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Abstract 

This paper introduces to the field of marketing a regret-based discrete choice model for the 

analysis of multi-attribute consumer choices from multinomial choice sets. This random regret 

minimization model (RRM), which has recently been introduced in the field of transport, forms a 

regret-based counterpart of the canonical random utility maximization paradigm (RUM). This 

paper assesses empirical results based on 43 comparisons reported in peer-reviewed journal 

articles and book chapters, with the aim of finding out to what extent, when, and how RRM can 

form a viable addition to the consumer choice ŵŽĚĞůĞƌ͛Ɛ toolkit. The paper shows that RRM and 

hybrid RRM-RUM models outperform RUM counterparts in a majority of cases, in terms of 

model fit and predictive ability. Although differences in performance are quite small, the two 

paradigms often result in markedly different managerial implications due to considerable 

differences in, for example, market share forecasts.  

Keywords: Random Regret Minimization; Random Utility Maximization; Choice Modeling; 

Consumer Preferences.  
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Random Regret Minimization for consumer choice modeling: 

Assessment of empirical evidence 

 

1. Introduction 

For decades, discrete choice models have been among the most-used methods for empirical research in 

the broader field of marketing, retailing and consumer studies (e.g., Baltas & Doyle, 2001). They have 

been used to analyze and predict consumer choice behavior in a wide variety of contexts, such as related 

to shopping destination, store or channel choices and their choices between different products and 

product types (e.g., Timmermans et al., 1991; Volle, 2001; Kaplan et al., 2011; Oppewal et al., 2013) ʹ to 

name just a few of the abundant body of available examples published in this journal. Practically without 

exception, these choice models are rooted in the Nobel-prize winning concept of Random Utility 

Maximization or RUM (McFadden, 1973; Ben-Akiva & Lerman, 1985; Train, 2009).  

Recently, a discrete choice model based on premises of regret-minimization has been introduced in the 

travel behavior community (Chorus, 2010). This so-called Random Regret Minimization model or RRM-

model is geared towards the analysis of choices made among multi-attribute alternatives in multinomial 

choice sets. It postulates that as long as alternatives are defined in terms of multiple attributes (which, as 

argued by for example Lancaster (1966) is usually the case in consumer choice settings), regret emerges 

from the process of trading off attribute-levels when making a decision. More specifically, the RRM-

model states that regret emerges when a chosen alternative is outperformed by another alternative in 

terms of one or more attributes. As such, the RRM-model forms a regret-based counterpart of discrete 

(consumer) choice models that are based on the canonical Random Utility Maximization (RUM). Like 
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RUM models, the RRM model can be easily estimated (in either MNL, Nested Logit, Probit or Mixed Logit 

forms) using a range of (off-the-shelf) software packages.  

Since its recent introduction, the RRM-model has received an increasing amount of attention from 

choice modelers in fields as diverse as transportation, urban planning, environmental economics and 

health economics (e.g., Chorus et al., 2011; Thiene et al., 2012; Kaplan & Prato, 2012; Beck et al., 2013; 

Guevara et al., 2013; Boeri et al., 2013; Hensher et al., 2013). The result of this increasing interest is a 

rapidly growing body of empirical and theoretical papers. To explore its merits most of these papers 

contrast the RRM model to the linear-in-parameters RUM specification that has dominated the field of 

choice modeling for decades
1
. Typically, differences across the two models are investigated in terms of 

model fit, predictive performance and/or managerial output. Results of these comparisons suggest that 

the RRM can be Ă ǀĂůƵĂďůĞ ĂĚĚŝƚŝŽŶ ƚŽ ƚŚĞ ĐŚŽŝĐĞ ŵŽĚĞůĞƌ͛Ɛ ƚŽŽůďŽǆ as it features a number of distinct 

and interesting behavioral properties (see Section 2). 

The contributions of this paper are twofold. First, it introduces the RRM model to the marketing research 

community as an additional tool in their choice modeling toolbox. Second, and more importantly, the 

paper provides an assessment of the empirical literature on RRM modeling. More specifically, the 

recently developed body of literature in which RRM is compared with its RUM-counterpart is assessed to 

explore the potential and limitations of the RRM model as a consumer choice model. The overview 

presented in this paper consists of 43 comparisons that have been published (or are accepted for 

publication) in peer-reviewed international journals or scholarly books covering a wide variety of choice 

                                                           

1
 Note that the fact that we in this paper focus our attention on this most basic form of RUM-models is driven by 

pragmatic reasons in that ʹ with only very few exceptions ʹ the linear-in-parameters version of the RUM-model has 

been used in empirical comparisons with RRM. Of course, over time many more sophisticated RUM-models have 

been developed. Some of these models are discussed in the final section of this paper, and an important direction 

for further research would be to compare RRM with these more sophisticated RUM-models. 
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contexts, including ʹ but not limited to ʹ choices among travel alternatives, leisure activities, durable 

goods, dating profiles, and health care options.  

Importantly, the aim of this paper is not to suggest in any way that the RRM model may replace the 

canonical RUM model as a model of consumer choice. In fact, our overview of results shows that 

differences in model fit and predictive performance between the RRM and RUM model are often small. 

Yet, irrespective of the differences in fit across the two specifications, we find that the managerial 

implications derived from both models may vary substantially. As such, the RRM model allows the choice 

modeler to describe and predict a different type of behavior ʹ supporting the view that RRM is a 

valuable addition to the consumer choice ŵŽĚĞůĞƌ͛Ɛ toolbox.  

Furthermore, it should be mentioned that the idea that anticipated regret plays an important role in 

(consumer) decision making is by no means new. Roughly speaking, two strands of related literature in 

the marketing research domain can be distinguished
2
: a first body of literature (e.g., Simonson, 1992; 

Taylor, 1997; Spears, 2006; Strahilevitz et al., 2012) develops conceptual models that usually take the 

form of a series of hypotheses, which are subsequently tested based on data collected by means of 

questionnaires or behavioral experiments. A second body of literature (Hey & Orme, 1994; Inman et al., 

1997; Bleichrodt et al., 2010; Chen & Jia, 2012) adopts a more formal perspective as it proposes and 

empirically tests mathematical models of regret-based decision making, usually inspired by the seminal 

Regret Theory proposed in the early 1980s (Loomes & Sugden, 1982; Bell, 1982, Fishburn, 1982).  

However, despite that the RRM-model is grounded in regret theory it differs in various ways from these 

previous approaches to model regret-based decision making. As will become clear in the next section, 

                                                           

2
 An interesting finding that emerges from both bodies of empirical literature is that regret minimization is a particularly 

important determinant of decision making when choices are perceived by the decision maker as difficult, and important to him- 

or herself and/or to his or her relevant social peers (e.g. Zeelenberg & Pieters, 2007). It goes without saying that for many 

consumer choice situations, these conditions readily apply. 
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the RRM model predicts that the wish to minimize ͚ĂƚƚƌŝďƵƚĞ-ůĞǀĞů͛ regret leads to semi-compensatory 

decision making and to preferences that are dependent on the composition of the choice set. As such, it 

makes more sense to view the RRM model as an addition to the literature on context-dependent 

discrete choice models (e.g., Kivetz et al., 2004; Rooderkerk et al., 2011) than as a new addition to the 

literature on regret-based decision making. This point is further highlighted in the Appendix, where we 

provide a conceptual comparison with the regret based model proposed by Inman et al. (1997). 

The remainder of this paper is organized as follows. Section 2 introduces the RRM model. Next, Section 3 

presents the overview of comparisons. After that, sections 4 to 6 provide respectively discussions on 

differences between RRM and RUM in terms of model fit, predictive performance, and managerial 

output. Section 7 draws conclusions and discusses how the RRM model can be used in the process of 

designing effective marketing strategies. 

 

2. A Random Regret Minimization model of consumer choice 

The RRM model (Chorus, 2010) has been designed to incorporate the notion of regret-based decision 

making in non-risky choice models. The RRM model hypothesizes that, when confronted with a choice 

set, the decision-maker chooses the alternative from the set that has minimum regret. The regret of 

alternative i  is described by the sum of binary regrets where alternative i is compared to every other 

alternative in the choice task on each attribute (see Eq. 1). Regret arises when alternative i is 

outperformed by alternative j on attribute m. The left panel of Figure 1 depicts the binary regret function 

for ɴm = 1. If alternative i͚Ɛ ƌĞůĂƚŝǀĞ ƉĞƌĨŽrmance on attribute m is sufficiently bad, a nearly linear regret 

function arises. More specifically, the right panel of Figure 1 shows how marginal regret converges to ɴm 

as (xjm-xim) becomes sufficiently large. From Eq. 1 it can also be observed that the total anticipated regret 

is the sum of anticipated regrets across all M attributes. Overall regret is increasing with the number of 
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attributes on which alternative i is outperformed as well as with the number of alternatives by which 

alternative i is outperformed (as denoted by the summation over ũтŝ), and the importance of the 

attribute (as denoted by ɴm).  

ܴܴ௜ ൌ ܴ௜ ൅ ௜ߝ ൌ σ σ ln൫ͳ ൅ expൣߚ௠ ή ൫ݔ௝௠ െ ௜௠൯൧൯ெ௠ୀଵ௝ஷ௜ݔ  ൅ ௜ߝ           Eq. 1 

ܴܴ௜    denotes the random (or: total) regret associated with a considered alternative ݅ 

ܴ௜    ĚĞŶŽƚĞƐ ƚŚĞ ͚ŽďƐĞƌǀĞĚ͛ ƌĞŐƌĞƚ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ ݅ 

௜ߝ    ĚĞŶŽƚĞƐ ƚŚĞ ͚ƵŶŽďƐĞƌǀĞĚ͛ ƌĞŐƌĞƚ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ ݅ 

 ௠ݔ ௠   denotes the estimable parameter associated with attributeߚ

௜௠ǡݔ ௠ݔ ௝௠  denote the values associated with attributeݔ  for, respectively, the considered 

alternative ݅ and another alternative ݆  

Figure 1: Regret and derivative of Regret of considered alternative i when compared to alternative j with regard to attribute 

m (in the situation where ɴ = 1) 

 

Figure 1 makes clear that marginal regret with respect to attribute m when considering alternative i 

approaches zero when (xjm-xim)<0. Hence, the RRM-model postulates that when a decision maker 
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considers alternative i as compared to alternative j he or she experiences (almost) no regret with regard 

to attribute m when in alternative i the m͛ƚŚ ĂƚƚƌŝďƵƚĞ performs considerably better. Note that since Eq. 

1 is a smooth approximation
3
 of max{0,ɴm(xjm-xim)}, binary regret is not immediately equal to zero when 

alternative ŝ͛Ɛ performance is better than that of alternative j.
 
 

Similar to the RUM framework, the functional form of the choice probabilities changes as different 

ĂƐƐƵŵƉƚŝŽŶƐ ŽŶ ƚŚĞ ƌĂŶĚŽŵ ĞƌƌŽƌ ƚĞƌŵ ɸi. are imposed. When the negative of the errors is assumed to be 

i.i.d. Type I Extreme Value, the classical MNL-form is obtained
4
 and choice probabilities are written as in 

Eq. 2.  

ܲሺ݅ሻ ൌ exp ሺെܴ௜ሻσ exp ሺെ ௝ܴሻ௝ୀଵǤǤ௃  Eq. 2 

Similar to the linear-additive RUM-model, the RRM-model features a smooth, differentiable and globally 

concave
5
 likelihood function. Therefore, it is allows for easy estimation and implementation in existing 

software packages. However, it is important to note that the independence of irrelevant alternatives  

(IIA) axiom no longer holds in the RRM framework, since attribute levels of all other alternatives enter 

the regret function of alternative i. In addition, just as under the RUM framework, flexible specifications 

                                                           

3
 A previous version of the RRM-function (Chorus et al., 2008) featured a combination of two max-operators. That model 

postulated that regret equals (rather than approaches) zero when a considered alternative outperforms a competing alternative 

on a given attribute. While behaviorally intuitive, this model suffered from the fact that due to the max-ŽƉĞƌĂƚŽƌƐ͛ 
discontinuities the resulting likelihood function was not globally differentiable. This implied that the model could only be 

estimated using custom-made code, and that elasticities and willingness to pay measures could not be obtained. The regret 

function proposed in Chorus (2010) and put forward in the current paper forms a smooth approximation of the 2008-model, 

while circumventing the econometric issues mentioned directly above. 
4
 Note that one can also derive closed form expressions for RRM-choice probabilities under the assumption that the error terms 

itself, rather than their negatives, are distributed Extreme Value Type I. This would reframe the RRM-model as a so-called 

reverse discrete choice model (Anderson & de Palma (1999)). However, while still closed form, the resulting choice probability 

formulations are less tractable than the MNL-ones and the resulting choice models are less compatible with standard discrete 

choice software packages. Therefore, in this paper the assumption is maintained that the negatives of the errors are distributed 

Extreme Value Type I. 
5 

Under linear-additive MNL specification. 
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of the error term can be used to capture correlation structures in the data. This translates into well-

known model forms like the Nested Logit model, Error Components model and the Probit model.  

Given space limitations and in the light of the fact that previous publications provide more in-depth 

discussions of the properties of the RRM model (e.g., Chorus, 2010, 2012a), we choose to limit ourselves 

to a brief discussion of the arguably most important model property for consumer choice modelers: the 

RRM model features a particular type of semi-compensatory behavior which results in preferences for 

compromise alternatives.  

Due to the convexity
6
 of the regret-function, the RRM model imposes that improving an alternative in 

terms of an attribute on which it already performs well relative to other alternatives generates only a 

small decrease in regret (dR/dxim < ɴ/2). However, deteriorating to a similar extent the performance on 

another equally important attribute, on which the considered alternative has a poor relative 

performance, may generate a substantial increase in regret (dR/dxim у ɴ). As a consequence, the RRM 

model predicts that improving an attribute does not necessarily compensate for an equally substantial 

deterioration of another, equally important, attribute. This behavior, which is embodied in the functional 

form of the regret function and illustrated by Figure 1, implies that, contrary to the linear-additive RUM 

model, the implied attribute-tradeoffs are no longer constant: they are to a large extent dependent on 

the composition of the choice set. Under a RRM framework, attribute-tradeoffs crucially depend on the 

performance of the alternative and its competition in terms of the attributes, relative to other 

alternatives in the choice set. 

‘‘M͛Ɛ ĂďŝůŝƚǇ ƚŽ ĂĐĐŽŵŵŽĚĂƚĞ Ă ƉƌĞĨĞƌĞŶĐĞ ĨŽƌ ĐŽŵƉƌŽŵŝƐĞ ĂůƚĞƌŶĂƚŝǀĞƐ ĨŽůůŽǁƐ ĚŝƌĞĐƚůǇ ĨƌŽŵ the above 

mentioned semi-compensatory behavior: RRM-models postulate that it is effective (in terms of avoiding 

                                                           

6
 Note that d

2
R/dx

2
>0 for all x. 
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regret) to select a compromise alternative. Even when such a compromise alternative fails to have a 

strong performance on any of the attributes (relative to the other alternatives in the set), RRM-models 

predict that it will still only generate modest levels of regret as long as it does not have a particularly 

poor performance on any of the attributes. In other words, it is efficient ʹ in terms of avoiding regret and 

gaining market share ʹ for an alternative to avoid a poor performance on any attribute, even when this 

implies that the alternative does not have a very strong performance on any attribute as well. 

By conceptually comparing the RRM model with what is perhaps the most prominent regret based 

choice model in the marketing literature: the Inman-Dyer-Jia-model ʹ or IDJ-model from here on (Inman 

et al., 1997)
7
, it is clear that the RRM model is a new addition to the choice modelling literature, rather 

than an extension or adaptation of previous regret based models. Such a conceptual comparison 

between the two models is reported in the Appendix. 

 

3. An overview of empirical comparisons between RRM and RUM models 

We focus on empirical studies that report comparisons between RRM and RUM and have been published 

in, or are (conditionally) accepted for publication in, peer-reviewed scientific journals or books. Twenty-

one of such publications (co-authored by in total 28 authors) emerged over the last three years. These 21 

publications encompass a total of 43 empirical comparisons between RRM and RUM: for example, one 

publication may estimate MNL- as well as Mixed MNL specifications of both the RUM and RRM models, 

and do so in the context of two different datasets. This would result in four comparisons. Table 1 

presents these 43 comparisons.  

                                                           

7
 Iƚ ƐŚŽƵůĚ ďĞ ŶŽƚĞĚ ƚŚĂƚ IŶŵĂŶ Ğƚ Ăů͛͘Ɛ ;ϭϵϵϳͿ ŵŽĚĞů ǁĂƐ ĂĐƚƵĂůůǇ ĚĞǀĞůŽƉĞĚ ĂƐ Ă ƉŽƐƚ ĐŚŽŝĐĞ ǀĂůƵĂƚŝŽŶ ŵŽĚĞů͘ 

However, the Appendix of the paper explains how the model can be recast in terms of a choice model. 
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The columns present from left to right: the comparison identifier (which is used in the remainder of this 

article as a reference); the name of the authors; year in which the article is (to be) published; type of 

data (Stated Preference or Revealed Preference); model specification (MNL or Mixed MNL, the latter 

including random parameter logit and error component logit); best model fit; best predictive ability (two 

different metrics); and choice type or context. The last row provides column totals.  

The overview of comparisons in Table 1 provides some interesting insights. Firstly, looking at the far right 

column we see that choice types in which RRM and RUM are compared are quite diverse, albeit the 

majority refers to mobility and freight transport related choices. This is of course to be expected given 

that the RRM-model originates from the transportation community. Choice types closest to the 

marketing domain include choices among durable goods (car types) and shopping destination choices. 

Secondly, it appears that most of the reported comparisons are based on SP-data: only five out of 43 use 

RP data. Thirdly, the majority of comparisons are done in the context of estimation of MNL-models. Only 

seven comparisons concern error component mixed logit models to accommodate panel and nesting 

effects, and four comparisons report a random parameter mixed logit model to accommodate random 

taste heterogeneity
8
.  

Rather than conducting a formal statistical meta-analysis using the reported comparisons in the 

overview, the next 3 sections discuss findings on differences between RRM and its RUM counterparts in 

terms of model fit, predictive performance and managerial implications. Although some may argue that 

the number of comparisons (43) may be just sufficient to perform such a formal statistical meta-analysis, 

we feel that for the results of such an analysis to be reliable, robust and meaningful, a larger sample and 

a larger degree in variation across choice types (e.g. more non-transportation choice contexts) and 

                                                           

8
 Note that Prato (2014) reports estimation results of MNL-models as well as a variety of non-MNL models. However, these non-

MNL models are specifically designed to control for possible bias caused by route overlap and are as such of less relevance in 

consumer choice contexts. Therefore, the current paper only focuses on the MNL-results of Prato (2014). 
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characteristics of choice situations (e.g., number of alternatives, attributes per alternative) is needed. 

Especially in light of the fact that (as will be elaborated below) differences in model fit and predictive 

performance between RUM and RRM are (very) small, we feel that a larger number of studies is needed 

before any reliable conclusions can be drawn from a meta-study.  

 

4. RRM versus RUM: differences in model fit 

To evaluate whether RRM or RUM outperforms the other in terms of model fit, we need a statistical test. 

Since neither model can be seen as a special case of the other model (even though both models 

consume the same number of parameters) a test for non-nested models needs to be used. Most studies 

contrast the fit of the RUM and RRM model using the Ben-Akiva and Swait test (1986). This test 

generates an upper limit for the probability that, given that the log-likelihood associated with model A is 

higher than that of model B, model B actually provides the best representation of the data-generating 

process. For studies not reporting the Ben-Akiva and Swait test statistic, we carried it out ex post based 

on the reported estimation results. The conclusions are as follows: 

As can be seen in Table 1, at a significance level of 95%, in 15 cases the RRM model fits the data 

significantly better than the RUM model, while in also 15 cases the RUM model fits the data significantly 

better. In 13 cases, there is a statistical tie (at the 95% significance level). Arguably more important than 

the statistical significance of the differences in model fit is the size, and therefore relevance, of these 

differences; it appears that in almost all cases the differences are small (see further below for discussion 

of a notable exception). 

One of the key questions is whether there is a pattern in when one model structurally outperforms the 

other. For instance, it might be expected that contextual factors, such as time pressure or importance of 
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the decision, may be important determinants for the decision process. The consumer-psychological 

literature provides a starting point for an analysis of the role of contextual factors as a determinant of 

the differences in model fit between the RRM and the RUM: a series of empirical studies have shown 

that the minimization of anticipated regret especially plays an important role when a particular choice is 

either considered difficult and/or important for the decision makers and/or when they anticipate having 

to be able to defend their choice to others. Having this information in mind, it is not surprising to find 

that comparisons in the context of e.g. car type choices, policy choices of politicians, choices between 

dating profiles, and choices of goods transporters in general show a better fit for RRM, whilst choices 

between e.g. leisure time activities and car-ĚƌŝǀĞƌƐ͛ routes choices in general show a better fit for RUM. 

Also in line with the above mentioned psychological evidence is the finding that RRM outperforms RUM 

in the context of stated car type-choices made by households and by individuals in households that 

shoulder a high degree of responsibility for their choice (Beck et al., 2013), while RUM and RRM perform 

equally well in the context of the same stated choices, but made by individuals in the household that do 

not shoulder a high degree of responsibility for the choice (Beck et al., 2013). 

Another seemingly structural impact on the relative differences between model fits of RUM and RRM 

models is caused by the use Mixed MNL models. Several studies (e.g., Hess et al., 2014; Boeri & Masiero, 

2014) report that differences in fit between the two models in MNL-form become more amplified when 

re-estimated in Mixed MNL form. The intuition behind this finding is clear: if there is a preferred 

behavioral mechanism underlying the data (either RRM or RUM), a more sophisticated treatment of the 

error term ƌĞĚƵĐĞƐ ƚŚĞ ĂŵŽƵŶƚ ŽĨ ͚ǁŚŝƚĞ ŶŽŝƐĞ͛ ƚŚĂƚ ŝƐ ůĞĨƚ ƵŶĐĂƉƚƵƌĞĚ ŝŶ ƚŚĞ ŵŽĚĞů͘ As such it helps 

bring to the front any differences in model fit related to differences in assumed decision rule. 

As noted, although generally significant, model fit differences between RRM and RUM vary between very 

small and modest. A notable exception however, is the situation where, in the context of stated choice-
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experiments, a so-ĐĂůůĞĚ ͚ŽƉƚ ŽƵƚ͛ Žƌ ͚ŶŽ ĐŚŽŝĐĞ͛ ŽƉƚŝŽŶ ĞǆŝƐƚƐ͘ A ƌĞĐĞŶƚ ƐƚƵĚǇ ;HĞƐƐ Ğƚ Ăů͕͘ ϮϬϭ4 ʹ 

comparisons 38-41 in Table 1Ϳ ĨŽƵŶĚ ƚŚĂƚ ǁŚĞŶ ƚŚŝƐ ŽƉƚŝŽŶ ŝƐ ĨƌĂŵĞĚ ĂƐ ͚ŶŽŶĞ ŽĨ ƚŚĞƐĞ͛ ;Žƌ Ă ǀĂƌŝĂŶƚ 

thereof), the regret model is likely to perform much worse than its utilitarian counterpart in terms of 

ŵŽĚĞů Ĩŝƚ͕ ĂŶĚ ŵŝŐŚƚ ĞǀĞŶ ƉƌŽĚƵĐĞ ďŝĂƐĞĚ ƉĂƌĂŵĞƚĞƌƐ͘ BƵƚ ǁŚĞŶ ƚŚĞ ͚ŽƉƚ ŽƵƚ͛ ŝƐ ĨƌĂŵĞĚ ĂƐ ͚I Ăŵ 

ŝŶĚŝĨĨĞƌĞŶƚ͛ ;Žƌ Ă ǀĂƌŝĂŶƚ ƚŚĞƌĞŽĨͿ͕ ƚŚĞ ƌĞŐƌĞƚ ŵŽĚĞů ŝƐ ůŝŬĞůǇ ƚŽ ƉĞƌĨŽƌŵ ŵƵĐŚ ďĞƚƚĞƌ ƚŚĂŶ ŝƚƐ ƵƚŝůŝƚĂƌŝĂŶ 

counterpart, the latter generating biased parameters. As explained in that paper, these substantial 

ĚŝĨĨĞƌĞŶĐĞƐ ŝŶ ƉĞƌĨŽƌŵĂŶĐĞ ŝŶ ƚŚĞ ĐŽŶƚĞǆƚ ŽĨ ĚŝĨĨĞƌĞŶƚ ĨŽƌŵƵůĂƚŝŽŶƐ ŽĨ ƚŚĞ ͚opt out͛ ŽƉƚŝŽŶ͕ ĐĂŶ ďĞ 

directly and unambiguously related to the differences in behavioural premises underlying the two model 

types͗ ŝŶ ƐŚŽƌƚ͕ ƚŚĞ ͚ŶŽŶĞ ŽĨ ƚŚĞƐĞ͛ ĨƌĂŵĞ ĐŽƌƌĞƐƉŽŶĚƐ ǁĞůů ǁŝƚŚ ƚŚĞ ŵĞĂŶŝŶŐ ŽĨ ĂŶ ŽƉƚ ŽƵƚ-constant in a 

RUM model (but poorly with the meaning of an opt out-constant in an RRM model). The opposite holds 

ĨŽƌ ƚŚĞ ͚I Ăŵ ŝŶĚŝĨĨĞƌĞŶƚ͛ ĨƌĂŵĞ. However, note that Chorus & Rose (2012), using other data, found that 

ĞǀĞŶ ŝŶ ƚŚĞ ĐŽŶƚĞǆƚ ŽĨ Ă ͚ŶŽŶĞ ŽĨ ƚŚĞƐĞ͛ ŽƉƚ ŽƵƚ͕ ƚŚĞ ‘‘M-model achieved a better fit than its RUM 

counterpart (albeit the difference, in favour of RRM, was much bigger when the opt out was not taken 

into account). More research is hence needed to find out to what extent these findings related to the 

impact of opt out-formulations on the performance of RUM and RRM models, can be generalized. 

Besides the comparison of RRM and RUM models, a number of comparisons ʹ e.g., 13, 20, 21, 30-37) as 

well a manuscript not included in Table 1 (Greene, 2012) ʹ also involve so-called hybrid RUM-RRM 

models. These hybrid models (see Chorus et al., 2013a for an in-depth introduction) assume that the 

decision maker processes some attributes following the RRM model and others using the linear-additive 

RUM model. 
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Testing all possible RUM-RRM attribute combinations
9
 in terms of model fit shows that the hybrid model 

often performs better than a model that assumes the same rule of behavior (RRM or RUM) for each 

attribute. More specifically, a hybrid model outperforms full RUM and RRM models in about two-thirds 

of cases. Differences are again small but mostly statistically significant at conventional levels. When we 

incorporate hybrid models in our over-all model fit comparison, it appears that in a substantial majority 

of cases a model that is (partly or fully) based on regret minimization provides a significantly better 

model fit than a model fully based on utility maximization. 

Another kind of hybrid RUM-RRM model has been recently proposed by Hess et al. (2012): these authors 

assume ʹ in contrast with the hybrid specification presented above ʹ that all attributes are processed 

using one and the same decision rule (e.g. RUM or RRM). However, they propose that the assignment of 

decision rules to individuals can be modeled as a probabilistic process; as such the authors allow for 

heterogeneity in decision rules across individuals. Using a latent class specification, the authors show 

that such a hybrid RUM-RRM form (using the Chorus et al. (2008) version of the RRM-model) provides 

important gains in model fit compared to models that assume that all individuals use the same decision 

rule. See also Hess & Stathopoulos (2014) and Boeri et al. (2014) for somewhat similar latent class 

applications, but now working with the Chorus (2010)-version of RRM, and using random parameter-

Mixed MNL models within each class.  

 

5. RRM versus RUM: differences in external validity 

                                                           

9
 When alternatives encompass M attributes, there exist 2

M
 possible RRM-RUM attribute combinations. However, it should be 

mentioned here that the estimation of hybrid models is facilitated in the software package NLOGIT 5, which provides the option 

ŽĨ ŝŶĚŝĐĂƚŝŶŐ ƉĞƌ ĂƚƚƌŝďƵƚĞ ǁŚĞƚŚĞƌ ŝƚ ƐŚŽƵůĚ ďĞ ƉƌŽĐĞƐƐĞĚ ĂƐ Ă ͚RUM-͛ Žƌ Ă ͚‘‘M-ĂƚƚƌŝďƵƚĞ͛͘  
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To explore differences in external validity between RRM and RUM, we look at two measures of 

predictive power on hold-out data: likelihood of the hold-out data given the estimated model, and hit 

rate. In total, eight out of the 43 comparisons mentioned in Table 1 reported one or both measures. 

Seven of these comparisons reported a measure based on the likelihood of the hold-out data given the 

estimated model. This concerns the so-called mean-likelihood, which calculates for each observation 

(observed choice) from the hold-out data the probability of that observation given the estimated model, 

and from that calculates the average. Only two comparisons reported a so-called hit rate or ͚percentage 

ĐŽƌƌĞĐƚůǇ ƉƌĞĚŝĐƚĞĚ͛͘ TŚĞ Śŝƚ ƌĂƚĞ was calculated ex post by the authors for five other comparisons while 

not being reported in these publications themselves. Below we provide an overview of the differences 

between RRM and RUM in terms of all these published and unpublished results.  

As far as the mean-likelihood is concerned, the performance of the RRM-model is found to be slightly 

better than that of the RUM-model: in four cases hold out data are more likely given the RRM-model 

than the RUM-model, while in two cases the two models perform equally well. Only one case reports a 

better performance of the RUM model. However, it should be noted that these differences between 

RUM and RRM are, without exception, small. 

The RRM-model also performs slightly better than the RUM-model as far as the hit rate is concerned: in 

three of the seven cases the RRM-model produces a higher hit rate; in two cases the hit rate of the 

estimated RUM-model is higher and in the other two cases both models perform equally well. The 

differences in hit rates are somewhat more substantial than differences in mean-likelihood, although 

never larger than a few percentage points. However, this is a direct consequence of the fact that the hit 

rate translates a probabilistic measure into a deterministic choice. Overall, the results in terms of 

external validity are comparable to those in terms of model fit. 
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Interestingly, it appears that differences in model fit and external validity between RUM and RRM are 

not necessarily consistent when compared across measures: that is, some comparisons report a higher 

model fit for one of the two models, in combination with a worse out of sample predictive ability.  

 

6. RRM versus RUM: differences in managerial implications 

Even though most (consumer) choice modelers are very much interested in the performance of models 

in terms of model fit and external validity, it is clear that consumer choice models need to ultimately 

ƐĞƌǀĞ Ă ͚ŚŝŐŚĞƌ͛ ŐŽĂů͗ ƚŚĞ ƋƵĂŶƚŝƚĂƚŝǀĞ ƐƵƉƉŽƌƚ ŽĨ ŵĂƌŬĞƚŝŶŐ ŵĂŶĂŐĞŵĞŶƚ͘ Therefore it is important to 

examine the differences between RUM and RRM in terms of the managerially relevant output both 

models produce (such as estimates of willingness to pay, demand elasticities, and market share 

forecasts). Of the 43 comparisons, about one third present some form of managerially relevant output. 

For reasons of succinctness we do not discuss all forms of managerial relevant output that have been 

reported. Instead, we focus on only an illustrative sub-sample consisting of four comparisons (in the 

context of elasticities and market share forecasts, respectively): 7, 12, 14, and 22.  

Comparison 7 (Thiene et al. 2007) focuses on itinerary route choices of visitors to a natural area in the 

Dolomites. Demand elasticities are calculated (for RRM and RUM models) for attributes such as the 

presence of way-markers and possible access fees. For most of the attributes the RRM-elasticities were 

greater than the RUM-counterparts ʹ in most cases the differences were about 10%. The extent to which 

the market share of a route was influenced by imposing access fees was also examined. For the chosen 

variant the effect predicted by the RUM model (3.10% decrease in the market share) was greater than 

the effect predicted by the RRM (2.06% decrease in market share).  
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Comparison 12 (Chorus et al. 2013) analyzed preferences of company car users in terms of alternative 

fuel vehicles. Despite that the estimated RUM and RRM models achieved a very similar fit with the data, 

when both models were used to predict market shares of different alternatives in a hold-out sample, 

differences between RUM and RRM in terms of predicted market shares were often large: in 26% of the 

cases the difference between the market share predicted by RRM and RUM was larger than 5 percentage 

points and in about 4% of the cases it was 10 percentage points or more. In about 7% of choice 

situations, the RRM and RUM model identified different car-ƚǇƉĞƐ ĂƐ ƚŚĞ ͚ǁŝŶŶĞƌ͛ ŝŶ ƚŚĞŝƌ ĐŚŽŝĐĞ ƐĞƚ͘ 

Comparison 14 (Chorus and Bierlaire 2013) focuses on route choices of Dutch commuters (routes being 

specified in terms of travel times, costs, percentage of travel time in congestion, and travel time 

variability. In this study particular attention was given to the possible presence of a compromise effect. 

Estimated demand elasticities for RUM and RRM models hardly differ, with the exception of the travel 

time elasticity which is nearly 10% greater for the RRM model than for the RUM model. In addition, 

estimated models were used to predict market shares for alternative routes. In line with theoretical 

expectations (Chorus, 2010, 2012a ʹ see also Section 2 of the current paper) the RRM model (27%) 

predicted a substantially and significantly higher choice probability than the RUM model (23%) for a 

͚ĐŽŵƉƌŽŵŝƐĞ͛ ƌŽƵƚĞ͘ 

The focus of comparison 22 (Hensher et al. 2013) was on the preferences of consumers for cars which 

use alternative fuels. The authors calculated elasticities based on the estimated RUM and RRM models 

and concluded that the differences between the two model types was substantial ʹ up to 19%. Without 

exception, price elasticities based on RRM turned out to be greater than the RUM counterparts.  

Taken together, and also including results from other comparisons not discussed in depth in this section, 

it can be concluded that despite the fact that differences between the two model forms in terms of 

model fit and external validity are often very small the differences between RUM and RRM in terms of 
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managerially relevant output (such as elasticities, market shares) are sometimes quite substantial. The 

next section considers the question of what implications this somewhat paradoxical combination (i.e., 

the combination of a generally very similar empirical performance and a sometimes quite large 

difference in managerially relevant output) has for the possible role of the RRM model in supporting 

marketing management strategies. 

 

7. Conclusions and discussion 

The results presented in the three preceding sections trigger the question to what extent and in what 

ways the recently introduced Random Regret Minimization (RRM) model can be most effectively 

implemented as an alternative for or in combination with the canonical Random Utility maximization 

(RUM) model, to assist marketers to develop robust and effective marketing strategies. The choice 

between the two model types is not an easy one: on many datasets either one or the other model (RRM 

or RUM) is statistically preferred over the other in terms of model fit; however, we find that differences 

are nearly always small. Besides that, we find that it is sometimes the case that a model type that has a 

better model fit than the other model type for a certain dataset scores less well than the competing 

model type in terms of predictive ability on hold out data. Yet, we also find that the two models can lead 

to markedly different managerially relevant output, such as predicted market shares for products or 

services. The choice of model form (RUM vs. RRM) can therefore have a substantial practical impact. 

This means that there are at least two options left to determine the role of RRM for supporting the 

design and selection of marketing strategies. A first option is to apply RRM in the situations where it has 

shown to perform better than RUM, for example in terms of model fit with relevant data. Whether or 

not this approach is appropriate is debatable, given the small differences between the two models in 

terms of model fit. However, strictly speaking there is a case for estimating both RUM and RRM models 
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on a given dataset and then, in case of statistically significant differences in fit, choosing the best fitting 

of the models for further analyses and the derivation of managerially relevant output.  

Another option is not to choose for either of the two models, but to implement them both 

simultaneously and then, based on the outcomes, to set up Ă ŶƵŵďĞƌ ŽĨ ͚behavioral ƐĐĞŶĂƌŝŽƐ͛ ƵƐŝŶŐ 

either a RUM, RRM or hybrid RUM-RRM model (for example, one scenario based on RUM-elasticities and 

another scenario based on RRM and/or hybrid RUM-RRM elasticities). Similarly, a ͚behavioral confidence 

ŝŶƚĞƌǀĂů͛ ĐĂŶ ĂůƐŽ ďĞ created, using both the RUM and the RRM outcomes. Using this type of approach, 

marketing strategies can be developed and/or selected which score relatively well from both a regret 

minimization and utility maximization perspective (for example in terms of the expected effects of the 

demand for a product or service). In other words: by jointly using outcomes from RUM and RRM / Hybrid 

RUM-RRM models, marketing strategies can be developed and/or selected which are robust from a 

behavioral perspective: the selected measures have been shown to score relatively well, regardless of 

the assumed behavioral premises (regret minimization or utility maximization). To the authors, this 

second option seems to be the most fruitful one. 

For instance, in the marketing field it would particularly be interesting to use the RRM model specifically 

in situations where choice set composition effects (such as the compromise effect) are expected to play 

an important role. Since regret exists as a result of the comparison between competing alternatives, the 

RRM model by definition predicts that the regret of an alternative can be influenced by changing the 

composition of the choice set (without altering the alternative itself). As such, the RRM model offers the 

possibility of examining the potential of marketing strategies aiming composing choice sets in a way that 

is optimal for a certain marketing strategy. In such a context the RRM model can provide managerially 

relevant information which complements the information generated by linear-additive (and context-

independent) RUM models. 
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Finally, it is clear that (much) more work is needed before the potential of the RRM model in the context 

of consumer choice and marketing research can be fully understood and realized. Important directions 

for future research include:  

 estimation of RRM models on consumer choice data (so far, most datasets focused on 

transportation, leisure and health related choices);  

 estimation of more sophisticated RRM model forms allowing for, e.g., random heterogeneity in 

terms of both tastes and scale (so far, the majority of RUM-RRM comparisons focused on the rather 

simple MNL-model form);  

 identification of possible structural differences in the relative performance of RRM and RUM across 

different types of choice situations and socio-demographic segments. 

 comparisons between RRM and non-linear-in-parameters utility models
10

.   

This final bullet deserves some additional attention: the marketing science and consumer behavior 

research community in particular have been very active in developing utility-models that relax the rather 

strict behavioral assumptions represented in the linear-in-parameters model form. Some notable 

examples include the Contextual Concavity Model (Kivetz et al., 2004) which captures reference 

dependency and decreases in sensitivity by means of a locally concave utility function; the Relative 

Advantage Model (Tversky & Simonson, 1993) which incorporates loss aversion and decreasing 

sensitivity by means of a non-linear advantage/disadvantage function; the Elimination-by-Aspects model 

(Tversky, 1972), which assumes that decision makers randomly select attributes (more important 

attributes have a higher chance of being selected), and eliminate alternatives which do not perform well 

enough on the attribute; the Lexicographic model (e.g., Saelensminde, 2006) which can be considered a 

                                                           

10
 We know of only two papers that provide comparisons between RRM and non-linear-in-parameters utility-models (Leong & 

Hensher, 2014; Chorus & Bierlaire, 2013). In light of this very small number of studies involved, we refrain from drawing generic 

conclusions from these comparisons. 
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special case of an Elimination by Aspects model in that it assumes that decision makers only consider one 

attribute when choosing, and select the best performing (on that attribute) alternative; the Satisficing 

model recently proposed by Stüttgen et al. (2012), which postulates that decision makers randomly 

ƐĞůĞĐƚ ĂůƚĞƌŶĂƚŝǀĞƐ ĂŶĚ ƉŝĐŬ ƚŚĞ ĨŝƌƐƚ ĂůƚĞƌŶĂƚŝǀĞ ƚŚĂƚ ƉĞƌĨŽƌŵƐ ͚ŐŽŽĚ ĞŶŽƵŐŚ͖͛ and the generic context 

dependent model (Rooderkerk et al., 2011) which simultaneously incorporates compromise, attraction 

and similarity effects. Each in their own way, these models deviate from the linear-in-parameters RUM 

model by allowing for non-IIA behavior, choice set composition effects, reference dependency and 

asymmetry of preferences. It is of crucial importance that in future research the RRM model is also 

empirically compared with these more advanced utility based choice models, as opposed to only (or 

mainly) with the most basic RUM model ʹ the linear-in-parameters model. 

Notwithstanding these and other important knowledge gaps, we believe ʹ based on the results reported 

in this paper ʹ that the evidence that has so far accumulated in fields adjacent to marketing research 

suggest that RRM may in time become a viable addition to the toolkit of consumer choice modelers. 
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Appendix: comparison of the RRM model (Chorus, 2010) and the IDJ-model (Inman et al., 1997) 

The IDJ-model can be denoted as follows (our notation; in line with Inman et al. (1997), we focus on the 

single attribute, binary choice set case): 

ܧ ௜ܸ ൌ ߚ ή σ ௦ܲ ή ௜௦௦ݔ ൅ σ ௦ܲ ή ௥௘௝ߚൣ ή max൛Ͳǡ ௜௦ݔ െ ௝௦ൟݔ ൅ ௥௘௚ߚ ή max൛Ͳǡ ௝௦ݔ െ ௜௦ൟݔ ൅ ௘௟௔ߚ ή maxሼͲǡ ௜௦ݔ െ௦                                                        σ ௦ܲ ή ௜௦௦ݔ ሽ ൅ ௗ௜௦ߚ ή maxሼͲǡ ሺσ ௦ܲ ή ௜௦ሻ௦ݔ െ   ௜௦ሽ൧ݔ

Here, 

ܧ ௜ܸ = expected utility of alternative i 

௦ܲ = probability of state of the world s 

௜௦ǡݔ  ௝௦ = quality of alternatives i and j given state of the world sݔ

 parameter for context free quality = ߚ

௥௘௝ߚ  = rejoice-parameter  

  ௥௘௚ = regret-parameterߚ

  ௘௟௔ = elation-parameterߚ

  ௗ௜௦ = disappointment-parameterߚ

A conceptual comparison between the two models can now be made along a number of dimensions.   

Choice set size: the IDJ-model is derived in the context of binary choice sets, containing two alternatives. 

In contrast, the RRM-model reduces to linear-additive RUM in the context of binary choice sets; it is 

designed to capture choice set composition effects in multinomial choice sets. Extending the IDJ-model 

towards multinomial choice sets is not trivial. For example, the analyst must decide whether to include 
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comparisons with all competing alternatives (as is the case in the most recent version of the RRM-

model), or to include comparisons only with the best of the non-chosen alternatives (as has been 

advocated by, for example, Quiggin (1994)). 

Smooth or non-smooth regret͗ ƚŚĞ ͚ƌĞŐƌĞƚ-ƉĂƌƚ͛ ŽĨ ƚŚĞ IDJ-model is non-smooth (i.e., it has a kink around 

zero). This implies that standard procedures for maximum-likelihood estimation cannot be used to 

estimate the IDJ-model, precluding the use of most standard software packages. Also, the derivation of 

willingness to pay measures and elasticities is hampered by this non-smoothness. In contrast, the regret 

function of the RRM model is smooth and globally differentiable (see also Footnote 3). 

Number of attributes: the IDJ-model is presented in the context of a single-attribute
11

 comparison 

between choice options, although it is mentioned that the model can in principle be extended towards 

capturing multi-attribute comparisons. In contrast, the RRM-model is designed for multi-attribute 

comparisons. As mentioned above, it is the multi-attribute nature of comparisons that generates the 

semi-compensatory behavior and choice set composition effects that are key character traits of the RRM 

model. 

Choice context: the IDJ-model explicitly focuses on risky choices. Regret emerges due to the fact that the 

decision-maker is not certain about the quality of different choice options at the time of choosing (this 

riskiness is captured by means of appropriately specified probability distributions over states of the 

world). In contrast, the RRM model explicitly focuses on riskless choices, where quality of different 

products is known beforehand. Potential regret emerges due to the fact that the decision-maker has to 

make tradeoffs between different attributes (quality-dimensions). 

                                                           

11
 AĐƚƵĂůůǇ͕ IDJ ƵƐĞ ƚŚĞ ƚĞƌŵ ͚ĂƚƚƌŝďƵƚĞ͛ ĚŝĨĨĞƌĞŶƚůǇ ĨƌŽŵ ŚŽǁ ǁĞ ƵƐĞ ƚŚĂƚ ƚĞƌŵ ŝŶ ƚŚŝƐ ƉĂƉĞƌ͘ IŶ ƚŚŝƐ ƉĂƉĞƌ͕ ƚŚĞ ƚĞƌŵ 

͚ĂƚƚƌŝďƵƚĞ͛ ĐŽƌƌĞƐƉŽŶĚƐ ǁŝƚŚ ǁŚĂƚ IDJ ĐĂůů Ă ͚ƉĞƌĨŽƌŵĂŶĐĞ ĚŝŵĞŶƐŝŽŶ͛͘ 
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Beyond regret: besides regret, the IDJ-model also incorporates rejoice (the opposite of regret), as well as 

disappointment and its opposite (elation). The latter two terms are computed by comparing an 

ĂůƚĞƌŶĂƚŝǀĞ͛Ɛ ƋƵĂůŝƚǇ ǁŝƚŚ a priori expectations. In addition, the IDJ-model includes a reference-free utility 

term, which represents the valuation of product quality independent of comparisons with non-chosen 

alternatives and expectations. In contrast, the RRM-model is less generic than the IDJ-model, as it only 

considers regret
12

. 

Number of parameters: the full IDJ-model contains five estimable parameters (per attribute) ʹ one for 

reference-free utility, two for regret, respectively rejoice, and two for disappointment, respectively 

elation. When symmetry is assumed for regret/rejoice and for disappointment/elation, this number 

drops to three. In contrast, the RRM-model only features one parameter per attribute. This implies an 

advantage in parsimony for the RRM-model compared to the IDJ-model, which however comes at the 

cost of a loss in completeness and in flexibility. The loss in flexibility relates to the fact that the RRM 

model imposes a particular functional form to represent convexity in regret, while the IDJ-model allows 

for estimation of the degree of convexity (by estimating the (relative) size of regret- and rejoice 

parameters). 

Together, the above discussion shows that the RRM-model (Chorus, 2010) and the IDJ-model (Inman et 

al., 1997) are two quite different models, both in terms of behavioral conceptualizations, scope, and 

mathematical formalization.  

                                                           

12
 Strictly speaking, the RRM-ŵŽĚĞů ĐĂŶ ĂůƐŽ ŝŶĐŽƌƉŽƌĂƚĞ ƌĞũŽŝĐĞ͗ ǁŚĞŶ Ă ͚ĐŽƌƌĞĐƚŝŽŶ ƚĞƌŵ͛ ŽĨ ƐŝǌĞ ůŶ;ϮͿ ŝƐ ƐƵďƚƌĂĐƚĞĚ 

from all attribute-regrets (note that this does not change choice probabilities), the attribute-regret function goes 

through the origin and equals zero when the considered alternative performs equally well as a competing 

alternative; that is, the corrected regret function results in zero regret when comparing two equally good 

alternatives. This also implies that when the considered alternative outperforms a competing alternative in terms 

of the attribute, there is rejoice. By definition however, convexity of the regret function adopted in the RRM-model 

implies that rejoice plays a minor role compared to regret. 


