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Abstract— Wavelet based nonparametric additive models are considered for nonlinear system
identification. Additive functional component representations are an important class of models for
describing nonlinear input-output relationships, and wavelets, which have excellent approximation
capabilities, can be chosen as the functional components in the additive models. Wavelet based additive
models, combined with model order determination and variable selection, are capable of handling
problems of high dimensionality. Examples are given to demonstrate the efficiency of this new modelling
approach.
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1. Introduction

In the past few decades, model representations and analysis for nonlinear systems have gained
much attention for the purpose of approximation, prediction and control. Many nonlinear
models have been proposed in the literature and many applications have been reported.
Among the existing approaches a particular nonlinear modelling methodology, which has
been extensively studied over the past two decades, is the NARMAX (Nonlinear
Autoregressive Moving Average with eXogenous inputs) method founded on the NARMAX
input-output model representation initially proposed in [1]. The NARMAX model is the
nonlinear extension of the ARMAX model used in linear modelling and system identification.
NARMAX can describe a wide range of nonlinear dynamic systems and includes several
other linear and nonlinear model types, including the Volterra, Hammerstein, Wiener,
ARMAX, NARX (Nonlinear AutoRegressive with eXogenous inputs), as special cases [2].

A general desire in data-driven modelling procedures for nonlinear systems is the ability to
obtain the system input-output mapping by means of finite samples in an n-dimensional
space. The model output will be a function of n variables taking values over the n-
dimensional space. For the problems of high dimensionality (with large n), several approaches
have been proposed to overcome the difficulty of the curse-of-dimensionality. The main idea
of these approaches is to represent a multivariate function as additive superpositions of
functions of fewer variables. The projection pursuit algorithm [3], multi-layer perceptron
(MPL) architecture [4], and radial basis functions [5]-[7] are among these representations for
multivariate functions. Although Kolmogrov’s theorem [8], which states that any continuous
function of n-variables can be completely specified by a function of a single argument,
guarantees the existence of the univariate (continuous) function that completely characterises
any continuous n-variable function, currently there are neither transparent methods to get a
univariate function, nor numerically feasible algorithms to compute it. The existing strategies
that attempt to approximate general functions in high dimensionality are based on additive
functional models [9], in which the additive functions are often referred to as functional
components [10]. The functional components can be arbitrary functions with fewer arguments
and global or local properties. Kernel functions, splines, polynomials and other basis
functions can all be chosen as functional components [11].
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In this paper, wavelet-based additive models are considered. That is, wavelets, notable for
having excellent approximation capabilities, are chosen as the functional components in the
additive models. The wavelet analysis procedure involves adopting a wavelet prototype
function, called the mother wavelet or simply wavelet. Temporal analysis is performed with a
contracted, high-frequency version of the same function. Because the signal or function to be
studied can be represented in terms of a wavelet expansion, data operations can be performed
using only the corresponding wavelet coefficients. By expanding the wavelet-based functional
components as the combination of the corresponding wavelet basis functions, the additive
models then become ordinary linear regression representations. This wavelet-based additive
routine, combined with model-order determination and variable selection approaches [12]-
[15], is capable of handling problems of moderately high dimensionality.

2. Additive Model Formulations

For noise free nonlinear systems, the following NARX model [1]
y@) = f(y@E -1, y¢—n,)ult -1, -, ut—n))+ @) €8]

is often used to describe the input-output relationship. Where, f is an unknown nonlinear
mapping, u(¢) and y(z) are input and output sequences, £(7) is modelling error, n, and n,
are the maximum input and output lags, respectively.

The experimental data is normally corrupted by measurement noise. The input-output
representation should, therefore, include additional stochastic variables. This leads to the
NARMAX model, which takes the form of following nonlinear difference equation [1]:
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where the noise variable e(f) with maximum lag n,, is immeasurable but is assumed to be

bounded and uncorrelated with the inputs. The model (2) relates the inputs and outputs and
takes into account the combination effects of measurement noise, modelling errors and
unmeasured disturbances represented by the variable e(z).

2.1 The General Form of Additive Models

Consider the NARX model (1) and assume that the nonlinear mapping f can be expressed as
a finite set of hierarchical function supersitions in terms of the input variables, such that
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where x;(t) = y(t—1) for i=12,---,n, and x,(t)=u(t—i) for i= i, + L0 & Byl
with n=n_ +n, . The zeroth order functional component f; is a constant to indicate the
intrinsic varying trend of y(z); the first order functional components f;(x;(t)) represents
the independent contribution to y(#) which arises by the action of the ith variable
x,;(7) alone; the second order functional components [ (x;(1),x;(2)) gives the interacting
contribution to y(#) by the input variables x,(z) and x,(z), etc.

Experience shows that the representation of up to second order of terms in model (3) -
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can often provide a satisfactory description of y(z) for many high dimensional problems

providing that the input variables are properly selected [16].The presence of only low order
functional components does not necessarily imply that the high order variable interactions are
not significant, nor does it mean the nature of the nonlinearity of the system is less severe.

In practice, many kinds of functions, such as kernel functions, splines, polynomials and
other basis functions can be chosen as functional components in model (3). In the
present study, however, wavelets are chosen as the functional components to express
the additive model.

2.2 Expanding the Additive Models Using Wavelets

According to wavelet theory [17], any given function g€ L*(R”) can be approximately
expressed as a wavelet expansion
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(-) is a basic wavelet or scaling function, @, € R* and b. € R? are dilating and shiftin
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factors. A special case is to restrict the double index to a regular grid to form a wavelet
frame defined as follows
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where the scalar factors & and [ are defined as the dilation and translation steps for

discretization. The most popular choice is to restrict the dilation and translation parameters to
a dyadic latticeas @ =2, f=1.

Multiresolution wavelet expansions can also be adopted to express a given function
g(x)€ L*(R") by representing g(x) as the multiresolution wavelet series as
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where k = (k,,k,,-*-,k,;) € £l ¢() and @(-) are the matched scaling and wavelet basis

functions. However, multiresoluttion expansions are usually studied with orthonormal ( or
biorthonormal ) wavelet bases and thus are often restricted to problems of low dimension.

Expanding each functional component in model (3) or (4) into the wavelet expansions (5)
or multiresolution wavelet expansions (8), an ordinary linear regression equation can be
obtained. This can be solved using least squares type algorithms. The orthogonal forward
regression (OFR) approach [12][13], which has been widely applied in system identification
and parameter estimation, is recommended and will be adopted in this paper. It can be seen
from these expansions that, the wavelet networks advocated in [18][19] can be considered as
special cases of the wavelet based nonparametric additive models considered here.
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3. Examples and Applications

In this section, two examples are provided to demonstrate the effectiveness of the wavelet
based additive modelling approach. In both examples, the orthogonal forward regression
(OFR) algorithm [12][13] was adopted for selecting model terms and the model validation
methods proposed in [20][21] were used to verify the fitness of the models.

3.1 A Numerical Example: Duffing-Ueda Oscillator Model
Consider the Duffing-Ueda oscillator model [22]

YO +ky() +y® =u(t) 9)

where k =0.1and the input u(¢) = Acos(z) with A =6.0. Simulation data were obtained
using the fourth-order Runge-Kutta integral method with a step length of Ar =7 /200 sec. To
make the simulation data more realistic, white noise with a standard deviation o, =0.02
was added to the final output. The data were then sampled with a sampling interval
T, = 7/ 50 sec to generate 2000 input-output data points for the purpose of identification.

Initially, the significant variables [y(z—1), y(t —2),u(t —1)] were chosen using our
variable selection procedures. The next step involves fitting an additive model based on the
following structure
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where [x;(2),x, (1), x; ()] =[y(t =1), y(t — 2),u(t —1)]. All the three first order functions
Jf; were chosen to be the fourth-order B-spline scaling functions [17] and then expanded at

scale level 5,i.e.,a =2, B =1 and j=5 in (7); all the second order functions J; were chosen

to be Gaussian wavelet functions @(x) = xixzexp[—(xf + x%)/ 2] and expanded at a fixed
scale level 4,i.e.,a =2, =1 and j=4 in (7). The first 1000 points were used for parameter

estimation, and the latter 1000 points were used to evaluate the efficiency of the resulting
model. The original noise-free data and the model predicted output are shown in Fig. 1. This
shows that the model works very well, even for the data range [1001,2000].
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Fig 1. Duffing-Ueda oscillator output and the model predicted output. (The solid line indicates the
- original noise-free data; The dashed line indicates the model predicted output)




3.2 A Realistic Example: The Terrestrial Magnetosphere
Fig 2(a) and (b) show 4344 data points of the measurements of the solar wind VB, (input)

and D, index (output) over the time period from January to June 1979, with a sample period
of 1 hour. The output data shown in the figure were smoothed based on the raw records. In
order to fit a model, 6 significant variables D (t-1), D,(t—2), D,(t-3), D,(t-4),
VBs(t —1) and VBs(t —2) were chosen initially using variable selection procedures. Then

the nonparametric model (4) was obtained using the same wavelet basis functions as in
Example 3.1. The first 3000 points were used for identification. The 10 hour-ahead prediction
(ten-step-ahead prediction) based on the final model was compared with the original data and
is shown in Fig 2(b) and (c). Clearly, the model predicts extremely well.
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Fig 2. The identification results of the terrestrial magnetosphere process; (a) The solar wind VBs (input);
(b) The comparison of ten-step-ahead prediction (the dashed line) and the original data Dst ( the solid line);

(c) Model predicted error (the standard deviation of the predicted error is O o = 8.48)

4. Conclusions

In this paper, a new wavelet based additive modelling approach has been proposed. An
advantage of additive models is that the dimensionality can be greatly "reduced" when dealing
with problems in high dimensional spaces. The most notable property of wavelets is the
excellent local approximation capability. Combining wavelets and additive models makes it
possible to represent problems in high dimensionality accurately using low order functional
components and enables the identification of nonlinear input-output systems even with severe
nonlinearities. The number of candidate regressors in a wavelet based additive model depends
on the wavelet basis (or scaling) functions and the chosen scaling levels. Higher scaling levels
(higher resolution ) could perhaps improve the approximation accuracy but can result in over
fitting of the model which will contain a greater number of regressors, some of which may be
redundant. This problem can be overcome by performing a redundant-regressor elimination
procedure and significant regressor selection approach. The results from the illustrative
examples have demonstrated the efficiency of the modelling approach presented.
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