinism in human posture control data using
nonlinear prediction. The human posture control data set was smoothed using the simple

noise reduction method of Schreiber (1992) and the smoothed data points were fed into

10




the identified model to compute predictions. This would not be possible in real time
prediction because only past data points can be smoothed and present data points to be
fed into the model to make predictions can only be filtered. In this study the real time
prediction scenario will be studied. Multi-step ahead predictions will be considered. After
a predictive model has been identified, the one-step ahead predictions can be obtained
using

Powrre = 800sVictrs Vi ) (21)
where g'(O) is the identified predictive model and (y, ¥, y,_nyﬂ) are the arguments

of the model. The multi-step ahead predictions are normally computed in an iterative
manner by feeding back previous predicted values. For example the two-step ahead

predictions can be calculated as
j'}:+2f: zg(j}tﬂ.'r’yr!"" y.‘—ny-f-?_) (22)

The effects of reducing measurement noise on multi-step ahead predictions will be

studied next in Section 4.1 & 4.2 based on a simple nonlinear example.

4.1 One-step Ahead Prediction Case
In the following discussion, the dynamics of the system are assumed to be deterministic
and the noise-free data set is corrupted by measurement noise to give a noisy output.

Consider a simple one-dimensional example
= 8lx) | 23)

Y, =X, +e (24)

X

Assume that the nonlinear function g(O) is known or can be identified. The optimal
one-step ahead prediction is

yiin = 8(x) 29)
The one-step ahead prediction for the noisy output case J,,,,, is computed by feeding

the noisy data y, into the nonlinear function g(') to give

Biery = E[g(y: )] (26)
Substituting y, from eqn (24) into eqn (26) and applying a Taylor series expansion by

retaining up to second-order terms gives

Do = Elglx, +4,)] =E[g(x,)+e,g'(x,)+iefg"(x, )}

11




- g(x)+ > 07g"(x,) @)

where g’(x; ) and g’(.‘c! ) are the first and second derivatives of g, and o is the
variance of the noise e,. Now assume that the noise reduction method has been applied
and this has successfully reduced the noise so that the noise-reduced data s, is

s, =X, +1, (28)
where 77, is assumed to be zero mean uncorrelated noise and O'; <o’ Following the

same analysis as above yields the one-step ahead prediction for the noise-reduced case

A

s as

t+1/t

S = Elg(s,)]= gl )+ 2 028 (x) @)

Since o’ >> O';, therefore

1 2 # 2
—Z—J;g (x, )‘ >> -;—O',;g (x, * It can be deduced from eqns

(27) and (29) that §,,,,, should be closer to the optimal prediction than

4.2 Multi-step Ahead Predictions Case
Next consider the two-step ahead prediction task. The optimal two-step ahead prediction

can be obtained as

opt

Yivan =g(g(x1 )) . (30)

The two-step ahead prediction for the noisy case J,,,, can be computed using the
iterative approach by feeding the one-step ahead prediction Y1y into the nonlinear
function g(t) to give

Suvase = B89 )= Elgls (3, )]] = Elgle(x, +e, )]

- Eig(g(x,)-f— e{g’(x,)+%€f28”(x, )H

= gz )+ = 02[g"(x, )e (e (x ) + (67(x, ) £ (s (x, )] (31)

12




where only second order terms in the Taylor series expansion are retained. For the noise-

reduced case the two-step ahead prediction § is

2L

Suan = 885+ 503 le (5 e (el )+ 6, )P ¢ o )] &

Knowing that o >> o’;, §42/, should again be a better prediction of y”}, than

V142, - Additional multi-step ahead predictions may be tedious to perform but the results

above suggest that the noise-reduced case should perform better than the noisy case in

terms of prediction accuracy with respect to noise-free data.

4.3 Three Different Prediction Methods
Three different prediction methods will be discussed below and the prediction results

will be compared in the simulation studies.

4.3.1 Method 1
This is the simplest and the most conventional method where no pre-processing of the
data is performed. The procedure of Method 1 can be summarised as follows.

1)  Divide the output training data set into estimation and validation data sets.

i) Set the initial values of / and n, to be 3 and 1 respectively.

i) Set the inital important terms to be included in the model n,, = 4.

iv) Use the forward regression orthogonal least squares algorithm to identify the model
from the estimation data set by selecting the best n, important terms from the

candidate terms of the polynomial expansion and estimate the associated parameters.

v) Calculate the mean squared prediction errors over the validation data set.

vi) Increase n, by one and repeat steps (iv) to (vi). Go to step (vi) when n, =50

vii) Increase 1, by one and repeat steps (iii) to (vii). Go to step (viil) when n, =15

viif) Record the values of [,n, and n, with the minimum mean squared prediction
errors calculated over the validadon data set.

ix) Re-identfy a model §(')(0) from the training data set (estimation + validation data
sets) using the values of /,n, and n,, recorded in step (viii).

(1)

x) Compute one-step ahead prediction of Method 1 J,,},, using the identified model

in step (ix) with the arguments (y,,yl_l,..., yr_nvﬂ) where (y, )w are the testing

test

data polnts.

13




xi) Update the arguments as (j‘i}i)m,yr,..., Yien+2 )w and compute the two-step ahead

predictions using the iterative approach.
xit) Repeat until k -step ahead predictions have been obtained. Repeat steps (x) to (xi)

for all the points in the testing data set.

4.3.2 Method 2

The noisy training data set is smoothed using the iterative Kalman smoothing method
discussed in Section 2. Then a predictive model is identified from the noisy training data
using the smoothed training data points (sr )m.n as targets. The predictive model is

identified as

(Sr )rrajn = é(Z) (y:—l Fnnny yr—n ) + 51(2) (33)

Y “train
where g(z)(') is the identified model in Method 2 and f,{z) are the residuals. The

predictions over the testing data set are obtained by feeding the noisy testing data points

into the identified model as

}A’t(ﬂfr =g® (yr yoens y:—n,ﬂ) (34)

test
The procedure of Method 2 can be summarised as follows.
Steps (i) to (viii) are the same as Method 1.
ix) Perform the iterative Kalman smoothing procedure described in Section 2 on the

training data set to obtain the smoothed training data set.

x) Re-identify 2 model §(2) (0) using the values of [,n, and n, recorded in step (viii)

with the smoothed training data points as targets.
(2)

t+1/t

xi) Compute the one-step ahead prediction of Method 2 using the identified

model in step (x) with the arguments (y, iy | T— y,_nyﬂ)

test

xii) Update the arguments as (}”rl(ﬂ,, s Yiseons Yion 42 )m[ and compute the two-step ahead

predictions using the iterative approach.
xiii) Repeat untl & -step ahead predictions have been obtained. Repeat steps (xi) to (xiii)

for all points in the testing data set.

4.3.3 Method 3
In Method 3 the noisy training data set is smoothed using the iterative Kalman
smoothing method. This is followed by the identification of the predictive model from

the smoothed training data set as

14




(S! )lmin = gﬂ (3) (S.'*l R Sr—n}. ) + 51(3) (35)

train

where g(ﬂ(,) is the identified model in Method 3 and 51(3) are the residuals. The
predictions over the testing data set are obtained using

T LR - (36)
To illustrate how this can be implemented consider the following example. Assume that
the training data of size 500 has been smoothed to obtain S 38y 50002 Sgg-  LDE One-step

ahead prediction is

'§§;)1/500 = g,(3) (Ssou 25499 17222 S 5011, ) 37)

To compute the next one-step ahead prediction §§{3])2,501, the data points

(ysm, V50053 Y s09-n ) are filtered using the time update and measurement equations of

(8), (9), (10) and (11) to obtain (55011550()’---’5502-;1) ) Then the backward pass smoothing
equations (12), (13) and (14) have to be applied to further smooth the data points
(5500 yees Ssopon, ) The prediction is then obtained by computing

§§13J?215m = g(a)(ssm e S500 ) (38)

Therefore to make a prediction, the latest data point (yg, ) can only be filtered but the
earlier data points (J’sou 02 Vs02on, J can be smoothed. For the current prediction task, the

data points to be fed into the model to make prediction are filtered and smoothed once
only. The procedure of Method 3 can be summarised as follows.

Steps (1) to (ix) are the same as Method 2.
x) Re-identify a predictive model §(3)(0) from the smoothed training data set using the
values of [,n, and n, recorded in step (viii).

x1) Use the time update and measurement eqns (8)-(11) to filter the testing data points

to obtain the filtered testing data points (Sr,sl_l,... s )‘ g Then apply the

e b
backward pass smoothing eqns (12)-(14) to further smooth the data points
(Sr—l’S{—-Z""’St—n).i-l)‘e“

(3)

t+1/t

xif) Compute the one-step ahead prediction of Method 3 §,;},, using the identified

model in step (x) with the argument (S! B s )4 .

=] 9ees =
=1 *Pi-n, +l

15




(3
xu1) Update the argument as (Sf,{!,l,sl,...,s,_n +,) and compute the two-step ahead
YU Drest

predictons using the iterative approach.
xiv) Repeat until k -step ahead predictions have been obtained. Repeat steps (xi) to (xiv)

for all points in the testing data set.

5. Simulation Studies on Prediction Accuracy

The procedures outlined in the preceding section for the three prediction methods will
be illustrated by means of three nonlinear examples. The first two examples consider the
Lorenz and the Henon chaotic time seties. The 1000 noise-free data points of both time
series generated in Section 3 were used. The third example considers a non-chaotic time
series obtained by integrating the Duffing-Holmes equation

Xy — a’(x -x’ )= F COS(WT)) (39)
with ¥ =0.168, =0.5, F =0.05 and w=1. The equation was integrated using a fourth
order Runge-Kutta method and the noise-free data set of 1000 data points was collected

with a sampling rate of 0.1s.

In all cases, the noise-free data sets were corrupted additively by zero mean uncorrelated
noise to give noisy output data sets with a 40dB signal-to-noise ratio. The first 500
output data points were used as the training data set with the first 400 points used as the
estimation data set and the next 100 points used as the validation data set. The last 500
points of the output were used as the testing data set. The three prediction methods
described in Section 4.3.1, 4.3.2 & 4.3.3 were used to perform the multi-step ahead
predictions on the three nonlinear examples. A measure of the prediction accuracy
achieved by the different methods can be obtained by computing the mean squared

prediction errors with respect to the noise-free data (mse) as

noise— free

1 N
(mse)nuise—free B= 2 yrz (40)
N t=1

where ¥, =3, —x,, J, is the obtained prediction by the different prediction methods.

The results for the three examples are presented in Tables 1,2 & 3.

Of all the three different prediction methods, Method 3 that performs the noise
reduction pre-processing step on the training and the testing data was the best. The

improvement in prediction accuracy was very significant and in the range of 30%-60%
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compared to Method 1 where no pre-processing of the data was performed. These
results agree well with the discussions in Section 4.1 & 4.2. For the Henon map, the k-
step ahead pfedictions for Method 1 and 2 were unstable and explosive when & = 3. This
however did not occur in Method 3. For the Henon example, therefore reducing the
measurement noise prior to identification and prediction may help to reduce the
possibility of the predictions exploding. Method 2 performs better than Method 1 in
one-step ahead predictions but mixed results were obtained for multi-step ahead
predictions. In the results presented in Tables 1,2 & 3, the value of the measurement

. *: 2 G . . . . .
notse varance O, , which was required in the noise reduction pre-processing step, was

assumed to be known or to have been estimated accurately. This may not be possible for

real time series. Therefore the predictions using Method 3 were repeated on all three
examples but assuming that & was either overestimated or underestimated by 30%.
The result for the Lorenz example is illustrated in Figure 3, which shows that Method 3
can still perform better than Method 1 even if the variance 0 is over/under estimated

by 30%. Similar findings were obtained for the Henon and the Duffing-Holmes
examples. Therefore the results presented suggest that the use of noise reduction
methods to reduce the measurement noise on the output prior to identification and

prediction can improve the prediction accuracy.

Table 1. The multi-step ahead mean squared prediction errors with respect to noise-free data
(mse)m” e-free for the three methods on the Lorenz time series. The values in brackets are the

percentage improvement in prediction accuracy compared to Method 1.

Prediction | (m5€) ey for — (M€),epoe for (M), e e for
Srep Method 1 Method 2 Method 3
1 0.5384 0.5120 (4.9%) 0.2995 (44.4%)
2 0.8140 0.7899 (3.0%) 0.4509 (44.6%)
3 1.0513 1.1496 (-9.4%) 0.6466 (38.5%)
4 1.4453 1.4509 (-0.4%) 0.8899 (38.4%)
5 2.0441 1.9134 (6.4%) 1.2852 (37.1%)
6 2.9238 2.5696 (12.1%) 1.9092 (34.7%)
7 4.1863 3.3826 (19.2%) 2.7891 (33.4%)
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10
11
19
13
14
15
16
17
18
19
20

6.0673
8.7947
13.2784
18.8704
24.3072
28.7963
33.1627
37.6871
41.0155
42.3975
42.4926
42.0857
42.5461

4.8746 (19.7%)
7.4665 (15.1%)
11.4968 (13.4%)
16.0494 (14.9%)
19.4540 (20.0%)
21.8238 (24.2%)
24.7884 (25.3%)
27.8241 (26.2%)
29.3264 (28.5%)
30.4848 (28.1%)
33.7762 (20.5%)
37.9083 (9.9%)
40.5634 (4.7%)

4.0834 (32.7%)
6.0496 (31.2%)
9.2237 (30.5%)
12.7287 (32.5%)
15.4579 (36.4%)
17.4699 (39.3%)
19.2220 (42.0%)
19.2247 (49.0%)
17.3575 (57.7%)
15.9795 (62.3%)
15.7786 (62.9%)
16.5657 (60.6%)
17.9891 (57.7%)

Table 2. The multi-step ahead mean squared prediction etrors with respect to noise-free data

(mse)nmw jree for the three methods on the Henon map. The values in brackets are the

percentage improvement in prediction accuracy compared to Method 1. The wvalues of

(mse)me_ jree Were explosive for Methods 1 & 2 on prediction steps greater than 2, hence the

percentage improvements were not computed and were indicated by (-----).

Prediction | (M5€) g pee or — (M5€)gpe e for (€)1, for
Step Method 1 Method 2 Method 3
1 0.0313 0.0311 (0.6%) 0.0241 (23.0%)
2 0.1223 0.1251 (-2.3%) 0.0669 (45.3%)
3 1.4125 1.6056 (~----) 0.1165 (—--)
4 715.24 1032.0 (—-) 0.2077 (~----)
= 2x10" B oy 0.3879 (-—-)
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Table 3. The multi-step ahead mean squared prediction errors with respect to noise-free data

(mse)

noise— free

for the three methods on the Duffing non-chaotic time series. The values in

brackets are the percentage improvement in prediction accuracy compared to Method 1. All

, -3
entries were to the power of 107".

Prediciion

Step

(mse)nnfse—free j{),?"

Method 1

(mSE )noi::e—frea jor

Method 2

(mse)nm'se—free jﬁf

Method 3

(=T o - I B« N & B - L VD

[ S S S e N e i
[ B (= M '« IR SR < S & N -SSR S R A0 T e

0.0743
0.0814
0.0886
0.0964
0.0992
0.1086
0.1089
0.1142
0.1158
0.1202
0.1094
0.1086
0.1058
0.1000
0.0969
0.0804
0.0669
0.0637
0.0559
0.0514

0.0609 (18.0%)
0.0685 (15.8%)
0.0767 (13.4%)
0.0861 (10.7%)
0.0940 (5.2%)
0.1006 (7.4%)
0.1059 (2.8%)
0.1094 (4.2%)
0.1129 (2.5%)
0.1122 (6.7%)
0.1130 (-3.3%)
0.1108 (-2.0%)
0.1069 (-1.0%)
0.1008 (-0.8%)
0.0940 (3.0%)
0.0848 (-5.4%)
0.0765 (-14.3%)
0.0690 (-8.3%)
0.0635 (-13.6%)
0.0601 (-16.9%)

0.0417 (43.9%)
0.0432 (46.9%)
0.0443 (50.0%)
0.0443 (54.0%)
0.0458 (53.9%)
0.0469 (56.8%)
0.0470 (56.9%)
0.0473 (58.6%)
0.0481 (58.4%)
0.0480 (60.1%)
0.0413 (62.2%)
0.0400 (63.2%)
0.0375 (64.5%)
0.0358 (64.2%)
0.0338 (65.1%)
0.0316 (60.8%)
0.0278 (58.4%)
0.0268 (57.9%)
0.0254 (54.6%)
0.0240 (53.3%)
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Figure 3. The multi-step ahead mean squared prediction errors with respect to the noise-free data

(mse)mm_ e On the Lorenz example for prediction Method 1 (X), Method 3 with O"j

underestimated by 30% (0) and overestimated by 30% ().

6. Conclusions

A new iterative Kalman smoothing based method based on the extended Kalman filter
has been introduced. Excellent noise reduction results were obtained using the
smoothing method on two well-known chaotic examples where the underlying dynamics
or noise-free data sets were assumed to be unknown or unavailable. The effects of
reducing the measurement noise on the prediction accuracy of time series were also
investigated. Discussions based on a simple nonlinear example showed that higher
prediction accuracy should be obtained by reducing the measurement noise prior to
identification and prediction. The iterative Kalman smoothing method was employed as
the noise reduction method in the pre-processing step. Three different prediction
methods were then presented. The first prediction method was the simplest with no pre-
processing of the data. The second prediction method employed the noise reduction pre-
processing step on the training data set only and the last method used the noise
reduction pre-processing step on both the training and the testing data sets. Multi-step
ahead predictions for the three methods on three nonlinear examples were performed.

Significant improvements were achieved by method 3 in predicting the noise-free data
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points compared with method 1. The results suggest that employing a noise reduction

pre-processing step on the noisy data prior to identification and prediction is beneficial.
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