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Abstract—The concepts of the wavelet transform spectrum
(WTS) and random wavelet series (RWS) are introduced hased
on the continuous and discrete wavelet transforms. The
relationship between the WTS and the ordinary power spectral
density (PSD) function is derived. It follows that the WTS and
the PSD of a wide-sense stationary process can bl; related by the
Fourier transform of the associated wavelet. The spectrum of
the well-known fractional Brownian motion (fBm) is derived by
means of the global wavelet transform spectrum (GWTS). The
second-order statistical characteristics of the RWS of fBm is
analysed by adopting the Haar wavelet.

transform
spectrum, random wavelet series, fractional Brownian motion

Index Terms—Wavelet transform. wavelet

[. INTRODUCTION

The wavelet transform provides a powerful tool for
analyzing and synthesizing signals. Many applications
of the wavelet transform can be found in random
the self-
similarity of signals [1] and fractional Brownian
motion [2]-[4].

signal processing, including statistical

Let f be a function defined in £2(R) .The continuous

wavelet transform (CWT) with respect to the mother
wavelet I is defined as [5].

v - r—H
Wy (L’J-a)—\/;_l._“= f(!)V{TJd! (1)

with the dilation (scale) parameter g€ R*and the
shift (translation) parameter b€ R . The over-bar
above the runcuon W)

indicates  the complex

conjugate.
In order to guarantee (1) is invertible so that f'cun

be reconstructed from wa, the following admissible

condition is required

[ =ulu‘lmj)lll 5)
i -I-U TCU(GG (2)
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where 17 is the Fourier transtorm of the function .

The wavelet transform of a stochastic process X(r),
designated as W¢(r.a), can be viewed as a random
field on the upper half plane [6]. For a given scale
parameter a, W¢(r.a) can be thought of as the
component of the original process at this given scale.
Extensive research has been done tazexploit the
wavelet transform, to analyze, and to '&gtermjnc the

characteristics of random processes [1]-[4][6][7].

In this paper, the concepts of the wavelet transform
spectrum (WTS) and the global wavelet transform
spectrum (GWTS) are introduced by means of the
covariance function of the wavelet transform of a
stochastic process. Then the relationship between the
WTS and the ordinary power spectral density (PSD)
function of a wide-sense stationary process is derived,
and related by the Fourier transform of the associated
wavelet. This is described in Section II. In Section III
another concept, the random wavelet series (RWS), is
introduced based on the discrete wavelet transform.
Applications of the WTS and the RWS to fractional
Brownian motion (fBm) are presented in Section IV,
where the frequency behaviour of fBm, which obeys
the so-called power-law, is derived by means of the
global WTS. The second-order characteristics of the
RWS of fBm is also analysed by employing the Haar
basis.

II. WAVELET TRANSFORM SPECTRUM

Throughout this report let X ={X (1),re R} bea

second-order process defined on a probability space
(Q.F,P), thatis, X is jointly measurable and X(r)

is square integrable.

Definition 2./ Let {X(t).te R) he u zero-mean

random process. The covariance of the waveler

transform of X at scale a, and d- is defined as

WAy




R.‘iﬂ“lJz;“l'“z):E[W,\‘-y(’iﬂ1)wf(f:-a:)] (3)
that is.
REin.rona, 0§
U A —
- J J.E[‘((I.}\’R 3)] = ‘l,u i i drdr, (4)
Yajdy Yoy ”l a |

where R is the covariance of the process X .

Proposition 2.1. Let {X(1).t€ R) be a zero-mean,
statistical self-similar random process with similariry
paramerer H . Then the wavelet transform covariance
R_fl (Il X az) is also self-similar with similariry

parameter H+1/2, that is, tor YA >0 .

R.? P Ao “:) = A_EEHH)RE(-AIV/{IQQ’MPMQ) (5)

Let {X(1),te R} be a zero-mean,
stationary random process, whose power spectral
density function S (@) exists, then

2

Proposition 2.

RY (1,153a,,a,)

[1.1 =it =t2)w
V f S (@) (a0 (@w)e " dw  (6)

for any choice of wavelet I/ such that this integral is
convergent.

Proof. Let ,,,(t) =a™""*w((t-b)/a) . By (4)
RY(t,t,;a,,a,)

_LJ:E (7.73) w{ ]w{f” o Jd*:ldrq

LU R, (F; =T, W 4, (74T, }vf o (F2)4T,

a)a,

J._m [(Rr * Wia.,m)(rz )] W(a;.::; (Tl )dTZ

Where the symbol “*™ indicates the convolution of
two functions. Applying Parseval’s identity to the
above, yields
R¥(1..1,

a,.a.)

I = % e e
= [ s @, @), @4

\/“1

=ity =ty )

I S (w)(a, ca)u/(a @)e dw

This shows that in the case of a zero-mean

Oleskatstiees - L I T B A B AR S TS R T Y

covariance Rt (z,,1.5a,,a,) is a function of #, and

[, only through the difference (s — Il) . This enables

an expression for the power spectral density to be

obtained by taking the Fourier transform.

Definition 2.2 Ler {(X().1€ R}
random starionary process.
spectrum(WTS) of X at scale a, and a, is defined
as

be a zero-mean
The waveler transform

§f(w;al,a2}=f RY(T;a,,a.)e™ dr )

where RY (T;a,,a,) = RY (1,1 + 72d,,a,)

Proposition 2.3. Let {(X(1),1€ R} be a zero-mean,
stationary random process where the power spectral
density function S (@) exists, then

S¥ (w;a,,a,) = Ja,a, (a, 00 (a,0)S (@) (8)

2=

Proof. By (4), =

RY (1,.,15;a,,a,)

_Il

1 e T 72—t
= ‘[J-Rx(rz—fl ' 2 Hrdr,
Jaa, J-ed-e a, a,

=44, J-_ J‘_R.r ((ty = 1)) + (@ — @)y (@) (BMdcdf

§f(a);al \5) = J.Rf(‘r;a],ag)e'j“"dr
= J. [,/aiaz J- J-Rx(r —a+ azﬁ)w(a)w(ﬁ)dmiﬁ}"*’“”df
—-‘,,611(.11"- J. [J.R (T -+ ax f)e " dr wta)w(ﬁ)a‘cdﬁ

- {alazJ‘“'[”Sx(m)w(a}e—im,cu)aw{ﬂ)e—nujw),ﬁdadﬁ
= a,a, ¥ (a0 (a,0)§ ()
A special case of (8) is ¢

=a, =a, in such a case

8% (@;a) = dj(aw)’S, (@) 9)
Consider the following stochastic process
Xn+aX(0)+ X (1) =€) (10)

where a=f=1, () is a random process whose

integral is a Wiener process. Let the Mexican Hat
wavelet (which is also referred to as the Marr or
Bubble wavelet) be used, such that w(n=(1-:2)e" 2

and j(w)=+2rw2 @ 2. The power spectral density
(PSD) function, S, (w), of the process (10) and the

‘Fourier transform /(@) are shown in Fig. 1. The

(o]
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is depicted in Fig.2, where the scale a is sampled

with the period of 0.5 and the frequency @ is sampled




with the period of 0.1 rad/s. Fig.2 shows that the WST

i nonnegative and symmetrical about the the

frequency w .

Fig. 1.

Fig. 1. The power spectral density (PSD) function of the process

X described by Eq. (10) and the Fourier transform of the Mexican
Hat wavelet,

Fig. 2.

Fig. 2. The wavelet transform spectrum (WTS) of
the process X described by Eq. (10).

Definition 2.3 Let {X().1e R} be a zero-mean
random stationary process. Assume the spectrum
ﬁf{w;al,az) of the waveler transform of X exists.

The global spectrum of the waveler transform of X ar
scale a is defined as

st ==[ s w0% (1)
w

Proposition 2.4. Ler {X(1).1e R) be a zero-mean
random stationarv process. Assume that both the
power spectrum of X and the wavelet transform
spectrum of X exist. Then the global waveler
transform spectrum of X at scale a is equivalent 1o

the power spectrum of X , that is

I =3
Sf(w)=——f s* ) %a
C'W 0 a-

_#

da =S (@
= a =5 (w)

FM -

0
v

II. RANDOM WAVELET SERIES

1 DVivovarro Whiiiidis Tarins nd ey

Chi i G B .

Due to heavy redundancy, the continuous wavelet
transform (1) is usually sampled in the time-scale
plane (b, a) with the dyadic grid {2 n. 2"mez O
form an orthonormal wavelet representation. Based on
this sampling scheme a signal f(1)can be analyzed
and synthesized by the following discrete wavelet
transtorm (DWT) and the wavelet series (WS)

03 Sy,

i n

=Z de'?"'”:w{z_"'f-n) (13)

m n

=< f ¥ >= [ FOW 0 (14)

The bases {y,, (1)}, 7. formed by dilating and

translating the basic mother wavelet function, are
ideally suited for analysing self-similar signals.
Suppose that the signal f(r) belongs to the

subspace V), spanned by the scaling function 0,

" which is associated with the wavelet I/ , that is

Vi =span{27 927" ¢ — )} (15)
Then f(7) can be expressed as g”fi\
FO =Y a, 292~ ny  (16)

n

where

aylnl=< f, @y , >= 2'M’ZJW F@0o@ ™Mt - n)dr

The multiresolution wavelet representation can be

implemented by the following pyramidal algorithm

al =a, [n] (17a)

Al = Z glk—2nla" (17b)
k

d; = hik-2nja)" (17c)
k

gln] and Aln]
filter(QMF) pairs, having roughly low-pass and high-

where are quadrature mirror

pass discrete-time Fourier transforms, respectively.

To initialize the above pyramidal algorithm (17), it
is usual to let @’ = x[n] (M =0) for a discrete-time
For f@,
algorithms have been proposed for arbitrary M [8]-[10].

sequence. an analogue signal some

B. Random Waveler Series

If the signal f(7) in (13) is a zero mean random

process, the wavelet series (14) is itself a zero-mean
random sequence with respect to the two indices m
and n. This makes it possible to introduce the
tollowing concept of a random wavelet series (RWS).

Definition 3.2.0 Ler (X(jnie R} be a Zero-mean
random process which can be expressed as (14). The
random wavelet series of X is defined as




(4 ez {J Xowroa] as

Jm.nEZ

provided the path integral in (18) is defined with
probability one.

Definition 3.2.2 Let {X().ae R} be a zero-mean
random process. The covariance of a random wavelet

series of X with respect to scale indices m,,m, and

translation indices 1,1, is defined as

E[dY* d

my Ny

w.x ]

ma iy

RY[n,,ny;m,m,] = (19)
Random wavelet series can be viewed as a special
class of a random field produced by random wavelet

transform, on which several results have been

proposed [1][6][11]-[13].

Proposition 3.2.]1 Let {X (1.t R} be a zero-mean
statistical self-similar random process with parameter
H . Then for a fixed scale index m . the covariance of

the random wavelet series {d :n\ } can be expressed as
w.x gy.x
R¥[ny, nyym] = E[dm mdm s ]

vx s

1 Il

- QJH(EH‘:” R“"" {}1] 3119 ,0} {20)

Proposition 3.2.2. Ler (X(1),te R} be a zero-mean,
stationary random process and the power spectral
density function § (@) exists. Then the covariance of

the random wavelet series of X is

RW[ ] 2(m,+m:}.‘2
c LI s Iy M, | =
X [ 2l 2 2

><J- S o (@ (2™ W) (2™ w)exp(—i(2™ ny ~ 2™ ny Ydw (21)

—oo

for any choice of wavelet I/ such that this integral is
convergent.

Proposition 3.2.2 is a direct result from proposition
22 by setting g =2", g, =2™,

t, =2"n, in (6).

n=2"np and

. B s e S L o e T
i STl b dsss 1w ORACTIONAL oROWIN AN

MOTION

Fractional Brownian motion ( fBm) is a natural

generalization of ordinary Brownian motion [14].
Although fBm is itself highly nonstationay. the first

arder nerement of this aracess is stationary. Denote

By ={By (. 0<H <lreR) for fBm, then some

characteristics of B, can be briefly summarized as

follows:

1) The increment of fBm is a zero-mean. strict-

sense stationary random process, and the variance

of the increment is

Var(By (1) = By (1)) = Vylry =1 . V1,1, € R (22)
where
V, =var[B, (D] =T(l - 9 gy o8t}

H

2) The increment of fBm is a stationary self-

similar process with parameter H , in the sense that
forany @ >0 and 7,,7€ R

{By(tg +7)= By (1)) = M’ﬂ&ﬂ%+aﬂ B} (23)
3) The covariance of fBm is
Rg, (t,5) = E[By (1)By (s)]
v 2H H 2H
L I il Y

Proposition 4.1. The wavelet transform spectrum of
JBm at scale ais

aliraw)|’
ICUFHH

Sg, (@) = (25)

Proof. By (3), the covariance of the wavelet
transform of fBm at scale a is

i i 4
R%’H (t,5:a) = E[WB” (t,a)WH” (s,a)]

\drdr,

1= r - 2
=_J.— J. RBH {Tlvrl)W(rl_f‘)W(T—

"V_le.[ rl2 +|1"1

X W(——)W(

AL et

Vi iy
:——quJ Ju(u ';JJ—U*.\Jl

Iy —ar”]

)af*rlctf7

)W( )dfld%

W)W G

It can be seen that itself

nonstationary, the covariance of the wavelet transform

although fBm is

of fBm behaves as a stationary process. Therefore, the

definition 2.2 can be extended to fBm and the

SPELIILIIT Wi il cweCidy w0 waal W I UMGLEL ds

follows




Sg (w:a) =J- RY (ria)e™ ™ dr
— by I

"‘it NJA U J |z~-ma ,b’)[ wtaiw(,ﬁ)dmb}'””

J.J‘ U |7~ aw - ﬁ}l MdTJWW)?}/(ﬁ)dmﬁ

" 4 y oo moo =3
_ VH r(l +_T2LS:?(JTH}J- j emwia‘ﬁ)w(a)w(ﬁ)dadﬁ
w TR

- |{U|:H+1

Proposition 4.2.
spectrum of [Bm is

The global waveler transform

1

Sy, = (@)= s (26)

|w

Recall Proposition 2.4, (26) means that the spectrum

of fBm obeys the power law of fractional order, the
desired behavior of fBm. This result agrees with that
obtained by applying the Wigner-Ville time-frequency
[2]

approaches [See, e.g.,

other

15].

method and spectral  representation

Proposition 4.3. Assume thar the Haar waveler is
used as the basis funcrion in the orthonormal waveler
transformation. Then the covariance of the random
wavelet series of fBm with respect to scale indices

’ 4 . . !
m,m and translation indices N,N° can be expressed

as

B .B
Eld i d i ]

W ‘. "o
RB” [n,n'sm,m] = L

= )i 2
Vv 2 tm+m ) .
=t Sln,n"ymam” 27
2 2H+1)(2H +2)
where
E(nn'ym,m”)
i gt . 2H+2 m -y 2H+2
=2 =-2" (1" +1) =425 =2" (" D)
+ 2”';1 2 u'|_“ ) —2|2'”(11 +1/2)=2" '+ l)‘" i
4 2H+2
+4| T+ U2 =2 (0" +1/2)
m m’ 'QH—" M m 2H*2
= 22" =172y - 2" 4 +2% n=1y=2 (u—l)!
24 +2 . [2H+2
"’"(n-l)*wmln +142) + 2y =2" n’l (28)

Proof. See Appendix.

Some remarks on Proposition 4.3 are summarized
below:

n

1) For a given scale index m

Rgfu [kim] = E[d":fu f.f,?ﬂ]
] 1% (EHi)’{!’;: oy el (29)
where
nik] = |k - ll“Hz —dlk - 1./?_|2H+1 _ 6“\,'11’{4-2
=—dlk +1/2|" 2HED I”‘Tll-ﬁ- i

This can be easily obtained by setting m" =
in (27) and (29).

covariance RY [k:m] with respect to k for m =1 and
H

H

mn =n+k

Fig. 3 shows the graph of the

=0.2, 0.4, 0.6 and 0Q.8.

2) The variance of the of the rand@m wavelet
series of fBm is

v.By
m.n

Var{d¥:?n = E[d
~ VH (1_2*2H )2;n{2H+l)

2 (H+D(2H+D

B
di"n i ]

3

1)

The covariance R;’” [k;m] defined by (29) can now

be normalized by means of (31) , such that

v o] = Ve timl _ pik) k) -
B Varld¥:2n1 0] 2-2'2#

In Fig. 4., the normalized covariance rgL [k;m] is

plotted with respect to k and H
wavelet is adopted.

, where the Haar

3) For a given scale index m, it is easy to verify
from (30) that for a large k

nlk] = %{k!m—l (33)

Therefore,

E[duf B”dl,l/ By 2AH-D)

R';II_, [k’ ’n] = m.n mn+k } O(|k} ) (34)

For an arbitrary orthonormal wavelet (other than the

Haar wavelet)with Krh vanishing moment. (34) still

olds in the sense that

w A w.B w.B UH-K) ~
RH” k] = E[d"” n' dm rz-iri 1T O(lkl ) (35)
Furthermore. for fixed scale indexes m1,m”, Tewfik

and Kim [4] verified that R;‘.},’ [n.nsm.m’| decays as
"

BV R

ut!_‘ s = ,sl PO dal ity el L uldl as

Rgu = E[dw " IW H” ]

’ r
[n.n'sm,m’] eyl




, CAH=K)
~ o2 -2, | ) (36)
4) For ordinary Brownian motion (H =1/2).

RW [i,n'sm.m’] = E[(l',';f!‘?” !:: ﬁ” 1= (37)
under the assumption that 2", Sn’SZ’"_’”'(u +1)~1
and m 2 m’ . For a fixed scale index m ,

8 8
R*” (ksm] = E[d)/nd¥ P |
221’” V
=Var[d¥5n 5, =—D—H~5‘. (38)

Fig. 3.

Fig. 3. The covariance of the random wavelet series of fBm defined

by (29). The Haar wavelet is used and the scale index m=1.

Fig.4, l

Fig. 4. The normalized covariance of the random wavelet series of

fBm defined by (32). The Haar wavelet system is adopted here.

V. CONCLUSIONS

The concepts of the wavelet transform spectrum
(WTS) and the random wavelet series (RWS) have
been introduced. One of the main results of this work
says that, for a stationary stochastic process whose
power spectrum density (PSD) exits, the global WTS
1s equal to the PSD. By extending the concept of WTS
to fractional Brownian motion (fBm), the spectrum of

The second-order
statistical behaviour of the RWS of tBm was also

fBm was then directly derived.

analysed using the Haar wavelet basis. The result on
the RWS of fBm in this work (Proposition 4.3) is
parallel to that of Kaplan and Kuo proposed in [16],
where the case of discrete fractional Gaussian noise
(DFGN) was considered.

APPENDIXA
Proof of proposition 4.3

E[a"’” BﬂdW B,, s 9=(m+m’)/2

m.,n

XJ. FE{BH (1)By (s)]y/‘QWmt —-12)!//(2—'"'5 —n"\drds

/i

- Vi y={m+m’)/2
2

XJ'“' r ’:ML‘I +MlH ‘l’ _A_IZH:! y/(2_mt-Jz);{/(Z_mIS—rf)dId&'
=u—l';iz*(’"+m')12jx Jm | _5[2”;”(2"”:—n)u,r/(z‘”"x—n’)drds

5 oo pen i 2H
=__Viz<m+'">’9j j |2’"(r+n}—2"‘ s+ wywis)ds

2

5 S S r , 24
=—%-2""*”‘”32""”J- J‘ ,2’""" (t+n)-n —5{ fw(r)uf(s)dzds

=ﬂ’_21m+m')1121m'ﬁJ‘ w(!)!:_f U/(S)I-T —gmem e n'lzlfd;-ijr

8]

_Yu

. gtmeniiiZy “’"”r W8y (A), H)ds (A
where
A1) :2’"'”"{:+n)—n'

0, (A1), H)

_j_: W(T}|T-</1(I)I2H dr = _U::IT = /“L(t)[w d’r—J.]]m,r - i(z){w dr]

B _ 179 -
(’7H+1)[ - A1) (1

[(1 /‘Hf)}zH?l'{’

('>H +1

A1) ()2 ]
(l A 20112 = A)) 4 (A 20 ]
2A() =1/ 2)2H# _"g(f)):HﬂL

[ (A =DM 2000 =17 2) 7~ (A1) r.q]’

1=A(r) ’H
J‘ll’—A(r)IT|

A() <0

1=A(1) 2H
J- | ar
1/2-A(1)

0<A(t)<l1/2
(A2)
1/2<Adin <1

Alr) =1




Theretore

[wwe, . H

12 ~1

= OOW(/{(I},H)(JI—JH:@,‘U(/{U),H)(/I

, A(1/2) AL
= = @WLS.H'US —J. @wts.H)ds
A(0) ACLED)

r,!ﬂ"_m

(2H +1)(2H +2)

"_’.H+2 IH+2

X~! M(O)‘] I:H-i-l

=2Ja0-1/2 +[4(0)

2 +2
|

R UR R R P T VS e PV LA

,/1“]_]|2H+2 *2‘/»(“‘ l/2l2H+2 +J/‘;{l){:h’+2 } (A3)

Inserting (A3) into (Al), (27) is produced.
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The power spectral density (PSD) function of the process X described by Eq. (10) and the
Fourier transform of the Mexican Hat wavelet. (Solid—PSD: Dash—FT )

The wavelet transform spectrum (WTS) of the process x described by Eg. (10).

The covariance of the random wavelet series of fBm defined by (29). The Haar wavelet is

used and the scale index m=1. (+: H=0.2: o: H=0.4; x: H=0.6; *: H=0.8) =

lf‘ il

The normalized covariance of the random wavelet series of fBm defined by (32). The Haar

wavelet system is adopted here.
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