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Abstract: An enhanced frequency analysis method is introduced using a phase shift wavelet representation to analyze
individual frequency components and to reveal features of a given signal. The frequency representation providés
details at each time location without the loss caused by local orthogonality between the wavelet basis functions and the
given signal which occurs when a normal wavelet decomposition is employed. Movement of the local orthogonality
locations, corresponding ro the phase shift of the wavelet basis functions, are studied and it is shown that these
movements are important and can be used to reveal features of the signal in the frequency domain, such as continuities,
smoothness, and trends. Several examples are presented to illustrate the method and an application to a permanent

magnet synchronous drive system is provided to demonstrate the approach.

1 Introduction

Wavelets have been extensively studied and applied by scientists and engineers from many different
backgrounds. Wavelet theory is an interesting mathematical subject which has links to many other areas
including functional analysis, approximation theory and numerical analysis. Wavelets are widely applied in
many fields including signal processing, image processing, communications, geographical data processing
and financial analysis.

There are many research studies on basic wavelet theory, especially related to operator theory,

approximation theory, function spaces (L°, L”, Besov, Sobolev and Holder) and orthogonal, orthonormal
and biorthogonal bases. Daubechies [1][2] provided a good mathematical introduction to wavelets including
a list of wavelet basis functions, while Chui [3] gave a description from the point of view of approximation.

Parallel to contributions in the area of wavelet theory, many studies have focused on l?ridging the gap
between basic theory and applications. Juditsky et al [4] summarized the important properties of wavelets
for approximation in Besov space, including norm evaluation with orthonormal wavelet decompositions,
sparse singularities with wavelet decomposition, and the advantages of spline-waveiets. Pati and
Krishnaprasad [5] formed a representation of a class of feedforward neural networks in terms of discrete
affine wavelet transforms, and Zhang et al [6] introduced another wavelet network for approximating

arbitrary nonlinear functions.
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The computational aspects of wavelets is very important for achieving an acceptable accuracy, especially in
multidimensional situations. Juditsky et al [4] noted that wavelet-based estimation algorithms are the only
class of algorithm for which a complete analysis is available today, both for approximation and estimation.
In Besov space, norms are easily evaluated using wavelet decompositions. In 1997, Zhang [7] proposed
L algorithms for the construction of a wavelet network to improve the computational efficiency so that
. problems which involve large dimensions can be better handled.
The advanced application of wavelets can generally be divided into two aspects, approximation and
representation. Wavelet approximations are used in many fields. Stone [8] combined Fourier and wavelet
packet transforms to exploit the advantages of each technique. Multiresolution analysis was introduced in
Meyer [9] and Mallat [10] and further developed by Daubechies, this was an important development and
made wavelet approximations much more powerful. This approach has been used not only to construct
wavelets, but also for algorithm development. Coca and Billings [11] used a nonorthogonal multiresolution
wavelet decomposition to smooth and then to differentiate observed noisy signals, and to provide the
information needed to approximate a continuous-time description of the system of interest as a set of
nonlinear differential equations.
Wavelet representations have also been widely applied in filtering and filter bank design. Up to July 1999
over 200 papers had appeared in IEEE Transaction on Signal Processing related to wavelets. Over 25% of
these discussed filters and filter banks based on orthogonal, orthonormal or biorthogonal wavelet
decompositions, including a special issue on the theory and application of filter banks and wavelet
transformations. Nowak et al [12] introduced two new structures for nonlinear signal processing, which are
based on a two-step decomposition consisting of a linear orthogonal signal expansion followed by a scalar
polynomial transformation of the resulting signal coefficients. Xia et al [13] discussed the design of optimal
multifilter banks and optimum time-frequency resolution multiwavelets with different objective functions,
and presented the symmetric extension transform which is related to multifilter banks with symmetric
properties. Evangelista et al [14] presented a perfect-reconstruction filter bank based on classical sampled
filter banks by means of frequency transformations. Miller et al [15] proposed a method for selecting
pre/post filter coefficients to adaptively initialize multiwavelet decompositions of 1-D data sets. Jiang [16]
gave several parametric expressions for orthogonal causal FIR multifilter banks, and based on parametric
expressions for orthogonal multiwavelet banks, orthonormal multiwavelet pairs with good time-frequency
resolution were constructed. Wavelet representations are widely used in image processing, image coding,
image compression, de-noising, object recognition, object detection and recovery, tomographic
reconstruction and seismic reflection identification.
» In this paper, a new approach to enhance frequency analysis using wavelets is introduced. Any given signal
* can be decomposed into individual frequency components. The advantage of a wavelet decomposition is that
this provides more accurate time locations than if a windowed Fourier Transformation is used. The question
addressed here is how faithful the frequency components can be represented by a wavelet decomposition at

each location. Because the signal can be orthogonal with a wavelet basis function at certain locations, this
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can cause information loss in the wavelet representation at these locations. Initially. a phase shift wavelet
decomposition is derived by introducing a phase shift parameter. The relationship between the features of
the signal and the movement of the local orthogonalities corresponding to phase shifts is then studied.
Several examples are used to illustrate the new method and an application to a permanent magnet
synchronous drive system is shown.

This paper is organized as follows. In section 2, the main features of wavelet representations are
summarized. In section 3, the new method which involves shifting the phase of the wavelet basis functions
to analyze the frequency components of a wavelet decomposition for a given signal is introduced. In section
4, three examples are analyzed using the new phase shift method. In section 5, a real application té a
permanent magnet synchronous motor is analyzed, and an improvement in the motor control strategy is

achieved. Conclusions are given in the last section.

2 Wavelet Representations
A signal S(¢) can be expanded in the form
S@) =Y <SSO, (0)> W, (1) (1)
Jik
where <> is the inner product; and y 4 (1) 1s the wavelet basis function generated from a mother wavelet.

Many function spaces have been explored to investigate admissible functions for mother wavelets. The
choice of a mother wavelet depends on the given signal since each class of functions has certain features
which can be matched with certain signals. For example, the Harr wavelet is often used to approximate
piecewise-constant functions because this produces a better convergence rate than any other class of
functions.

x~b . -
), where a is the dilation or scale

a

%‘P(

A mother wavelet function is usually denoted as Y ,(x)= ]a

parameter and b is the location. To approximate a signal, a wavelet framework has to be built and this will
include selecting an admissible function as the mother wavelet and determining the parameters a and b.
Based on this framework, a wavelet representation can be generated.

The study of wavelet frameworks will influence the approximation strategy in various function spaces. For
example, Besov spaces, which consist of a wide family of function classes, are suitable for analyzing both
uniformly smooth functions and locally spiky and jumpy functions, but it is not so easy to determine an
optimal approximation. However, wavelets provide a good solution for approximation in Besov spaces.

Wavelets are as good as splines, but are much easier to construct, and the norms are easily evaluated.

For different selections of a and b in ¥, ,(x), there will be a different framework, as well as a different

wavelet representation. Ideally, a wavelet decomposition with different frameworks can reach the same

approximating accuracy in reconstruction, however, the features of the signal revealed by the wavelet




. representation and the computing efficiency can be quite different. Therefore. a proper selection of a and b is

important for signal analysis using a wavelet representation. Usually, the parameters a and b are selected as

1 k.
a=— ,and b=—, j,ke Z.
2 J 2 &
" The combination of all the frequency components generated from a wavelet decomposition can approximate

the signal with a desired accuracy. However, whether the wavelet representation faithfully represents the

signal at each time location for all the frequency components can be a problem.

3. A Phase Shift Wavelet Frequency Description

A given signal can be decomposed into different frequency components using a wavelet decomposition, and
each frequency component can then be studied individually at any location. However, there are some special
situations, which arise when the signal is orthogonal to some wavelet basis functions at certain locations. In
this case, the energies at the corresponding frequency components, at these locations, can fail to be revealed.
Such a situation may not affect the approximation accuracy at the location, for it can be compensated by
neighboring frequency components. But when the aim is to study every detail of a frequency component at
all the locations in order to form an expression, or to get an exact frequency distribution of the signal, then it
is important to overcome this failure of energy detection at certain locations. This problem is caused by local

orthogonality between the signal and the wavelet basis function.

3.1 Avoiding Problems caused by Local Orthogonality in Frequency Component Analysis

In order to avoid the loss in the wavelet representation of individual frequency components caused by local
orthogonalities between the signal and wavelet basis functions, it is necessary to study how to remove local
orthogonalities at certain locations.

Suppose S(z) is a given signal, that can be represented by a wavelet expansion as in equation (1), where the

mother function ¥ () has been selected from the many kinds of function spaces to match the characteristics

of the signal S(¢), and the dilations are V()= 2%w(2"r—k). Ideally, the number of frequency

components should be infinite, but in practice, this is impossible. Suppose j = N,,N, +1,...,N,,

N,,N, € Z, and the signal S(z)is approximately represented as

N, Kk

S,0)= Y. Y <SSO, (0)>w,, @ 2)
k=0

The local orthogonality condition states that for a small € >0, there are j',k'€ Z, such that in the support

: intervals[27/ k',27/ (k'+1)], the signal satisfies the following

270 (k1)
[Is@far =0 (3a)

27k




(SO (D) =0 (3b)
(SO0t 2e))#0 (3c)
where re [277k',277 (k'+1)].

Since a wavelet framework is determined by three key factors, the mother wavelet, the dilation parameter q,
and the location parameter b, any modification of these factors can change the framework to give a new
wavelet representation in which the locations of local orthogonalities would be completely changed. It is not
necessary to modify all these three factors to remove a local orthogonality at a certain location, only the
simplest factor, the location parameter b is enough. Therefore a small parameter will be introduced to adjust
the phase of the wavelet basis functions.

By introducing a phase shift parameter p, the wavelet representation of S(z) becomes

N, *

S ()= X, X <SOW,,t=p) >y, (t-p) )
Jj=N; k=0
277 (k1
and J’]S(z)[dz #0,< SO, (t— p) >2 0(re (27 k' 277 (k'+1)]).
27

The phase changes the location slightly, and the signal §(z) is therefore no longer orthogonal with the

wavelet basis function W . (f—p)at k =k'. However, it is possible to induce local orthogonalities

between S(r)and ¥ ., ( — p)at other locations. This problem can be resolved by generalizing this method

further.

Introduce a set of phase shift parameters, p =[ Pnim =012, 7r],sothat §(t)can now be represented as

Ny &

S =, <SSOV, (t-p)>y,, (- p) (52)

J=Ny k=0

Ny Kk
$2(M)= X, Y < SOV, (t=p)> W, (t-p,) | (5b)

J=N, k=0

2

1

k
MOEDY 2< SO, t=p)>w,, (t-p,) (51)

j=N, k=0
The expressions in (5) should reach the same approximation accuracy when reconstructed. However, the
frequency components in (5) will usually be different at any given location. Consider only one frequency
component, j = j', which is denoted as S/, then

,‘,(r)—2<5(r)w,i(r p)>w, (t-p) (6a)

k=1




l":l
S0 =Y <S@W, = p) >V, (1= pa) (6b)
k=1

kg
SO =Y <S@W, (t-p)>w,,(t~p,) (61)

k=1

" The signal S(#) can not be orthogonal simultaneously, at any particular location with all the wavelet basis

functions v ;.. (t—p;), i=12,..,r. {S‘i' (r)}, i=1,2,...,r can therefore be regarded as a complete wavelet

representation at the frequency component j = j'. Therefore an accurate distribution of energy in S(z) at
the frequency component j = j' can be obtained by synthesizing all the representations of frequency
component j = j' in (6) without a loss caused by local orthogonality.

For all j, a complete wavelet frequency component description can therefore be obtained which could be

important in situations where an enhanced frequency analysis is required.

3.2 Frequency Component Analysis Using Local Orthogonality

In the previous subsection, a method was suggested to overcome problems caused by local orthogonality at
frequency components. While this does not affect the approximation accuracy it can result in a failure to
reveal the exact energy distribution in the wavelet representation. When a small phase shift is added to the
wavelet basis function, the local orthogonalities will be destroyed but other local orthogonalities may be
generated. If the phase shift is doubled, the local orthogonalities will be changed again. Therefore, the local
orthogonalities will be moved rather than reduced. These movements are closely connected with the features
of the signal. Sometimes, the trajectory of the local orthogonality corresponding to the variation of the phase
shift can describe the features of the signal very well, especially when the signal locally is approximately
equal to a special function, such as a piecewise-constant, a monotone continuous function, or other special

functions in the time-frequency domain.
Let {p,},m=0.12,.,r, be a set of phase shift values. Where p,=0, p, =277,
Pu= P27 Pi= P3™ P2 =% Py~ Pri, Assume that corresponding to each p_, m= 01,2,...,r, there is a
wavelet decomposition of the frequency components at j= j' as described in (6). Let C,,
(k = I,2,...,kj.;m =0,1,2,...,r) denote the inner products < S@),y,; ,(t—-p,)> for the frequency
component j = j'. Then since p, =27/,
Cp, =<8@).Y,;, (t—p,)>
=< SO,w[2't-2"")-k]>
=< S(O)Ww2/ t—(k+1)]>




= Cm.o

This implies that only p, (m =0,1,2,....r —=1) s necessary.
Using all of the phase shift values p ,m=012..r—1, and collecting the inner products

< S(l),l,(fj.bk (t = p,,) > atall the locations, a matrix, formed from a location-phase section. can be obtained

as follows:
Co Cayp C;-}.,o
G, C,, Ck,.l %
Cl,r—l C'2.."—] ij-.r—]

This is the coefficient matrix of the wavelet representation of the component j= j'. Each row in the matrix

(7) belongs to a wavelet decomposition of the signal S(r), and the column vectors describe how C £
ke{l2,..k;_} becomes C,, ,, ke{l2,...k;_}. However, C, , (m =12,...,r —1) are not limited to the

interval [min(Cyq,Cy, ), max(C,,Cy 101, k€ {l2,...k;,}. All the C,, =0,ke{l2,..k,_}, and

me {1,2,...,r =1}, which are caused by local orthogonality can be collected in matrix (7).

When the phase is shifted by a certain value, a local orthogonality will be removed but a new orthogonality
may be created. If the distance between the location of the newly created local orthogonality and the location
of the previous local orthogonality is not beyond a defined value, the newly created local orthogonality can
be regarded as being moved from the location of the previous local orthogonality.

A method was introduced to search for the movement of the local orthogonanlity. This starts from each
location and searches for the movement of the orthogonal location corresponding to the phase shift around a
given radius. Different search radii can be adopted during the search process, but a large search radius may
fail to find the arrival and departure locations while a small radius may fail to find the movements.

The location, to where the local orthogonality moves, is defined as an arrival point. The farthest location,
from where the local orthogonality moves to the arrival point, is defined as the departure point.

The departure points and the arrival points often reveal that the signal, in the time-frequency domain, is not
smooth at these locations, or smooth but orthogonal with the wavelet basis function at this frequency

component.

4 Simulated Examples
In this section, four simulated examples are presented to illustrate the ideas which were introduced in the

previous sections.

4.1 Example 1

This example was chosen to demonstrate the phase shift wavelet decomposition method for frequency
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component analysis. The data in Figure | (a) was produced by simulating the Duffing equation

vy +0.1y" + y* =1lcos? (8)
Figure 1 (b) shows the normal wavelet frequency component representation for j=-4. This frequency

component j=-4 shows that there are 12 sharp peaks and troughs. However, a comparison with the
original signal shows that there should be 19 or 20 sharp peaks and troughs, clearly therefore some of the
sharp peaks have not been detected. A clearer frequency component representation for j=—4 is obtained by
using the phase shift wavelet decomposition, and this is shown in Figure 1(c), where all the sharp peaks and

troughs are now represented without loss.

[Figure 1 is about here]

4.2 Example 2
This example demonstrates the movement of local orthogonality.
Consider the signal

S(i) = sin(round (1+i/1000) * 1000 *i * 7 /32768 ) 9)
where i=1,2,...,8200. '
The frequency of the signal S(i)in (9) is constant in the intervals [0, 500), [500, 1500), [1500, 2500), [2500,
3500), [3500, 4500), [4500, 5500), 5500, 6500), [6500, 7500), and [7500, 8200]. If this function is
transformed to the time-frequency domain, it will be a constant piece-wise function, and the nodes are at
500, 1500, 2500, 3500, 4500, 5500, 6500, and 7500. A wavelet decomposition of the signal in equation (9)
is shown in Figure 2. Some of the orthogonaliﬁes can be recognized by inspection, for example, in the

interval [6500,7500) in j=-2, there are 6 orthogonality locations, in the interval [2500, 3500) in j=-3,
there are 3 orthogonality locations, and the interval [500, 1500) j=-4, there are 2 orthogonality locations.
However, most of the local orthogonalities can only be detected by an algorithm.

[Figure 2 is about here]
Consider just the frequency components where j=-3, since some of the local orthogonalities. in this
frequency component can be clearly seen by inspection.
Selecting the phase shift values in equation (6) as P =m- 2%(m = 0.1,...,7), a location-phase section of
the frequency component j=-3 can be obtained using the formulation in matrix (7). In order to see the
movement of the local orthogonalities corresponding to the phase shift, the frequency components have been
put into one common coordinate system. In Figure 3, the frequency component corresponding to the phase
shift parameter P, appears to be just in the right place, and those corresponding to B, F;,..., F, are shifted
upward for 5,10, ..., 35 units. In respect of each increase of the phase shift value, the local orthogonalities in
the interval (2500, 3500) are moved a certain length towards the right.

[Figure 3 is about here]

Using the local orthogonality trajectory search strategy described in section 3, the local orthogonality




trajectories for the signal in equation (9) are shown in Figure 4, where the vertical axis represents the
locations of the arrival points, and the horizontal axis shows the starting locations of the local
orthogonalities.
[Figure 4 is about here]

The vertical axis shows the locations of the arrival points. The arrival points are also mapped to the
horizontal axis, where the local orthogonalities cross the dotted line, therefore the horizontal axis shows both
the departure point and the arrival points. For a single side arrival point, the other end of the line segment is
a departure point, and for a double side arrival point, the two ends of the line segment are all departure
points. Figure 4 shows that as the phase shifts, the orthogonalities move to the right in the intervals (700,
1500), (2500. 3500), (3500, 4500), (4500, 5500), and (5500, 7500), and move towards the left in the
intervals (500, 700), (1500, 2500) and (7500, 8200). Except for k=6500, all of the other nodes of the
piecewise-constant function are either departure points or arrival points, or both. The departure points are k=
700 and 2500, and the arrival points are k=500, 1500 and 7500. The points at k=3500, 4500, 5500 are bbfh
departure points and arrival points. Now 7 out of 8 discontinued points in the time-frequency domain have
been detected. There are two mistakes, that at k=700 should not be judged as a discontinuous point, and the
point k=6500 should have been detected. The reasons for these mistakes are that the frequency in the
interval (0, 1500) is too low, and in (5500, 8200) it is too high to be analyzed in the frequency component

J=-3, and should be analyzed in the frequency component j=-4 and j=-2, respectively. Another

possibility for the failed detection is that the signal happens to be smoothly continuous in the time-space
domain at k=6500, however, the length of the moving step corresponding the each phase shift in the interval

(5500, 6500) and (6500, 7500) will be different.

4.3 Example 3
This example involves a mono'tonicai]y continuous function in the frequency-time domain. The signal is
described as
S(i) = sin(i* - 7w/ 65536) (10)
where i=1,2,...,8200.
The wavelet decomposition of the given signal is shown in figure 5.
[Figure 5 is about here]
The movement of the local orthogonalities was investigated at the frequency component j=-3, and the
location-phase section is shown in Figure 6.
[Figure 6 is about here]
Figure 7 shows the search results for the local orthogonality trajectories, which are very different from
example 2 because the function in equation (10) is a monotonically continuous function in the frequency-
time domain. Here the departure points and the arrival points are mostly double sided. Between a departure

point and an arrival point of the movement of the local orthogonality, the length of the step corresponding to
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each phase shift is decreased or increased untill the movement stops or oscillates at a certain location. This

movement can reveal the trend of the frequency variation of a signal.

5. Application to a Permanent Magnet Synchronous Drive System

The phase shift wavelet decomposition method will be used to analyze the rotational speed of a 3-phase, 2-
pole, 70V brushless permanent magnet drive system, sampled at interval of 2.5ms. A fuzzy control strategy
has been designed to regulate the phase of the motor current so that the motor velocity can be maintained at
a given value when the load changes. Figure 8 (a) shows the motor velocity when the current is switched on,
off, and on again at t=0.5, t=2.5 and t=4.5, where the load increases, decreases, and increases again,
respectively. |

Figure 8 (b) shows the corresponding current amplitude based on a control strategy which uses fuzzy logic.
The control strategy is very effective since the velocity is very stable even when the load is changing.
However, there are too many high frequeny ripples in the current. These may cause additional acoustic
noise, electro-magnetic interference, power loss, wear , and other undesirable effects.

[Figure 8 is about here]

An improved control strategy was therefore introduced based on an adaptive fuzzy method. Both the
velocity and the current using the new control strategies are shown in Figure 9(a) and (b) with the same load
changes as in Figure 8. 7

Comparing Figure 8(b) to Figure 9(b) shows that much of the high frequency ripples have been removed
from the motor current.

[Figure 9 is about here]

The phase shift wavelet decomposition can be used as a tool to analyze the difference between the motor
current regulated using the fuzzy controller and the adaptive fuzzy controller. The complete wavelet
representation of the signals in Figure 8 (b) and Figure 9(b), are shown in Figure 10 and Figure 11,
respectively.

[Figure 10 is about here]
[Figure 11 is about here]

Inspection of the two Figures shows that the major difference between Figures 10 and 11 is in the frequency
components where j=-1, j=-2, and j=-3. Comparing Figure 10 and 11, the difference between the two current
signals is much clearer than shown in 8(b) and 9(b), especially in the three high frequency bands, and the
improvements made by the adaptive fuzzy method can be identified in each frequency component at each
time location. It is easy to demonstrate that Figure 10 and 11 are also clearer that using a normal wavelet

decomposition.
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The local orthogonality search strategy can also be used to make a more detailed analysis. This can reveal
the energies at any time location without any loss caused by local orthogonality, and the relationship
between a frequency component at a location and in the neighbourhood of the location, such as continuity
and smoothness.

The search results for the movement of the local orthogonalities, for instance, at j=-3, are shown in Figures
12 and 13, where a threshold of 8% of the maximum value in the frequency component has been adopted. It
is very interesting to note that there exhibit two small disturbances at t=1.09 and t=1.94, where are judged as
departure and arrival points.

[Figure 12 is about here]
[Figure 13 is about here]

In Figure 12, there are 13 arrival locations and the movement intervals almost cover all of the time interval
[0,5]. In Figure 13, there are only 7 arrival locations and the movement intervals only cover about 46% of
the time interval [0,5]. This shows that many high frequency ripples in the current have been removed by the

new control strategy.

6. Conclusions

Signals can be approximated by using a wavelet expansion so that the wavelet representation can be
regarded as a model of the signal and can subsequently be used for analysis of the signal. However, in a
wavelet decomposition some information can be lost due to local orthogonality. Although this may not
affect the approximation results it can affect the frequency analysis at each time location.

To overcome this deficiency wavelet decompositions with variable phase shift parameters were introduced
in this study. For each phase shift parameter, there is a different wavelet decomposition, therefore, the same
frequency component corresponding to wavelet decompositions with different phase shift parameters are
also different, and the locations of the local orthogonality are shifted. A new representation of frequency
components has been formulated by synthesizing all the frequency components in the same frequency band
in the wavelet decomposition with different phase shift parameters. This is important in wavelet analysis,
and can be helpful in searching for a better wavelet representation. One of the most important features of
wavelet decompositions is that these provide a time-frequency description, and the phase shift method can
make this charactistic more meaningful.

Based on the phase shift wavelet decomposition, the movement of the locations of local orthogonalities
corresponding to phase shifts are detected, and are shown to reveal many features of the given signal, such
as continuity, smoothness and trends. This could be very important in signal analysis, for example, it has
potential in fault detection and diagnosis. For different kinds of fault in a system, the local orthogonal
trajectories will be different, and each of these can be regarded as a pattern. By combining these ideas with

an artificial intelligence technique, it should be possible to develop an effective fault detection and diagnosis

12
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system.

Acknowledgement
JL and SAB gratefully acknowledge that part of this research was supported by the UK Engineering and
Physical Science Research Council.

REFERENCES

1. L. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pure & Applied Math.
Vol.41, 1988, pp. 909-996.

I. Daubechies. The wavelet transformation, time-frequency localization and signal analysis. IEEE Trans. On
Information Theory, Vol. 36, 1990, pp. 961-1005.

3. C.K.Chui. An introduction to wavelets, Academic Press, Boston, 1992.

]

4. A. Judisky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjoberg and Q. Zhang. Nonlinear black-box
models in system identification: Mathematical foundations. Automatica, Vol.31, No. 12, 1995, pp. 1725-1750.

5. Y. C. Pati and P. S. Krishnaprasad. Analysis and Synthesis of Feed-forward Neural Networks Using Discrete
Affine Wavelet Transformations. IEEE Trans. on Neral Networks, Vol. 4, 1993, pp. 73-85

6. Q.Zhang and A. Benveniste, Wavelet networks. IEEE Tranc. NN, Vol. 3, No. 6, Nov. 1992, pp.889-898.

7. Q. Zhang. Using Wavelet Network in Nonparametric Estimation. IEEE Trans. Neural Networks, Vol. 8, No. 2,
1997. ,

8. H. S. Stone. Progressive Wavelet Correlation Using Fourier Methods. IEEE Trans. on Signal Processing, Vol. 47,
No. 1, 1999, pp. 97-107.

9. Y. Meyer. Ondelettes. Fonctions Splines et Analyses Graduees. Lectures given at the University of Torino, 1986,
Italy.

10. S. Mallat. Multiresolution Approximation and Wavelets. Trans. Amer. Math. Soc.,315, 1989, pp. 69-88.

11. D. Coca and S. A. Billings. Continuous-Time System Identification for Linear and nonlinear Systems Using
Wavelet Decompositions. Iﬁtemational Journal of Bifurcation and Chaos, Vol. 7, No. 1, 1997, pp. 87-96.

12. R. D. Nowak and R. G. Baraniuk. Wavelet-Based Transformations for Nonlinear Signal Processing. IEEE Trans.
on Signal Processing, Vol. 47, No. 7, 1999, pp. 1852-1865.

13. T. Xia and Q. Jiang. Optimal Multifilter Banks: Design, Related Symmetric Extension Transform, and Application
to Image Compression. IEEE Trans. on Signal Processing, Vol. 47, No. 7, 1999, pp. 1878-1889.

14. G. Evangelista and S. Cavaliere. Frequency-Warped Filter Banks and Wavelet Transforms: A Discrete-Time
Approach via Laguerre Expansion. IEEE Trans. on Signal Processing, Vol. 46, No. 10, 1998, pp. 2638-2650.

15. J. T. Miller and C.-C. Li. Adaptive Multiwavelet Initialization. IEEE Trans. on Signal Processing, Vol. 46, No. 12,
1998, pp. 3282-3291.

16. Q. Jiang. On the Design of Multifilter Banks and Orthonormal Multiwavelet Bases. IEEE Trans. on Signal
Processing, Vol. 46, No. 12, 1998, pp. 3292-3303.

13




==

0 500 1000 1500 2000 2500 3000

3500

|
0 500 1000 1500 2000 2500 3000

Figure 1 (a) Data generated from the Duffing equation
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Figure 2 A wavelet decomposition of the signal in example 2 from j=-1 to j=-6.
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Figure 3 The phase-time section of the frequency component at j=-3.
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Figure 4 The results of the search for the movement of local orthogonalities.
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Figure 5 A wavelet decomposition of the signal in example 3 from j=-1 to j=-6.
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Figure 6 The phase-time section of the frequency components at j=-3.
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Figure 7 The results of the search for the movement of the local orthogonalities.
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Figure 8(b) The current ampltude controlled by fuzzy logic
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Figure 9(b) The current amplitude controlled by an adaptive fuzzy method
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