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Abstract

Reproducing kernel Hilbert spaces (RKHS) provide a framework for approx-
imation from finite data using the idea of bounded linear functionals. The
approximation problem in this case can be viewed as the inverse problem of
finding the optimum operator from the Euclidean space of observations to some
subspace of the RKHS. In constructing the appropriate inverse operator use is
made of both adjoint operators in RKHS and various norms. In this report a
number of lemmas are given with respect to such adjoint operators and norms.




1 Introduction

Reproducing kernel Hilbert spaces (RKHS) provide a general framework for
approximation of functions utilising only finite observations of the function.
The important point is that in a RKHS we can express point evaluations of
the function as inner products. These point evaluations are determined by a
hounded linear operator for which the inner product is guaranteed to exist by
the Riesz representation theorem. The finite observations determine a finite
approximating subspace of the RKHS. A unique minimum norm approxima-
tion to the original function, within this approximating subspace, is guaranteed
to exist. This approximation can be found using least squares or orthogonal
projections under the action of the generalised inverse. It is also possible to
construct regularised solutions.

A key feature of the solutions is the need exactly to determine the adjoint op-
erator to the observation operator and compositions of these. These are required
for practical implementations of the approximation solutions. These implemen-
tations may be batch or iterative. Further, in certaln iterative solutions it is
necessary to calculate various norms over functions in RIKHS, possibly under the
action of the observation operator and its adjoint. Fortunately, within a RIKXHS
framework with finite observations it is possible to write down, in a practical
way, what the adjoint operator, the composition operator, and various norms
correspond to. In this report various lemmas will be described which provide
the necessary results.

In the next section the general approximation problem with finite obser-
vations will be described. RKHS are introduced in Section 3 and the lemmas
concerning adjoint operators are stated and proven in Section 4. Finally, various
norm lemmas are proven in Section 5.

2 Approximation with Finite Observations

We assume that we have some unknown function, f, of interest but that we are
able to observe its behaviour. The function belongs to some Hilbert space, F,
defined on some parameter set, A'. This set can be considered as an input set
in the sense that for € X, f(z) represents the evaluation of f at .

A finite set of observations {z}}\; of the function is made corresponding
to inputs {z;}{L,. It is assumed that the space of all possible observations
Z C RN, Neglecting the effects of errors, the observations arise as follows

zi=L;f (1)

where {L;}, is a set of linear evaluation functionals, defined on F, which
assoclate real numbers to the function f. We can represent the complete set of
observations, [z1,...,zn]7, in vector form as follows

1\!
z =Ll = Z(Lif)ei (2)
i=l
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T = .
where ¢; € RY is the ith standard basis vector.
In general L; permits indirect observation (e.g. via derivatives of f), but we
are concerned with the case

2y = fli;) (3)

leading to the exact interpolation problem.

The approximation problem can then be formulated as follows (Bertero,
De Mol, and Pike 1985): given a class, 7, of functions, and a set {a )i s of
values of linear functionals {Lz};\;1 defined on F, find in F a function, f, which
satisfies Eq. 1.

By assuming that F is a Hilbert space, and further, the {L;}/L, are contin-
uous (hence bounded), it follows from the Riesz representation theorem that we
can express the observations as (Akhiezer and Glazman 1981)

L?f:(fad)z)}_u = 1: I‘F\I’ (4)

where (-, -) 7 denotes the inner product in . The {1 N | are a set of functions

each belonging to F and uniquely determined by the functionals {L;}},.

The approximation problem can now be stated as follows: given the Hilbert
space of functions, F, the set of functions, {9}, C F, and the observations,
{z:}¥,, find a function, f € F, such that Eq. 4 is satisfied.

Without proof we now state the solution to the approximation problem in a
least squares sense (Groetsch 1977). Given the observations, the approximation
of minimum norm is given by

F={F P Pa= DI (5)

where

f = argmin||Lf — 2||z.
f =agoin || Lf — 2|z
Similarly we can find a regularised solution to

Jreg = argmin{|ILf — ||z + pllfIF}
as

freg = (L*L +pI) " L*z = L*(LL* + pI) 2. (6)

Note that, in each case, in order to calculate the approximation, it is necessary
to use the adjoint operator L* (defined in Section 4) and compositions of L and
LF,

3 Reproducing Kernel Hilbert Spaces

Formally a RKHS is a Hilbert space of functions on some parameter set, A', with
the property that for each z € A the evaluation functional, L;, which associates




f owith f(x:), Li f = f(x:), is a bounded linear functional (Wahba 1990). The
boundedness means that there exists a scalar M such that

[Lif| = |f(2:)] € M||f]|z for all fin the RKHS

where ||-||£ is the norm in the Hilbert space. To satisfy the Riesz representation
theorem the L; must be bounded hence any Hilbert space satisfying the Riesz
theorem will be a RICHS.

We use k(z;, ) to refer to ¢; (i.e. the evaluation of the function k(z;, ) = o;
at j is k(2i, x;)). The inner product (k(x;,-), k(z;, ) must equal k(2;, ;) by
the Riesz representation theorem. This leads to the following important result:

k(z:,x;) is positive definite since, for any xy,...,2, € X, a;,... ,a, € B,
> wigik(eiag) = Y aia;(k(wi,-), k(z;,)F
i i,

= ’Zaik(r.,-, )“iT >0

where || - ||# is the corresponding norm in the RKHS. The following is then a
standard theorem on RKHS.

Theorem 3.1 (Aronszajn 1950) To every RKHS there corresponds a unique
positive-definite function (the reproducing kernel) and conversely given a positive-
definite function k on X x X we can construct a unique RKHS of real-valued
functions on A’ with k as its reproducing kernel.

We then have a more common definition for RKHS.

Definition 3.1 (Parzen 1961) A Hilbert space F is said to be a reproducing
kernel Hilbert space, with reproducing kernel k, if the members of F are functions
on some set, X, and if there is a kernel, k, on X’ x A’ having the following two
properties; for every z € X' (where k(-, z2) is the function defined on X, with
value at &1 i X' equal to k(xq,z0):

L k(- x2) € F; and
2. (£, k(- =2))7 = f(z2)
for every f in F.
We can then associate with £(-, -) a unique collection of functions of the form
N

f() =3 k(=) (7)

i=1




for N € ZT and ¢; € R. Strictly this defines a finite dimensional subspace, Fu,
of 7. A well defined inner product for this collection is (Wahba 1990)

- N
<Z aik(ei, ),y bik(z;, ')> =
i=1 J=1

= F
N N
D aibi(k(zi, ), k(x;, ))r = > aibjk(zi, zy). (8)
ij=1 ,i=1

For this collection, norm convergence implies pointwise convergence and we
can therefore adjoin all limits of Cauchy sequences of functions which are well
defined as pointwise limits (Wahba 1990). The resulting Hilbert space is then
a RKHS.

4 Adjoint Operators in RKHS

In this section we prove various lemmas relating to the observation operator, L,
and its adjoint, L*, defined as follows.

Definition 4.1 For some bounded linear operator L : F — Z, where F and Z
are Hilbert spaces, the adjoinl operator L* of L is the operator

LY:Z5 F (9)
such that, for all f € F and z € Z,
(Lf,2)z = (f,1"2). (10)

We have already seen that the adjoint operator plays a role in constructing
approximations of functions in Section 2. We therefore make the following
additional assumptions regarding the operator L and the spaces F and Z.

Assumption 4.1 Z C RY with inner product (g,h)z = Zf\;l gihi, for any
g, heZ.

Assumption 4.2 F is ¢ RKHS with reproducing kernel k(-,-) and inner prod-
uct grven by Eq. 8.

Assumption 4.3 The operator L acting on f has the form
N
Lf =) (f,k(zi, ) -
=1
where e; € BY is the ith standard basis vector.

The following results then apply to the operator L and its adjoint L*.




Lemma 4.1 The adjoint operator L* is given by

7
Lz =% “mik(xy, ). (11)

f=1
Proof Solving for the LHS of Eq. 10

N N

(Lf,2)z =) (f k(e )z - Zf (12)

i=1

By assumption we set [*z = Zil zik(z;,-) and solving for the RHS of Eq. 10

N
(f L*z < Z q,> :Z (f k(2 ) (13)

the latter owmg to the linearity property of the inner product. But this is simply
equal to Zz 1 Zi f(z;) by the reproducing property in a RKHS., O

Lemma 4.2 For the operator LL* we have

N N

LL*z = ZZA’.‘(:EZ', ﬁj)éjzz’.

F=ti=1

Proof The operator LL" acting on z can be expressed, using the previous

results, as follows:
j\f
L ( ks, ))
i=1

N
Z<Z ml!')s'l‘:(xji')> T €5
&

i=1 \i=1

L%z

using the definition of L. As z; & F we can write this as

N N
2D wlk(ei, ) k(ws, )z -

g=T 1=

N N
Z Z 2,;1&’(331', :cj)e

g=1 g=x]

LL*z

Il

Il

0O

Since LL* : £ — Z has domain and range e]%ual to a ﬁnlte chmenalonal
space we can express LL* as the matrix LL* = E] i Zz ¢ R(@s, %5 )épe; . This
is equivalent to LL* = K where K is defined as the matrix [K];; = L(t,, ;).




Lemma 4.3 The operator L*L is given by

N
L*Lf =) f(me)k(zs,-):
i=1

Proof Using the result in Lemma 4.1 and the definition of the operator, L, we

have
N
Pl =[5 (Z(,f,k(mi,-));c : é’i)
z;\rl
= L* (Z f(ﬂ:-j)ﬁ:‘)
N -
= Zf(:l?.i)k(ﬂ?.i, )
i=1
O

5 Norms in RKHS

Using the assumptions and results of the previous sections we now provide
results on various norms in connection with functions in RKHS. These norms
are of use in quantifying the errors in approximations and also for calculating

learning rates in iterative approximation schemes.

Lemma 5.1 For any function f € F expressed in the form | = Zi\;l aik(w;, )
its norm is given by

N N
AE =" aask(ai, 25).

=1 j=1

Proof Using the definition of an inner product in a RKHS (Eq. 8) we have

WIS

Il
——
]«
2
=
®
-‘MZ
=
o
&
-~
\ﬂ

N N
= Z > aiajh(zi, ;)

owing to the reproducing property of the kernel. O




Note that this norm can also be expressed as
IfllF = ¢"Ka (14)

where K is the usual kernel (Gram) matrix defined by [K];; = k(a;,2;) and «a
is the vector [ay,... ,an]"

Lemma 5.2 Under the action of the operator L the norm is given by

I = 3 PG
where f2(z;) = (f(x:))?.

Proof Using the definition of the operator L this follows immediately from

N 2
ILAE = D (Life

=1 z

N 2

Z flzi)ei
.

=]

o

O

Defining fn = Zf\;l f(zi)es = [f(z1),..., f(zn)]T this norm can also be
expressed as

ILFIIZ = fR i

(15)
Lemma 5.3 For any z € RY
N N
NLL* 2% = zizk? (2, 25)
i=1 j=1
where k*(z;, z;) = (k(2i,24))%
Proof Straightforward from Lemma 4.2
2
N N
ILL2lZ = |30 D sik(ei 2p)es
g=Te=1 -
N N
= Zzizjk(wi,mj)k(:ci,mj).
=T g
a
The norm can also be expressed in matrix-vector form as
ILL*2||% = ||[K2||2 = 2T KT Kz = 2T K22, (16)

=1




Lemma 5.4 Forany f € F

N N

IL*LAG =Y D fla)f(zi)k(@i, 25)

=gl

Proof Using Lemma 4.3 and the deﬁnition of the inner product, Eq. 8,

N
IL*LfllFz = <Zf% (x1,), ) Fa >
J=1 F
N N B
= DO flai)feg)(k(zi, ) ke, ))F -
g=13=1
N N
= ZZf l.z.,(_‘}.
i=1=1 )

a
Using fn as defined above this norm can also be expressed as

ILLflF = fn K fn- (17)

6 Conclusions

Reproducing kernel Hilbert spaces provide an important framework for the ap-
proximation of functions given finite observations of the function. The approx-
imations in the least squares sense and in a certain regularised case are given
in terms of an adjoint operator. Various lemmas were proven relating to the
adjoint operator and associated norms. In the case where the RKHS is finite
dimensional closed form practical equations exist for these which allow us to
calculate exactly the associated approximations in RKHS from finite data.
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