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Abstract

A new method for the design and synthesis of near-optimal, non-linear control laws is
examined, based on a generalisation of LQ optimal control theory and which
effectively provides a near-optimal gain-schedule. The method is simple to apply and
affords greater design flexibility (via state-dependent weighting) than conventional
approaches. The resulting regulator can, in principle, be implemented in real-time
owing to the causal nature of the required computations. However, the need to solve
an algebraic Riccati equation at every time-point is burdensome and a number of
algorithms that would permit parallel computation is discussed. The problem of
stabilizing an inverted pendulum is used to illustrate the method and proves an
exacting task that highlights a number of issues.

1 Introduction

The aim of this paper is to examine a simple algorithm for the quadratic optimal
control of a wide class of non-linear systems that is causal and ean, in principle, be
implemented in real-time. The method is based on a generalisation of the well-known
linear quadratic optimal control theory. We concentrate on the use of the approach
and its pros and cons, rather than the theoretical aspects of its derivation which can be
found in [1-3]. The method is demonstrated via the well-established problem of
balancing a single inverted pendulum on a cart.

Linear quadratic (LQ) optimal control theory is a highly developed approach for the
synthesis of linear optimal control laws that has been widely applied. In particular, the
infinite-time-horizon solution has appeal for the regulation of processes that are well
modelled by linear time-invariant dynamics because the solution comprises a set of
static gains that are calculated once, off-line, and are implemented causally thereafter.
The finite-time-horizon solution, while being more general, and admitting of time-
varying dynamics or weighting parameters, is essentially an off-line procedure
because the associated (differential) Riccati equation must be solved backwards in
time. Incorporation of such a scheme as a closed-loop, real-time process is not
therefore possible. The receding horizon approach attempts to overcome this
difficulty by repeatedly solving the open-loop, finite-time-horizon problem for short
r periods into the future, and using this for the feedback gain over the time step. It does

' this at the expense of optimality, which may or may not be important from the point
of view of the practising engineer.
A further disadvantage of the LQ philosophy is that, being a linear feedback, the
control signal is affected in the same way by small and large signals. In many __
applications-it may be preferable to ignore small error signals (due, for instance, to AP
measurement noise) as far as possible, while responding optimally to large errors. It




may also be desirable to switch attention between control objectives depending on
their current values. The receding horizon strategy approximates the former behaviour
to a certain extent, but does not address the latter.

For non-linear dynamics the situation is exacerbated, with few explicit solutions for
their optimal quadratic control as yet known, except those based on series expansions.
These are unrealisable, unless via truncation, leading to a loss of optimality and
possibly stability. Normally optimal quadratic control for non-linear systems is
conducted numerically and tends, inherently, to be non-causal.

Tn this paper we make use of a result that generalises the LQ theory to non-linear
systems to provide a non-linear design method that overcomes some of the-difficulties
mentioned above [1,2] and also in [3] although [1] is not cited therein. This non-linear
quadratic (NLQ) method applies to systems having a broad class of non-linear
dynamics with state-dependent weighting matrices (the design degrees of freedom). In
brief, it turns out that the infinite-time-horizon LQ regulator problem when solved
afresh at every point on the state trajectory leads to an asymptotically optimal control
policy in that it converges to the optimal control close to the origin [2]. For admissible
system dynamics, the weighting parameters can be made to be functions of the state
variables. Thus, in addition to handling non-linear dynamics, the design stage allows
for the introduction of state-dependence in the weighting matrices, leading to a more
flexible control strategy [4,5]. Although, in principle, time-varying weighting
parameters are allowed in the (finite-time) LQ approach, lack of prior knowledge of
potential disturbances and the acausal calculation for the solution makes the
introduction of these difficult in practice. The required amplitude dependence can
never, therefore, be achieved through the LQ approach. The solution to the proposed
method is causal, but has considerable computational overhead. However, by using a
solution to the Riccati equation based upon the matrix sign function [6], it is possible
to derive a parallel algorithm {7] that may be suitable for real-time implementation.

1.1 Linear quadratic regulator (LQR)
The L.Q optimal regulation problem is expressed as follows: minimise with respect to
the control signal, u, the cost function

J=?(X'Qx+u'Ru)dt (D

subject to the linear time invariant dynamics:

X = Ax+ Bu )
where x is an n-vector of system states, u is an m-vector of control variables, 4 and B
are matrices of appropriate dimension and the superseript, £, indicates transposittom.
The matrices Q and R are positive semi-definite and definite, respectively, and are
used to penalise particular states and controls according to the engineering objective.
It is well known, e.g. 8], that the control policy which solves the above problem is a
linear combination of the system states, given by:

u=Kx 3

K=-R'B'P 1G]




g -

where P is the positive definite solution of the algebraic matrix Riccati equation (5).
A unique, positive definite solution to the above exists if the pair (4, B) is stabilizable
and (A4, I')is detectable, with Q=7"T".

0= PA+A’E—PBR*B'P+Q 6))

1.2 Non-linear quadratic regulator (NLQR)

The extension of the above to non-linear systems looks identical [1-3], except that,
instead of performing a single optimisation-and-applying the resulting gain-matrix for
all time, the optimisation has to be carried out at every time step. Consider a non-
linear dynamical system that can be expressed in the form:

x =f(x,u) = 4(x)x + B(x)u

£(0,0)=10 ©

where the Jacobians of A(x) and B(x) are subject to some bounded growth conditions
(Lipschitz), then at each point, X, on the state trajectory, a linear system is defined
with fixed 4= A(X)and B = B(X). Provided that the matrices, 4 and B, converge to

their conventional Taylor series linearisation at the origin it can be shown [2] that
solving the infinite-time LQ optimal control problem, point-wise on the state
trajectory and applying the resultant control, results in an asymptotically optimal,
stabilising quadratic control policy for systems described by equation (6). The
requirement

A(x) - of (x,u)/ 0x|_
B(x)— of(x,m)/ oyl

=0,u=0
(7
x=0,u=0

is imposed to ensure that P(x) tends to the solution for the linearised problem at the

origin. Hence, in a small enough neighbourhood of the origin the feedback from the
algorithm is arbitrarily close to the optimal feedback [2]. Appendix A contains a brief,
heuristic justification of the theory [2].

So, by choosing the u that minimises the usual quadratic cost function at every time
point, we have a near-optimal control policy for a very wide class of non-linear
systems. Evidently, A(X),B(X),0 and R are subject, point-wise, to the same
conditions as for the linear case. It is clear that the proposed solution is identical to the
one obtained from equations (3), (4) and (5) when the dynamics are linear.

Because the control synthesis takes place point-wise, the designer is now free to select
Q and R in ways that may be more directly applicable to the control engineering
objectives. These can be made to be functions of the instantaneous values of the state
variables so that

- L= T(X’Q(i)x +u'R(X)u )dt (8)
0

subject to the requirements for the solution of the Riccati equation and the
invertability of R.

Ensuring that A(X), B(X), R(x) and O(X) satisfy these requirements a priori, is
difficult in general, however, for functions whose controllability (observability)
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matrices are full rank except at isolated points (e.g. those admitting convergent Taylor
series expansions), the required properties can only be lost at isolated pomts and may
not, therefore, be harmful in pract1ce provided no attempt is made to remain in their
vicinity. We postulate that, since many systems can be well approximated in the
region of interest by polynomial functions, loss of stabilizability (detectability) is
unlikely to be generic.

2 Solving the matrix Riccati equation

In order to calculate the optimal solution, it is necessary to solve the matrix Riccati
equation at each point in time. In practice this. will be done in a computer and. it will
be necessary to solve the equation at each discrete time-step. The usual approach to
the solution of this problem is via an eigen-decomposition of the Hamiltonian matrix
for the system [9]. For sizeable dynamics such an approach is computationally
intensive and may not be able to deliver solutions at the required sample rate (i.e. in
“real-time”). It can also be numerically sensitive, depending as it does on the
numerical solution of an eigen-problem.

The matrix-sign-function (MSF) is an appealing alternative to eigen-decomposition
owing to its simplicity (Roberts, 1980), requiring only the operations of matrix
inversion, addition, and scalar multiplication [6] as follows:[7]

Zy=H, Z, = })[12+c2 J 9
where ¢, = ,)1 isa scaling used to speed convergence, and 7 is the dynamical
] AI 1
order. H 1s the Hamiltonian matrix of order 27, given by: H = 5 ©
BR B' -4

Assuming H has no eigen-values on the imaginary axis Z, converges to Sign(H)= S,
say, [6]. For the solution of the Riccati equation we require the quantity [10]

§*=Sign" (s):%uzﬁs).

Now, by decomposing S* thus: S* = [V W]' we write, P, the solution of the Riccati
equatton (5) thus:

P=v'w(ww) (10)

The convergence of the algorithm has been investigated in [10] and its global
convergence is established in [11]. Its simplicity also suits the MSF algorithm to
parallel computation [6]. In [7] an algorithm for diagonal pivoting factorisation — a
form of Gaussian elimination with partial pivoting — is used to develop a parallel
algorithm involving no sequential computations. Complexity is of order (2#)’, which

dominates the communication burden. The speed-up achieved over the conventional
method [9] is demonstrated on a hypercube architecture. More recently, a Jacobi-like
method has been proposed with a simple function of the matrix size to predict the
number of iterations needed for convergence [12]. This, of course, does not guarantee
that a solution can be found within any arbitrary sampling period.



We do not implement the parallel solution here. The discussion is included simply to
underline that real-time operation may be possible.

3 Asymptotically optimal quadratic control of a single inverted

pendulum

It is well known from energetic considerations that the motion of the inverted

pendulum on a cart constrained to move in a plane (Figure 1) can be described thus:
(M +m)si=mL&" sin(8)-mLcos(0)+F

(J‘+m[?)‘§“= mgLsin (@) —mLcos(0) % (1)

where M and m (kg) denote the mass of the cart and the pendulum respectively, Z(m)
is the length of the pendulum and J (kg m?) is its moment of inertia about the centre of

mass. B(z‘) (rad) denotes angular displacement from the vertical and x(r) (m), lateral

displacement from the mid-point of the track. F'(r) (N) is the applied force.

o
Q O

Figure I Schematic of a single inverted pendulum on a cart.
By substitution in (11) we obtain the explicit state space form:
X =X,

—(mfosin (% )(J +ml? ) -m’I’gsin(x,)cos(x,) + ("T + m‘LZ) )

e P12 cos* (x,)—(J +mI )(M +m) -
- (12)
5 —mL{(gsin(x,)(M +m)-mLx? cos(x,)sin(x,) - COS(-‘%.)”)

by =

m* L’ cos® (x,) - (J + mLz)(M +m)




where x, =x, x, =%, x, =6, x, =6 and u=F . Recall that we require the origin of
state-space to be an equilibrium point and here the equilibrium of interest is x = 0.

For convenience we define: d(x,)=m’L? cos’ (x,)~(.J +mL*)(M +m) and write:

[0 1 , 0 0
l6 @ -mLsi.n(x3)(x§ (J +mL2)—.ngcos(x3 ))
d(xy)x
4=l o 0 1| (13)
—mLsin (x, )( g (M +m)—mLx; cos(x, )) |
d(x;)x,

~(J+mL?) |

B(x)=| d(gf‘) | (14)

ml cos(x,) |

d (x3 )

or alternatively,

0 1 0 0 ]
o o mszg sin (x3 ) cos (‘_xs ) —ml 'si'n‘(x3 ) X,y (J +ml? )
i d{x d(x
AA(X.). - ..0 " ( 3)3(3 (1 3 ) (15)
5 & -mLsin(x,)g(M+m) m’Isin(x;)x, cos(x;)
L d(x;)x, d(x;) 1

Evidently, the termssin{(x, )/, in (13)are well behaved at the origin and d(0) is
non-zero. It can be easily verified that in either case; (13) or (15), A(x), B(x) satisfy
the conditions imposed by (7). To evaluate the stabilizability of 4(x),B(x) we
simply form the determinant of the controllability matrix, given by:

2 = % 4 4 2
; Koo ocnll U5 ads ol apT\_ o8 (x;)sin"(x,)L'm" g
D,(x)=det([B 4B 4B 4'B])= 3x32_d4_ (xz)_

which becomes zero only for £4z/2, k=1,.... In Figure 2 a plot of this determinant
(choosing parameters as per the next section) indicates regions of poor controllability
around the zeros of D, (x) (approximately +(80—100°) and || < (170°-180°).
Further, local analyses of the system in these regions confirms that-it-is the unstable
mode that becomes uncontrollable in both cases leading to a loss of stabilizability and.
hence a failure to fulfil the necessary requirements for the solution of the ARE.
Trajectories-entering these regions can be expected to cause numerical difficulties’in
the ARE solver and this will indeed be seen to be the case. Clearly, the detectability
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requirement can be guaranteed, assuming a diagonal (, by ensuring that all
g, >0 = I I

35 T T T T T T T

301

251

20

det(M)

15

L
100 150 200

Figure 2 Determinant of the controllability matrix as a function of angular displacement.

4 Resuits

We use parameter settings corresponding to the inverted pendulum rig that resides in
the Department of Automatic Control & Systems Engineering of the University of
Sheffield, namely: M =1.92kg , m=0.185kg , 1.=0.508m , and with g =9.81ms ™.
The pendulum comprises a uniform pole and no “bob” giving J = mL™ / 3.

4.1 Comparison with linear LQR solution

First we look simply at how the NLOR solution behaves in comparison with the LQR:
solution i.e. the non-linear system compensated with a set of linear gains computed at
the operating point for the same values-of O,R. We choose, arbitrarily,

Q =diag{100.0, 0.1, 1.0, 0. 1}and R =1 to reflect that the linear displacement will be
a major constraint on any practical implementation and consider only initial angular
displacements, all other initial values being set to zero. After some experimentation
we find that the LQR solution is unstable for initial conditions |9(O-)|-> 55°, while the
NLQR solution remains stable for |0/(0)| < 74° and 98° <|@(0)| <180°. This indicates
a degree of asymmetry in the numerical conditioning of the problem in that it is

possible to approach the singularity at £180° much more closely than it is pessible to
approach +90°. : , )
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Figure 3: Comparison of state evolution for system under non-linear (NLQR) and linear (LOR)
control for an initial-angle of 40°.

As might be expected, for small excursions the NLQR and LQR solutions are-
approximately equal. Figure 3 illustrates this for an initial angular displacement of
40° . This is the value at which the two solutions first begin to deviate. Notice that the
non-linear controller generates less marked excursions in line with what is expected.
Moving now to the limit at which the current LOR design is able to stabilize the
system (’9 (0)= 55°‘)‘ we note substantial differences in the two behaviours (Figure 4).
While the non-linear regulator results in state trajectories qualitatively similar to those

in Figure 3 — with correspondingly larger magnitudes.— the linear compensator
demonstrates wilder behaviour and a far higher total variation.
* Figure 5 indicates that the behaviour of the control force can be similarly summarised.

It is interesting to note that behaviour up to the first reversal in the states and, to a
certain extent, the force, is approximately equal for both approachies.
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Figure 4: Comparison of state evolution for system under non-linear (NLQR) and linear (LQR)
control for an initiat angle of 55°.

Beyond the 55° limit we can only report the behaviour of the NLQR solution. As
noted earlier, that, while only isolated points cause a failure to meet the required
stabilizability conditions, numerical sensitivity excludes larger regions from effective
control. Figure 6 shows the state evolution for three large initial angles,
&(0)=70°,110°,140° avoiding these difficult regions. In the first instance, the
physical situation corresponds more closely with the previous configurations, i.e. the
pendulum starts above horizontal. The non-linear regulator attempts, therefore, to lift
the rod to the vertical, demanding a large initial control force to do this. The state and
control force evolution is qualitatively similar to that of the earlier examples but is
more vigorous still. For initial angles that leave the rod hanging below the horizontal
we see qualitatively different behaviour. The early linear motion is in the opposite
direction leading to a more nearly monotoenic reduction in angular displacement rather
than the previous oscillatory approach to zero. While the state trajectories appear
reasonably smeoth in these cases, the required control-force is highly nen-smooth.
This arises from the need to pass through regions of low stabilizability and, indeed, to
cross the singularity at € = 90°. This causes an impulsive force to be generated and a
reversal in sign. Evidently system inertia serves to smooth this effect but, nonetheless
it can be seen as a serious.limitation. The fact that the system was able to. recover.
reinforces our earlier assertion that it may still be practically possible to pass through
regions.of low stabilizability provided that it is done quickly enough. Figure 7 is
difficult to read but shows the control forces for the three cases.
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Figure 5: Comparison of control force for system under non-linear (NLQR) and linear (LQR)

control for an initial angles of 40° and 55°.
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Figure 6: Comparison of state evolution under non-linear control for large initial angles.




250 [ : ] . ; ;
200 G
EEHER .

100

50

— 8(0) = 70°
........ 9{0) '=110° I
----- 6(0) = 140°

5 6

3
time (s)

ol

Figure 7: Control forces generated for the simulations of Figure 6. Note that for initial angles
greater than 90° large impulsive forces are required at times. These are associated with regions
on the state trajectory corresponding to poor stabilizability and generate very sharp reversals in

linear velocity.

4.2 Non-linearity in the control — saturation

Realistically there will be hard constraints on the control force that can be achieved
and this is usually modelled as a piecewise linear, saturation non-linearity. From (6) it
is clear that control non-linearities are not permitted and to overcome this we solve a
closely related problem that introduces integral action through state augmentation. We
outline this for the case of scalar inputs only. Let the control input be given by

u=¢(x,, ) then, defining X ., =v we can re-write the model in (6) thus:

I e )

0 0

Ixn

and find the optimal policy that minimises:
e J.:(XLQ“(EG)XG +V1Ra(ia)vyf (17)
0

where we have used the subscript a to indicate the augmented system. The state
weighting matrix now becomes:

Jo
Q"‘[o '¢2(x,,+1)R}




and is itself state-dependent. Subject to the point-wise detectability and stabilizability
conditions being satisfied, a problem that is close to the original (assuming R, 1s
small).can be solved.

Returning now to the example and modelling the saturation as a smooth function:

A x>A
o,(x)= ﬂ,sm[ A] x| < 4 (18)
-4 x<~-A

we apply a saturation limit of 40 N, choose R, =0.001and re-address the situation of
Figure 3.

2% 100 :
L3 wweereee NLQRI
—— NLQR -
8(0) = 40°
g
"o
03 2 4 6 0, 2 4 6
time (s) time (s)
3000
B N NLQRI
2000 8(0) = 40°
1000
> H
0 ‘.“_ .....
-1000}
4 J ' -20 : .
s By 4 6- 00, 3 4 6
time (s) time (s)

Figure 8: Comparison of state and control evolution uder non-linear. (NLQR) and non-linear
integral (NLQRI) control for an initial angle of 40°.

It is clear from Figure 8 that the demanded force (top right) now never exceeds what
can be delivered by the hardware, the trade-off being larger excursions and greater
total variation in the angular and linear displacements (we do not show the h
corresponding velocities for reasons of space). It is possible to achieve a closer match
to the original problem by judicious tuning of the parameters R and R, but this is not

considered further.

5 Conclusions

A new method for the design and synthesis of near-optimal, non-linear control laws is
examined, based on a generalisation of LQ optimal control theory. The method is




simple to apply and affords greater design flexibility, via state-dependent weighting
than conventional approaches (including receding horizon control). The resulting
regulator can, in principle, be implemented in real-time owing to the causal nature of
the required computations. However, the need to solve an ARE every time-step is
‘burdensome and a number of algorithms that would permit a parallel solution are
discussed. Notwithstanding the technical difficulties of real-time implementation, 1t is
safe to say that the essential problem of real-time, non-linear optimal control, viz. the
acausal nature of the solution, can be overcome by this approach and a way has been
opened towards real-time optimal quadratic regulation.

A common benchmark problem — stabilisation of a simple inverted pendulum — is
used to illustrate the method. The application throws up some interesting points.and
proves an exacting task. In particular, the requirement for local stabilizability breaks
down at a number of points in state space, points that are necessarily visited for large
initial angular displacements. While these points are isolated they induce
neighbourhoods of poor stabilizability that cause numerical ill-conditioning in the
ARE solver. Nonetheless, the NLQR algorithm manages to recover in these situations,
albeit with an impractically large force requirement. Clearly it would be important to
ensure that such problems are avoided in any real application and so one should think
of the method as widening the range of operation rather than as providing a global
solution. A method to overcome non-linearity in the control signal is presented and
demonstrated for a saturation non-linearity in the target problem.

Finally, for practical implementation, the question of state estimation arises as an
adjunct to the present work. The Extended Kalman Filter is a natural candidate here
but work has been carried out that exploits the duality of regulation and estimation
problems [13] and which provides a non-linear dual estimator that fits the present
framework. Future work will incorporate both regulator and estimator in the control
of the physical device referred to above.
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Appendix A

A brief outline of the NLQR derivation [2] follows. Consider the following infinite-
time, optimal control problem

o0

1
J(xo)—ueggm)—iox'Q(x)x+u’R(x)udt (1.1

subject to the system dynamics % =f(x)+B(x)u; xeR";ue R";f(0)=0. The
functions f, B, 0 >0 Vx, and R>0 Vx are analytic and of appropriate dimension.
The cost functional, J(x), is a solution of the Hamiton-Jacobi-Bellman equation

mgx{-V,J(x)(f(x)+B(x)u) —%x’Q(x)x ——%H'R(x)u} =0 (1.2)

where V., é[ % Yo - YU } If (V f(x)_. (0),Q%(0)) is stabilizable

and detectable a smooth solution, J(x), of (1.2) is known to exist [14]. Let
f(x)=A(x)x such that lxiir&A(x) - V,f(x)Li=0 then, in the region where J(x) isa
smooth solution to (1.2), the maximum is attained when u =-R™(x) B’ (x) V.J (x)
and J(x) is the solution of

-V J(x)f(x) +%VxJ(x)B(x)R“' (x)B (x)ViJ(x)—%x’Q(x)x =0 (1.3)
by substitution.
Under the “linearisation”, f(x)=4(x)x, V f(x)= A(x) and noting that since
Vi (x)Lo =0 [14], we can write VJ(x)=P(x)x . Substituting into (1.3) and
noting that 2x'P(x) A(x)x =x’ (P(x) A(x)+4' (x)P(x))x we get

X' (=P'(x) A(x)- 4 (x) P(x)+ P (x) B(x) R (x) B(x) P~ O(x))x =0 (1.4)
The approximation to the solution ignores the fact that P(x)x should equal the

gradient of some function and, instead, assumes that P(x) is symmetrical. Then, at

each x, the algorithm simply finds the positive semi-definite solution to the state-
dependent ARE

P(x) A(x)+4' (x)P(x)-P(x) B(x) R (x) B(x) P+Q(x) =0 (1.5)
and applies, at that x, the control u=-R™ (x) B (x) P(x)x.

It should be noted that while smoothness in the solution is used in the derivation, it is
not a requirement for application.
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