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Abstract

This paper presents theoretical and experimental investigations into the dynamic modelling and
characterisation of a flexible manipulator system. A constrained planar single-link flexible
mampulator is considered. A dynamic model of the system is developed based on finite
element methods. The flexural and rigid dynamics of the system as well as inertia effects and
structural damping are accounted in the model. Performance of the algorithm in describing the
dynamic behaviour of the system is assessed in comparison to an experimental test-rig.
Experimental results are presented for validation of the developed finite element model in the

time and frequency domains.

Keywords: Dynamic modelling, flexible manipulator, finite element method.
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1. Introduction

Most existing robotic manipulators are designed and built in a manner that maximise stiffness,
in an attempt to minimise system vibration and achieve good positional accuracy. High
stiffness is achieved by using heavy material. This, in turn, limits the speed of operation of the
robot manipulation, increases sizes of actuators, boosts energy consumption and increases the
overall cost. Moreover, the payload to robot weight ratio, under such situations, is low.
Conversely, flexible robot manipulators exhibit many advantages over rigid robots: they
require less material, are lighter in weight, consume less power; require smaller actuators; are
more manoeuvrable and transportable, have léss overall cost and higher payload to robot
weight ratio (Book and Majette, 1983).

However, control of flexible manipulators to maintain accurate position is an extremely
important problem. Due to the flexible nature of the system, the dynamics are highly non-linear
and complex. Problems arise due to lack of sensing, vibration due to system flexibility and
incapability of precise positioning because of the flexible nature of the system and the difficulty
to obtain an accurate model (Piedboeuf et al., 1993; Yurkovich, 1992). Therefore, flexible
manipulators have not been favoured in production industries, as the manipulator is required
to have a reasonable end-point accuracy in response to input commands. In this respect, a
control mechanism that accounts for both rigid body and flexural motions of the system is
required. If the advantages associated with lightness are not to be sacrificed, accurate models
and efficient controllers have to be developed.

Various approaches have previously been developed for modelling of flexible
manipulators (Azad, 1995). These can be divided into two categories. The first approach
looks at obtaining approximate modes by solving the partial differential equation (PDE)
characterising the dynamic behaviour of a flexible manipulator system. Previous investigations
utilising this approach for a single-link flexible manipulator have shown that the model
eigenvalues agree well with experimentally determined frequencies of the vibratory model
(Book, 1984; Cannon and Schmitz, 1984; Hasting and Book, 1987). However, using this
approach, such a model does not always represent the fine details of the system (Hughes,
1987).

The second approach uses numerical analysis methods based on finite difference (FD)
and finite element (FE) methods to solve the PDE. Previous simulation studies using FD

methods have shown that the method is simple in mathematical terms and is more appropriate
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in applications involving uniform structures such as flexible manipulator systems. Further
studies have shown the relative simplicity of the method (Kourmoulis, 1990). This approach
has previously been utilised in obtaining the dynamic characterisation of single-link flexible
manipulator systems incorporating damping, hub inertia and payload (Tokhi and Azad, 1995;
Tokhi et al., 1995). Experiments have also been conducted, which have shown that an
acceptable agreement between simulation and experimental results is obtained.

The FE method has been successfully used to solve many material and structural
problems. The method involves discretising the actual system into a number of elements With
associated elastic and inertia properties of the system. This gives approximate static and
dynamic characterisation of the actual system (Rao, 1989). The performance of this technique
in modelling of flexible manipulators has also been investigated (Menq and Chen, 1988; Tokhi
and Mohamed, 1999; Tokhi et al., 1997; Usoro et al., 1986). These investigations have shown
that the method can be used to obtain a good representation of the system. Moreover, the FE
method exhibits several advantages over the FD method (Tokhi et al., 1997). However, most
of the investigations utilising the FE method have not been supported by experiments.
Moreover, the effect of damping has not been adequately addressed in the FE modelling
process of the manipulator. The damping in the real system is expected to make the residual
motions to converge to zero, as the energy is dissipated, and not to change the resonance
modes of the system (Poerwanto, 1998).

This paper presents theoretical and experimental investigations into the dynamic
characterisation of a single-link flexible manipulator system. A dynamic model of the system is
developed using the finite element method, incorporating structural damping. The simulation
algorithm thus developed is implemented in Matlab. The performance and accuracy of the
modelling approach is assessed in comparison to a laboratory scale experimental flexible
manipulator. To study the effect of number of clements, the results are evaluated with
increasing number of elements in the algorithm. Theoretically, more accurate results will be
obtained with increasing number of elements, but at the expense of higher execution times.
Experimental results are presented for validation of the developed modelling approach. The
experiments were conducted using a flexible manipulator experimental-rig. Simulation and
experimental results are compared and analysed in both the time and frequency domains to
assess the accuracy of the model in representing the actual system. The work presented forms
the basis of design and development of suitable control strategies for flexible manipulator

systems.
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2. The Flexible Manipulator System

This section describes the flexible manipulator system used in this study. Several assumptions
utilised in the process of obtaining the dynamic equations of motion of the sysiem using FE
methods are briefly discussed. Moreover, the main components of the flexible manipulator
experimental-rig are described. A description of the single-link flexible manipulator system

considered in this work, is shown in Figure 1, where XOY and POQ represent the stationary

and moving co-ordinates respectively. Both axes lie in a horizontal plane and all rotation

occurs about a vertical axis. t(¢) represents the applied torque at the hub, by a drive motor.
E, I, p and A represent the Young modulus, second moment of area, mass density per unit

volume and cross sectional area of the manipulator respectively. Because the beam is long and
slender, transverse shear and rotary inertia effects are neglected. This allows the use of
Bernoulli-Euler beam theory to model the elastic behaviour of the manipulator. The
manipulator is assumed to be stiff in vertical bending and torsion, thus allowing it to vibrate
dominantly in the horizontal direction. In this work, the gravity effects are neglected as the
manipulator movement is confined to the XOY plane. Moreover, the beam is considered to
have constant cross section and uniform material properties throughout.

The experimental-rig used in this work consists of three main parts: a flexible arm,
measuring devices and a processor. Figure 2 shows the schematic diagram of the
experimental-rig. The flexible arm is constructed using a piece of thin aluminium alloy with
length, L = 0.9 m, width = 19.008 mm, thickness = 3.2004 mm, E = 71x10° N/m?%, 1=5.1924
m* and p =2710 kg/m’. The test-rig is equipped with U9M4AT type printed circuit motor at
the hub driving the flexible manipulator. The motor is chosen as the drive actuator due to its
low inertia, low inductance and physical structure (PMI Motion Technologies, 1988). In this
work, a linear drive amplifier LA5600 manufactured by Electro-Craft Corporation is used as a
motor driver (Electrocraft Corporation, 1985). The motor drive amplifier produces a current
proportional to the input voltage.

The measuring devices used in this work are the shaft encoder, tachometer and an
accelerometer along the arm. The shaft encoder, with a resolution of 2048 pulses, was used to
measure the hub angle of the manipulator. A precision interface circuit consisting of a
TCHT2000 incremental encoder interface chip and MP7636A double buffered 16 bit
multiplexing digital to analogue (D/A) converter was then developed to convert the shaft

encoder output to an analogue signal. On the other hand, the tachometer is used for
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measurement of the hub velocity. A miniature integrated circuit piezoelectric accelerometer
303A03 is located at the end-point of the flexible arm to measure the end-point acceleration.
The accelerometer has a built-in FET source follower which lowers the output impedance
level. The low impedance output allows the use of long cables without an appreciable signal
loss or distortion.

The processor used for this experimental-rig is an IBM-PC compatible based on
486DX2 50 MHz. Data acquisition and control are accomplished through the utilisation of
RTI-815 1/O board. This board can provide a direct interface between the processor, actuator
and sensors. The experimental set-up requires one analogue output to the motor driver
amplifier and four analogue inputs from the hub angle, hub velocity, end-point acceleration
and motor current sensor. The interface board is used with a conversion speed of 25 u sec for

A/D conversion and settling time of 20 u sec for D/A conversion, which are adequate for the

system under consideration.

3. Algorithm Development

This section focuses on the development of the simulation algorithm characterising the
dynamic behaviour of the flexible manipulator system using FE methods. Firstly, the method is
briefly discussed. Then formulations to obtain the mass, stiffness and damping matrices and the
dynamic equations of motion of the manipulator, utilising the Lagrange equation, are
presented. The equation of motion is expressed in state-space form, so that it can be solved

using control system approaches.

3.1 The Finite Element Method

Since its introduction in the 1950s, the FE method has been continually developed and
improved (Rao, 1989). The FE method involves decomposing a structure into several simple
pieces or elements. The elements are assumed to be interconnected at certain points, known as
nodes. For each element, an equation describing the behaviour of the element is obtained
through an approximation technique. The elemental equations are then assembled together to
form the system equation. It is found that by reducing the element size of the structure, that is,
increasing the number of elements, the overall solution of the system equation can be made to

converge to the exact solution.
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The main steps in an FE analysis include (1) discretisation of the structure into
elements; (2) selection of an approximating function to interpolate the result; (3) derivation of
the basic element equation; (4) calculation of the system equation; (5) incorporation of the
boundary conditions and (6) solving the system equation with the inclusion of the boundary
conditions. In this manner, the flexible manipulator is treated as an assemblage of n elements
and the development of the algorithm can be divided into three main parts: the FE analysis,

state-space representation and obtaining and analysing the system transfer function.

3.2  Simulation Algorithm

For an angular displacement €(¢) and an elastic deflection w(x,r), the total displacement
y(x,t) of a point along the manipulator at a distance x from the hub can be described as a
function of both the rigid body motion #(¢) and elastic deflection w(x,f) measured from the
line OX as

y(x, 1) =x6(t) + w(x,t) (1)
and velocity v(x,t) of any point can be obtained as

_ oy(x,1) s 00(t) " ow(x,t)
ot ot ot

v(x,t)

Using the standard FE method to solve dynamic problems, leads to the well-known
equation
w(et)=N,(x) Q. () @)
where N, (x) and Q, (t) represent the shape function and nodal displacement respectively. For
the flexible manipulator under consideration, w(x,z) in equation (2) represents the residual
motion. The manipulator is divided into n elements. As a consequence of using the Bernoulli-
Euler beam theory, the finite element method requires each node to possess two degrees of
freedom, a transverse deflection and rotation. These necessitate the use of Hermite cubic basis
functions as the element shape function (Ross, 1996). Hence, for the elemental length [, the
shape function can be obtained as
N®=l® 6 6 ¢6w]

where
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> 2 2% x
¢l(x) 1_T+l ¢2(x) x——l—_“i—_l_?'- and

2 3 2
¢3(x)=3l"‘ L P =21

For element n the nodal displacement vector is given as
0.0 =[w,. @ 6,,0 w, (@) 6, )]

where w,_,(t) and w,(¢) are the elastic deflections of the element and 6, () and 6, (1), are
the corresponding angular displacements. Substituting for w(x,t) from equation (2) into
equation (1) and simplifying yields '

y(x.1) = N(x) Q@) (3)
where

Nw =[x N.@]amd 00=[oe) C.0)

The new shape function N(x) and nodal displacement vector Q(t) in equation (3) incorporate

local and global variables. Among these, the angle 6(t) and the distance x are global variables
n-1

while N,(x) and Q,(f) are local variables. Defining s = x— _ as a local variable of the
i=]

nth element, where I is the length of the ith clement, the kinetic energy of an element e

can be expressed as

! ' 2 11 « T o 1 o Tl L i
n:ij[@g—’l} ds=EIpAY Yds=—0 ij(NTN) ds |0 (4)
t 0 0

0

and potential energy of the element can be obtained as
2 ! 1
=—jEI -‘B—M =leI(BQ)T(BQ)ds=-1-QT | E1(B"B)ds |Q (5)
os* 25 2 1%

2
where B = i—‘?—— .
ds

Defining M, and K, as

!
M,= jp A(NT N) ds= element mass matrix (6)
0
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r :
K, = IEI (BT B)ds = element stiffness matrix (7)
0 -

and solving equations (6) and (7) for the n elements, the element mass and stiffness matrices

can be obtained as

my  m,  my m, M
m, 156 221 54 —13I

m, 220 4 13 -3
m, 54 131 156 —22I
my —131 -3 -221 4I* |

_ pAl
" 420

0 0 0 0 0
0 12 6 -12 6l
K =—|0 6 4* -6 2
0 -12 -6 12 -6l
0 6 2* -6l 4

where
my, =1400*(3n* —3n+1)
my, =m, =21(10n-7)
my, =m, =71*(5n-3)
my, =m, =21(10n-3)
my; =my, =-71*(5n-2)

Assembling the element mass and stiffness matrices, the total kinetic and potential energies

from equations (4) and (5) can be written as

1-T °
T=—0 M
2 0
P=107KQ
2

where M = ZM , is a global mass matrix and P = ZPE is a global stiffness matrix of the

e=l e=1
manipulator. The dynamic equations of motion of the flexible manipulator can be derived

utilising the Lagrange equation;

AEANEA

=F

d\a0] |og
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where L =T — P is the Lagrangian and F is a vector of external forces. Considering the

damping, the desired dynamic equations of motion of the system can be obtained as

M 00+ D Q)+ KO® = F(®) (8)
where F(t) is the vector of applied forces and torque, Q(f) = 6 w, 6, . - - W, 0.1

and D is a global damping matrix, normally determined through experimentation. The
damping ratio typically ranges from 0.007 to 0.01 (Hasting and Book, 1987).

For the flexible manipulator under consideration, the global mass matrix can be

M= MBB Mﬂw
M, M,,

where M, 18 associated with the elastic degrees of freedom (residual motion),

represented as

M, represents the coupling between these elastic degrees of freedom and the hub angle 6

and M, is associated with the inertia of the system about the motor axis. Similarly, the global

(00
|0 K,

where K, is associated with the elastic degrees of freedom (residual motion). It can be

stiffness matrix can be written as

shown that the elastic degrees of freedom do not couple with the hub angle through the
stiffness matrix.

The global damping matrix D in equation (8) can be represented as

0 0
D=
0 D,,
where D, denotes the sub-matrix associated with the material damping. The matrix is

obtained by assuming that the beam exhibits the characteristics of Rayleigh damping. This
proportional damping model has been assumed because it allows experimentally determined
damping ratios of individual modes to be used directly in forming the global matrix. It also
allows assignment of individual damping ratios to individual modes, such that the total beam
damping is the sum of the damping in the modes (Chapnik et al., 1991). Using this
assumption, the damping can be obtained as

D, =aM, +BK,, )

where
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a= 2f.f 2(§1f2_‘§2f1) I; B= 2 (5, fz“§1f1) .
AR R-R

with & , &, f, and f, representing the damping ratios and natural frequencies of modes 1

and 2 respectively.

The M, D and K matrices in equation (8) are of size mxm and F(t) is of size

m x 1, where m = 2n+1. For the manipulator, considered as a pinned-free arm, with the

applied torque T at the hub, the flexural and rotational displacement, velocity and acceleration
are all zero at the hub at ¢ = 0 and the external force is F(f)=[t 0 - 0]" . Moreover, in
this work, it is assumed that Q(0) = 0. The matrix differential equation in equation (8) can be

represented in a state-space form as

v=Av+ Bu
y=Cv
where
0 i1 0
A= ——-’—"_E-—-L———"i_l—— y B= —L"Ell-
-M7"K\|-M"D M
C=[Om :Im]’ D=[02mxl]

0, isan mx m null matrix, I, is an m x m identity matrix, 0,,,, is an mx1 null vector,

L ] L) L] L] L] T
u=[t 0 - 0]%::[9 w6 - ow, 6, 0 w 6 - w, 9,1}

Solving the state-space matrices gives the vector of states v, that is, the angular, nodal

flexural and rotational displacements and velocities.

4. Results

In this section, a set of simulation and experimental results of the dynamic behaviour of the
flexible manipulator system are presented in the time and frequency domains. In this work, a
bang-bang signal of amplitude 0.3 Nm, shown in Figure 3, was used as an input torque applied
at the hub of the manipulator. A bang-bang torque has a positive (acceleration) and negative
(deceleration) period allowing the manipulator to, initially, accelerate and then decelerate and
eventually stop at a target location. System responses were monitored for a duration of 3 sec

with sampling time of 4 msec.
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4.1  Simulation Results

The developed finite element model was implemented within the Matlab environment on a
Pentium II 333MHz processor. To demonstrate the effects of damping on the system
response, investigations with and without damping were carried out. In this work, the damping
ratios were assumed as 0.007 and 0.01 for vibration modes 1 and 2 respectively. Using 12 Hz

and 35 Hz as the first two resonance frequencies (Azad, 1995), a and A in equation (9) can

be obtained as 0.3175 and 1.2980 respectively. To investigate the accuracy of the FE
simulation algorithm in characterising the behaviour of the flexible manipulator, the algorithm
was implemented on the basis of varying the number of elements from 1 to 20.

Figures 4 and 5 show the end-point displacement, hub-angle, hub-velocity, residual
motion, end-point acceleration and spectral density of hub-angle of the manipulator without
the presence of damping using 1 and 10 elements respectively. It is noted that steady-state
levels of end-point displacement and hub angle of 0.6 m and 38° respectively were achieved
within 0.9 sec using one or more elements. These proved that a satisfactory dynamic
behaviour of a flexible manipulator, up to the second mode, could be achieved with one
element. Further modes of the system are obtained with increasing the number of elements. As
expected, without the damping effect, the system response exhibits persistent oscillation. The
results also show that the system characterises a non-minimum phase behaviour as evident
from the slight undershoot that occurs at start of end-point response of the system. This
agrees, as a non-collocated system, with previously developed models (Cannon and Schmitz,
1984). Using one element, the system poles and zeros were obtained as 0, 0, +90.82j,
+300.07 jand +58.59, +229.14 respectively. The residual motion of the system is found to
be characterised by the first two modes of vibration. Resonance frequencies of the system
were obtained by transforming the time domain representation of the system into the frequency
domain using FFT analysis. With one element, the resonance frequencies of the system were
obtained as 14.49 Hz and 47.70 Hz whereas with ten elements these were as 11.99 Hz, 35.22
Hz and 65.2 Hz.

Figures 6 and 7 show the dynamic behaviour of the system in the presence of damping
with 1 and 10 elements respectively. It is noted that the damping has not affected the
resonance frequencies of the system, but has resulted in considerable attenuation in the system
response amplitude. Analysing the system time response, it is noted that the hub-velocity, end-

point acceleration and end-point residual motion of the system converged to zero within 1.8

10
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sec. It is also evidenced from the spectral densities of the system response, that the damping
has not affected the resonance frequencies of vibration of the system. However, with damping,
the level of vibration reduces as expected. By increasing the number of elements, the system
resonance frequencies converge to more accurate values, but, at the expense of higher
execution times. This is mainly due to an increase in the size of the mass, damping, stiffness
and state-space matrices. The inter-relation between the number of elements, execution time

and resonance frequencies of the system is summarised in Table 1L

4.2  Experimental Results

Experiments using the experimental-rig were conducted for validation of the developed FE
model. In the experiments, the hub-angle, hub-velocity and end-point acceleration were
measured and the corresponding spectral densities were obtained. These were then compared
with the simulation results. Figure 8 shows the hub-angle, hub-velocity, end-point
acceleration, with their spectral densities, of the flexible manipulator. It is noted that for the
hub-angle, the steady-state level of 38° was achieved within 1.8 sec. The first three modes of
vibration were obtained as 11.72 Hz, 35.15 Hz and 65.60 Hz.

4.3  Model Validation

Validation of a dynamic model for use in simulation and control is an important step before the
model can be employed with confidence. Typically, model validation can be considered in two
parts: frequency-domain validation, which involves the resonance frequencies of the system,
and time-domain validation, which focuses on the time response of various system states to an
input command. Matching of natural frequencies is a good indication of accurately modelled
mass and stiffness properties. Time domain results show the effects of assumptions concerning
the non-linear terms in the equations of motion.

Validation of the developed finite element model was carried out by comparing
simulation and experimental results in time and frequency domains. Comparisons of Figures 6,
7 and 8, show that a close agreement between experimental and sifnulation results in the time
responses and resonance frequencies was obtained. For the hub-angle, a steady-state level of
38° was achieved within 1.8 sec in both cases. Similar characteristics are also noted in the
transient response of the system. Furthermore, reasonably close agreement between the

simulation and experimental results is noted with the hub-velocity and end-point acceleration

11
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responses. It is also noted in Table 1 that the first three modes of vibration of the system
converged to 11.99 Hz, 35.22 Hz and 65.20 Hz with 10 elements or more. The experimental
results, however, gave 11.72 Hz, 35.15 Hz and 65.60 Hz. The corresponding errors between
the simulation and experimental results for modes 1, 2 and 3 are accordingly 2.3 %, 0.2 % and
3.9 % respectively, which are considered negligibly small. Tt can thus be concluded that FE
methods can successfully be used for modelling of a flexible manipulator. Moreover, these

validate the assumptions used in this work.

5.  Conclusion

Theoretical and experimental investigations into the dynamic characterisation of a single-link
flexible manipulator system have been presented. A dynamic model of the manipulator has
been developed using FE methods. The performance and accuracy of the algorithm has been
studied in comparison to an experimental-rig. Moreover, effects of damping on the system
have been addressed. Experiments have been performed using the experimental-rig and used
for validation of the FE model. Comparisons of simulation and experimental results have
demonstrated a satisfactory and close agreement between the simulated and experimental time

responses and resonance frequencies of the system.
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TABLES

Table 1: Relation between the number of elements, execution times and resonance
frequencies of the flexible manipulator.
Number of Execution Resonance frequencies (Hz)
elements time (sec)
Mode 1 Mode 2 Mode 3
1 0.38 14.49 47.7 -
2 0.44 11.99° 35.71 T51T
3 0.55 11.99 35.46 65.68
5 0.67 11.99 35.46 65.43
10 0.98 11.99 35.22 65.2
20 2.72 11.99 35.22 65.2
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FIGURES
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Figure 1: Description of the flexible manipulator system.
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Figure 2: Schematic diagram of the experimental-rig.
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Figure 8: Response of the experimental flexible manipulator-rig.



