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Summary 10 

Most current-generation climate models simulate an increase in global mean surface 11 

temperature (GMST) since 1998 while observations suggest a warming hiatus. It is still 12 

unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect 13 

model response to forcing, or by random factors.  To place the hiatus in context, we 14 

analyse simulations and observations of GMST from 1900 to 2012 and show that the 15 

distribution of simulated 15-year trends shows no systematic bias against the 16 

observations. Using a multiple regression approach that is physically motivated by 17 

surface energy balance, we isolate the impact of radiative forcing, climate feedback, and 18 

ocean heat uptake on GMST – with the residual interpreted as internal variability – and 19 

assess all possible 15- and 62-year trends. The differences between simulated and 20 

observed trends are dominated by (1) random internal variability at 15 years and (2) 21 

variations in the radiative forcings used to drive models at 62 years. For either trend 22 

length, spread in simulated climate feedback leaves no traceable imprint on GMST 23 

trends and thus on the difference between simulations and observations. The claim that 24 

climate models systematically overestimate the response to radiative forcing from 25 

increasing greenhouse-gas concentrations therefore appears to be unfounded.  26 

 27 

 28 

 29 

30 
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Introduction 31 

 32 

The global-mean surface temperature (GMST) has risen in the past fifteen years at a rate 33 

that is only one-third to one-half of the average over the second half of the 20
th

 century 34 

(e.g., refs. 1-5). This hiatus is not reproduced in most simulations with current-35 

generation climate models, which instead over the period 1998 to 2012 show a larger 36 

GMST trend than observed
5-14

. The difference between GMST observations and 37 

simulations is caused in part by quasi-random internal climate variability
5-10,13,14

, which 38 

arises because of chaotic processes in the climate system. But part of the difference is 39 

likely caused by errors in the model radiative forcing
5,12,14-16

 or in the model response to 40 

radiative forcing
5,14,17,18

. The relative magnitudes of these three contributions are poorly 41 

known. Here we quantify how forcing, feedback, and internal climate variability 42 

contribute to spread in simulated historical GMST trends and hence to the differences 43 

between models and observations.  44 

 45 

 We use a three-pronged approach. First, we note that due to quasi-random 46 

internal climate variability, the difference between observed and simulated trends 47 

likewise contains quasi-random contributions. To avoid focusing too strongly on the 48 

particular period 1998 to 2012 – which contains some climate extremes relevant for 49 

GMST
19-21

 and is hence unlikely to be reproduced in a simulation containing quasi-50 

random contributions  – we analyse GMST trends of a certain length for the entire 51 

period 1900 to 2012 (see ref. 13). Second, we quantify the contributions of forcing, 52 

climate feedback, ocean heat uptake, and internal variability to simulated GMST trends, 53 

through a multiple linear regression approach that is physically motivated by the global 54 

surface energy balance. And third, we investigate trends over both 15 and 62 years, 55 
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representing decadal and multi-decadal timescales, respectively. We combine these 56 

three aspects into a new unified conceptual framework, which allows us to put the 57 

GMST trends over the 15-year period 1998 to 2012 into appropriate context. 58 

 59 

We first create linear trends from an ordinary-least-squares fit and perform all 60 

statistical analyses on these trends. This procedure implies that the analysis must be 61 

repeated for each trend length, in contrast to previous work aiming at attributing 62 

elements in the observed GMST time series itself.  Such elements include effects of 63 

volcanic eruptions, solar variability, anthropogenic forcing, El Niño events, and 64 

atmospheric dynamic variability including land-sea contrasts
13,14,22-25

. Because the 65 

amplitude of internal variability decreases with increasing trend length
3,26

, we expect a 66 

cleaner breakdown into the individual contributions from forcing, feedback, and internal 67 

variability if we focus on one trend length at a time. We analyse trends over 15 and 62 68 

years, because these were the trend lengths primarily considered in the 69 

Intergovernmental Panel on Climate Change Assessment Report 5 (IPCC AR5, ref. 5). 70 

 71 

Observed and simulated 15-year trends 72 

 73 

To gauge whether the difference between simulations and observations is unusual over 74 

the hiatus period, we first compare observed and simulated 15-year trends over the 75 

entire period from 1900 to 2012 (Fig. 1, see also ref. 13). We use the HadCRUT4 76 

observational data set
27

 and the “historical” simulations conducted under the auspices of 77 

the Coupled Model Intercomparison Project Phase 5 (CMIP5, ref. 28), extended for the 78 

years 2006 to 2012 with the RCP4.5 scenario runs (Extended Data Fig. 1, Extended 79 
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Data Table 1). The simulation output is subsampled using the HadCRUT4 data mask
11

, 80 

to account for the effects of incomplete observational coverage
29,30

.   81 

 82 

Figure 1a contains the joint relative frequency distribution of 15-year GMST 83 

trends across the 114 available CMIP5 simulations, as a function of start years since 84 

1900 and trend size. Compared to the CMIP5 ensemble, observed trends are distributed 85 

in no discernibly preferred way and occur sometimes at the upper end of the ensemble 86 

(e.g., start year 1927, best-estimate observed trend larger than 110 of the 114 simulated 87 

trends, Fig. 1b) and sometimes at the lower end of the ensemble (e.g., start year 1998, 88 

best-estimate observed trend smaller than all 114 simulated trends, Fig. 1c)
5,13,26

.  89 

 90 

In both cases depicted in Figs. 1b or 1c, fewer than 5% of the simulations lie in 91 

one of the tails relative to the observed trend. Hence, if a 5% criterion for statistical 92 

significance is used, one would diagnose formal model–observation inconsistency for 93 

15-year trends with start years in 1927 and 1998 (ref. 11).  But when the comparison is 94 

repeated for all start years, the rank that the observed trend would have as a member of 95 

the ensemble of simulated trends
31

 shows no apparent bias (Fig. 1e), indicating that the 96 

observed and simulated distributions of 15-year trends are broadly consistent with each 97 

other. Any position of the observed trend within the ensemble of simulated trends – 98 

including a position at or near the margin – is thus dominated by quasi-random effects 99 

(although for any particular start year, a non-negligible contribution from systematic 100 

errors cannot be excluded).  101 

 102 

The marginal distribution of simulated GMST trends as a function of trend size 103 

is wider than the observed distribution of trends (Fig. 1d), a finding consistent with that 104 



 

253098_2_art_file_2312640_nfc0ql     20 November 2014 6 

from the previous generation of climate models
32

. The width is exaggerated owing to 105 

contributions arising at three distinct periods. Some simulated trends with start years 106 

from around 1950 to 1960 are more strongly negative than any observed trends since 107 

1900, and some simulated trends with start years from around 1960 to 1970 and from 108 

around 1985 to 1998 are more strongly positive than any observed trends since 1900 109 

(Fig. 1a). All three periods (1950 to 1960, 1960 to 1970, 1985 to 1998) are influenced 110 

by volcanic eruptions (Agung in 1963 and Pinatubo in 1991). We speculate that some, 111 

though not all, models overestimate the cooling induced by an eruption and the 112 

subsequent warming recovery (see, e.g., ref. 12 concerning a confounding role of El 113 

Niño).  114 

 115 

The mean over all simulated 15-year trends during the period 1900 to 2012 is at 116 

(0.086±0.001) °C per decade (mean±s.e.m.; n=11,186) in excellent agreement with the 117 

observed (0.088±0.01) °C per decade (mean±s.e.m.; n=99). Furthermore, of all 11,186 118 

pairwise comparisons that are possible between simulated and observed trends, the 119 

observed trend is higher in 53.6% of all cases, slightly above the break-even point. 120 

Figure 1 demonstrates that when viewed over the entire period 1900 to 2012, the 15-121 

year GMST trends simulated by the CMIP5 ensemble show no systematic deviation 122 

from the observations.  123 

 124 

Our interpretation of Fig. 1 tacitly assumes that simulated multi-model-ensemble 125 

spread accurately characterises internal variability, an assumption shared with other 126 

interpretations of the position of observed relative to simulated trends (e.g., the 127 

reduction in Arctic summer sea ice
5,33,34

). We now test the validity of this assumption, 128 

by identifying deterministic and quasi-random causes of ensemble spread. We exploit 129 
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the availability of a large number of simulations – 114 realisations with 36 different 130 

models, with forcing information available for 75 realisations with 18 different models
35

 131 

(Extended Data Figs. 1 and 2 and Extended Data Table 1) – and investigate the 132 

contributions of radiative forcing, climate feedback, and ocean heat uptake to all 133 

simulated 15-year and 62-year GMST trends during the period 1900 to 2012.  134 

 135 

Energy balance and multiple regression 136 

 137 

Our starting point is the globally averaged energy balance for the surface layer
35-37

. An 138 

increasing trend F in effective radiative forcing (ERF) causes an increasing trend T 139 

in GMST. This in turn leads to increased outgoing radiation, which in linearised form is 140 

written as T, where  is the climate feedback parameter. Furthermore, the GMST 141 

increase leads to increased heat transfer from the surface layer to the subsurface ocean, 142 

written again in linearised form as T, where is the ocean heat uptake efficiency. 143 

The thermal adjustment of the surface layer to F is expected to occur within a few 144 

years
35-37

. This means that for timescales of one to several decades, the surface energy 145 

balance is in quasi-steady state and reads 146 

   T F     , (1) 147 

which produces the energy-balance “prediction” for the GMST trend  148 

  T F      . (2) 149 

 150 

Each CMIP5 model simulates its own ERF time series over the historical period. 151 

These time series were diagnosed previously
35

; if multiple realisations were available 152 

for a model, the ensemble average of the individual diagnosed ERF time series for this 153 
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model was given
35

 and is used here. The individual  and  were previously determined 154 

for each CMIP5 model from a regression of global top-of-atmosphere energy imbalance 155 

against GMST
5,35,38-41

, in turn based on simulations in which the CO2 concentration was 156 

quadrupled abruptly. The ranges of  and  are (0.6–1.8) and (0.45–1.52) Wm
-2

(°C)
-1

, 157 

respectively. That  and  in the CMIP5 models might vary with time and climate 158 

state
42,43

 is ignored here. There is some positive though not statistically significant 159 

correlation between  and  (across the 75-member sub-ensemble, correlation is 0.17, p 160 

= 0.14).  161 

 162 

Each model’s  is related to its equilibrium climate sensitivity ECS by  163 

 
2xECS F  , (3) 164 

where F2x is the effective radiative forcing from a doubling of the pre-industrial 165 

atmospheric CO2 concentration. The reference value for F2x is 3.7 Wm
-2

 (e.g., ref. 44), 166 

but F2x varies between 2.6 Wm
-2

 and 4.3 Wm
-2

 across the CMIP5 ensemble
5,38

. In order 167 

not to confound model-response uncertainty with uncertainty from CO2 forcing, we use 168 

 and not ECS to characterise model response.  169 

 170 

Based on the physical foundation of energy balance (2), we determine the extent 171 

to which the across-ensemble variations of F,  and  contribute to the ensemble 172 

spread of GMST trends T, using the 75-member sub-ensemble of CMIP5 historical 173 

simulations for which radiative-forcing information can be obtained from the CMIP5 174 

archive
35

 (see Extended Data Table 1). The presence of internal variability is included in 175 

our framework by adding a random term to (2), so that our equation is  176 

  T F        . (4) 177 
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Because (4) assumes an increasing trend in ERF, its validity is somewhat questionable 178 

following a volcanic eruption (e.g., ref. 25). On the other hand, Extended Data Figure 3 179 

shows that overall we see a reliable relationship between ERF and GMST trends in the 180 

CMIP5 ensemble, even if the ERF trend is negative. 181 

 182 

We make the connection to multiple linear regression by writing each quantity 183 

as  184 

 x x x  , (5) 185 

where the overbar marks the ensemble average and the prime the across-ensemble 186 

variation. Linear expansion of (4) thus produces  187 

 
   2 2

1F F F
T T F   

       
            
   

. (6) 188 

This equation holds for each start year separately and suggests the regression model 189 

 0 1 2 3 ; 1,...,75
j j j j j

T F j                 . (7) 190 

We thus perform for each start year a multiple linear regression of T´ against F´, ´, 191 

and ´. The regression residual  is interpreted as the contribution from internal 192 

variability. The complete regression-based prediction for GMST trend is obtained by 193 

adding the ensemble-mean trend to the regression for the across-ensemble variations: 194 

 
, 0 1 2 3

ˆ ˆ ˆ ˆˆ ; 1,...,75
reg j j j j

T T F j                ,  (8) 195 

where the caret marks the regression estimate. Note that for a model that has multiple 196 

realisations, the same F´j, ´j or ´j is counted multiple times. The regression is 197 

performed separately for each period length over which trends are computed. We will 198 

interpret the ensemble spread of the regression result 
,

ˆ , 1,...,75
reg j

T j  , as the 199 
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deterministic spread and the spread ˆ , 1,...,75,
j

j   of the residuals as the quasi-random 200 

spread. 201 

 202 

Deterministic vs. quasi-random spread 203 

 204 

For 15-year GMST trends, deterministic across-ensemble variations are smaller than 205 

internal variability, as shown by the comparison of the regression-based ensemble 206 

spread with the regression residuals (Figs. 2b and c, respectively). The regression result 207 

shows substantial time-dependence in ensemble spread only for 15-year periods 208 

influenced by major volcanic eruptions, in particular the Agung eruption in 1963 (Fig. 209 

2b; the deterministic ensemble spread is particularly large in these periods, see 210 

Extended Data Fig. 4a). The distribution of residuals shows little time-dependence, as 211 

witnessed by spread that is similar for all start years (Figs. 2c–f). The generally weak 212 

time-dependence of the spread suggests that we can estimate the magnitudes of 213 

deterministic spread and internal variability from the marginal distributions obtained by 214 

time-averaging the distributions shown in Figs. 2b and 2c, respectively. The 5–95% 215 

range is 0.11 °C per decade for the regression result and 0.26 °C per decade for the 216 

residuals; internal variability thus dominates deterministic spread by a factor of two-217 

and-a-half. The dominance of internal variability in the ensemble spread of the 15-year 218 

GMST trends indicates that, viewed over the entire period 1900 to 2012,  no systematic 219 

model error needs to be invoked when trying to explain differences between simulated 220 

and observed trends. In particular, the GMST spread due to feedback  is not 221 

systematically larger than spread from either ERF trend or ocean heat uptake efficiency 222 
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and is much smaller than internal variability (Extended Data Fig. 4 and Fig. 2; see also 223 

ref. 12).  224 

 225 

 For any given start year, the residual spread is very similar to the full ensemble 226 

spread, implying that we can indeed use the ensemble spread as a measure of internal 227 

variability (compare Figs. 1b and c to Figs. 2d and e). Furthermore, identifying the 228 

ensemble spread of the regression residuals with internal variability allows us to 229 

characterise the component of observational uncertainty that arises from internal 230 

variability (Figs. 2a and f). This uncertainty does not concern the construction of the 231 

global average from individual station data (which has much smaller uncertainty
5
) but 232 

relates to the question of whether an observed trend is statistically significant 233 

(detectable) given serial correlation arising from internal variability
18

. Our model-based 234 

estimate of 0.26 °C per decade for the 5–95% confidence interval for observed 15-year 235 

GMST trends is slightly larger than the AR5 serial-correlation-based estimate for the 236 

uncertainty of the observed GMST trend over the hiatus period (0.2 °C per decade, see 237 

ref. 4). We deem this an acceptable agreement given that the estimates were obtained 238 

through completely different approaches. We further note that the CMIP5 ensemble has 239 

been assessed to be generally consistent with observed historical decadal variability in 240 

GMST
5
, although on average it overestimates somewhat the global variability in the 241 

lower troposphere
45

. 242 

 243 

For most of the historical period, the entire ensemble of regression-based 244 

simulated 15-year GMST trends lies within the model-estimated 5–95% confidence 245 

interval of the observations (Fig. 2a). The regression-based simulated ensemble partially 246 

falls outside this interval during the cooling following the Agung eruption and the 247 
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subsequent warming recovery, as well as for start dates after 1990, which include the 248 

warming recovery following the Pinatubo eruption and the surface-warming hiatus (Fig. 249 

2a). Because the phases of volcanically driven cooling and subsequent warming 250 

coincide with larger regression spread due to ERF trend (Extended Data Fig. 4), we 251 

speculate that the implementation of volcanic forcing requires improvement in some 252 

climate models.  253 

 254 

 The ensemble spread of 62-year GMST trends is dominated by internal 255 

variability for start years early in the 20
th

 century, but for start years from 1910 onward, 256 

the deterministic spread increases and dominates for start years 1920 and later (Fig. 3). 257 

The 5–95% range of the regression residuals is 0.059 °C per decade, compared to a 258 

deterministic range of 0.032 °C per decade for start year 1900 and 0.093 °C per decade 259 

for start year 1951. The 5–95% deterministic range for all 62-year trends is 0.081 °C per 260 

decade, which is larger by one-third than the 5–95% range from internal variability. 261 

Nevertheless, we see a substantial influence of internal variability even for GMST 262 

trends over 62 years.  263 

 264 

 When observational uncertainty is accounted for – based again on the 5–95% 265 

confidence interval derived from quasi-random model spread – the ensemble-mean 266 

simulated 62-year GMST trend is consistent with the observed trend for all start years 267 

after around 1915; before that, the simulations tend to warm too little (Fig. 3a). After 268 

around 1945, the ensemble-mean simulated 62-year trend lies above the observed trend, 269 

although their difference is smaller than the range of internal variability. From around 270 

1925 onward, both the largest and the smallest individual regression-based simulated 271 
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trends lie outside the range defined by observations plus internal variability and would 272 

hence be judged to be inconsistent with observations (Fig. 3a). 273 

 274 

 The cause of this inconsistency can be traced almost entirely to the contribution 275 

to the regression by the ERF trend (Fig. 3). By contrast, the magnitude of the 276 

contributions by  and  is around 0.01 °C per decade or less for all start years (Figs. 3e 277 

and f). The deterministic ensemble spread in 62-year GMST trend is hence dominated 278 

by the spread in ERF throughout the 20
th

 century (Fig. 3). 279 

 280 

 281 

Discussion 282 

 283 

Viewed over the entire period since 1900, the differences between simulated and 284 

observed 15-year trends in GMST are dominated by internal variability and hence arise 285 

largely by coincidence, with a minor contribution from volcanic forcing that is 286 

sometimes too strong in some models (Fig. 2). Furthermore, we confirm and extend to 287 

all 15-year radiative-forcing trends since 1900, the AR5 assessment for the hiatus 288 

period
5
 that the CMIP5 models show little systematic bias when comparing against the 289 

AR5 best-estimate radiative-forcing trend
46

 – despite the substantial scatter about the 290 

ensemble mean (Extended Data Fig. 2).  291 

 292 

 The generally dominant role of internal variability in shaping simulated 15-year 293 

GMST trends implies that internal variability also dominates the difference between 294 

simulations and observations during the hiatus period. This conclusion sharpens 295 

considerably the relative roles of internal variability, forcing error, and response error, 296 
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compared to the corresponding AR5 assessment
5
. While there is no obvious 297 

contribution of forcing bias in the CMIP5 models (Extended Data Fig. 2), the diagnosed 298 

radiative forcing is uncertain
35

. Hence our analysis cannot rule out a small contribution 299 

from a systematic forcing bias
12,15,16,46-48

 in the models. In particular, volcanic forcing is 300 

estimated to contribute to the difference between simulations and observations by up to 301 

15% over 1998 to 2012 in ref. 12, with large uncertainty in the magnitude, a 302 

contribution that our method cannot detect. Furthermore, the period 1998 to 2012 stands 303 

out as the only one during which the HadCRUT4 15-year GMST trend falls entirely 304 

outside the CMIP5 ensemble (if only narrowly), suggesting that the CMIP5 models 305 

could be missing a cooling contribution from the radiative forcing during the hiatus 306 

period
12,15,16,46-48

, or that there has been an unusual enhancement of ocean heat uptake 307 

not simulated by any model
19

.   308 

 309 

For 62-year GMST trends since 1900, the difference between simulations and 310 

observations is dominated by the spread in radiative-forcing trend in the models, with a 311 

smaller yet substantial influence of internal variability (Fig. 3). Our simple regression-312 

based estimate of internal variability in 62-year GMST trends corresponds to a 17–83% 313 

range of ±0.11 °C for the temperature change over six decades, which is in excellent 314 

agreement with the value of ±0.10 °C that has been found for the period 1951 to 2010 315 

using much more sophisticated formal methods of detection and attribution
18

. 316 

 317 

There is scientific, political, and public debate regarding the question of whether 318 

the GMST difference between simulations and observations during the hiatus period 319 

might be a sign of an equilibrium model response to a given radiative forcing that is 320 

systematically too strong, or equivalently, of a simulated climate feedback  that is 321 
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systematically too small (cf., (3)). By contrast, we find no substantive physical or 322 

statistical connection between simulated climate feedback and simulated GMST trends 323 

over the hiatus or any other period, either for 15- or for 62-year trends (Figs. 2 and 3, 324 

Extended Data Fig. 4). The role of simulated climate feedback in explaining the 325 

difference between simulations and observations is hence minor or even negligible. By 326 

implication, the comparison of simulated and observed GMST trends does not permit 327 

inference about which magnitude of simulated climate feedback – ranging from 0.6 to 328 

1.8 Wm
-2

(°C)
-1

 in the CMIP5 ensemble – better fits the observations. Because observed 329 

GMST trends do not allow us to distinguish between simulated climate feedback that 330 

varies by a factor of three, the claim that climate models systematically overestimate the 331 

GMST response to radiative forcing from increasing greenhouse-gas concentrations 332 

appears to be unfounded.  333 

  334 

  335 
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Figure legends 492 

 493 

Figure 1. Simulated and observed 15-year GMST trends since 1900. (a) Joint relative 494 

frequency distribution of GMST trends as a function of start year and trend size, based 495 

on the full 114-member ensemble (in bins of 0.025 °C per decade; coloured shading). 496 

Circles mark the observed trend from the HadCRUT4 data set
27

. (b) Vertical cross-497 

section of (a) for start year 1927; vertical line marks the observed trend. (c) As (b) but 498 

for start year 1998. (d) Marginal distribution of simulated GMST trend as a function of 499 

trend size (coloured shading), obtained by time-averaging the joint distribution in (a); 500 

observed trend distribution (grey shading). (e) Frequency distribution of the rank that 501 

the observed trend would have as a member of the model ensemble (rank 1: observed 502 

trend smaller than all simulations; rank 115: observed trend larger than all simulations); 503 

bin size is five. All histograms are normalised such that their area integral is unity. In 504 

(a), each vertical cross section is normalised.   505 

 506 

Figure 2. Regression-based and observed 15-year GMST trends since 1900. (a) 507 

Shading: Joint relative frequency distribution of regression-based GMST trends (from 508 

equation (8)) as a function of start year and trend size (in bins of 0.025 °C per decade), 509 

based on the reduced 75-member ensemble for which forcing information is available. 510 

Thick red line marks the ensemble average; thick black line the observed trend; 511 

whiskers the 5–95% confidence range derived from (f). (b) Joint relative frequency 512 

distribution of regression result (from equation (8) but without the ensemble-mean 513 

trend) as a function of start year and trend size (in bins of 0.025 °C per decade). The p-514 

value of the regression has a median across start years of 0.075, based on the null 515 

hypothesis that all regression coefficients are zero. (c) Joint relative frequency 516 
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distribution of regression residual as a function of start year and trend size (in bins of 517 

0.025 °C per decade). (d) Vertical cross-section of (c) for start year 1927. (e) Vertical 518 

cross-section of (c) for start year 1998. (f) Marginal distribution of regression residual 519 

as a function of trend size, obtained by time-averaging the joint distribution in (c).  All 520 

histograms are normalised such that their area integral is unity. In (a)–(c), each vertical 521 

cross section is normalised. All ordinate ranges are identical. 522 

 523 

Figure 3. Regression-based and observed 62-year GMST trends since 1900. (a) 524 

Shading: Joint relative frequency distribution of regression-based GMST trends (from 525 

equation (8)) as a function of start year and trend size, based on the reduced 75-member 526 

ensemble for which forcing information is available. Thick red line marks the ensemble 527 

average; thick black line the observed trend; whiskers the 5–95% confidence range 528 

derived from the marginal distribution of (c). (b) Joint relative frequency distribution of 529 

regression result (from equation (8) but without the ensemble-mean trend) as a function 530 

of start year and trend size. All p-values of the regression are below 0.001, based on the 531 

null hypothesis that all regression coefficients are zero. (c) Joint relative frequency 532 

distribution of regression residual as a function of start year and trend size. (d) Joint 533 

relative frequency distribution of regression contribution from trend in effective 534 

radiative forcing. (e) Joint relative frequency distribution of regression contribution 535 

from climate feedback parameter . (f) Joint relative frequency distribution of 536 

regression contribution from ocean heat uptake efficiency . In all joint relative 537 

frequency distributions, GMST trend is collected in bins of 0.0125 °C per decade, and 538 

each vertical cross section is normalised such that its area integral is unity. All ordinate 539 

ranges are identical. 540 
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Extended Data figure and table legends 541 

 542 

Extended Data Figure 1. Observed and simulated time series of the anomalies in 543 

annually averaged global-mean surface temperature (GMST), from 1900 to 2012. All 544 

anomalies are differences from the 1961–1990 time-mean of each individual time series. 545 

GMST is the globally averaged merged surface temperature (2 m height over land and 546 

surface temperature over the ocean). The figure shows single simulations for the CMIP5 547 

models (thin lines), the multi-model ensemble mean (thick red line), and the 548 

HadCRUT4
27

 observations (thick black line). All model results have been sub-sampled 549 

using the HadCRUT4 observational data mask
11

. (a) 114 realisations from the CMIP5 550 

archive, obtained with 36 different models.  (b) Subset of 75 realisations with the 18 551 

different models for which information on effective radiative forcing (ERF) is 552 

available
35

 (see Extended Data Table 1). The two model ensembles are nearly 553 

indistinguishable. 554 

 555 

Extended Data Figure 2. Time series of trends in effective radiative forcing (ERF), as 556 

a function of start year. (a) 15-year trends; (b) 62-year trends. Thin coloured lines: 557 

individual models as diagnosed previously
35

; if multiple realisations were available for a 558 

model, the ensemble average of the individual diagnosed ERF time series for this model 559 

was given
35

 and is shown here. Thick red line: ensemble average over all models. Thick 560 

black line: best estimate from IPCC AR5 (ref. 46), including for illustration the 5–95% 561 

uncertainty range for the periods 1984–1998 (a) and 1951–2011 (b), taken from Fig. 562 

8.19 in ref. 46. These uncertainty ranges, both of which are around 0.2 Wm
-2

 per 563 

decade, do not take into account observational biases such as diagnosed in ref. 48. 564 

Despite the scatter of the CMIP5 ensemble trends, the ensemble mean is in good 565 
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agreement with the AR5 best estimate for almost all start years. The IPCC AR5 best-566 

estimate ERF sums time series of forcing across individual forcing terms. Individual 567 

time series of AR5 ERF were derived in different ways. Greenhouse-gas concentrations 568 

(observed or inferred), stratospheric aerosol optical depth, and total solar irradiance 569 

were used to derive estimates of radiative forcing using simple formulae. Surface albedo 570 

forcing was derived from estimated anthropogenic vegetation trends. Ozone and aerosol 571 

forcings were derived from chemical transport model results with aspects of the forcing 572 

constrained by other modelling approaches or observations, or both. ERF sums rapid 573 

adjustments with traditional radiative forcings (RFs). Most time series in AR5 were 574 

based on traditional radiative forcings, and only CO2 and aerosol forcings included an 575 

assessment of the rapid adjustment. In other cases ERF and RFs were assumed to be the 576 

same.  The AR5 ERF for the most recent 2000–2011 period included updated estimates 577 

of volcanic and solar forcing, taking into account the broader 2008/9 solar minimum 578 

and post-2000 volcanic activity
46

. These two cooling influences are not included in the 579 

CMIP5 ERF; it is hence surprising and unexplained why the CMIP5 ensemble-mean of 580 

15-year ERF trends lies below the best-estimate AR5 ERF trend for the latest start years 581 

in (a). 582 

 583 

Extended Data Figure 3. Joint relative frequency distribution as a function of GMST 584 

trend and ERF trend, for the reduced 75-member ensemble for which forcing 585 

information is available and all start years. (a) 15-year trends; bin sizes are 0.025 °C per 586 

decade and 0.05 Wm
-2

 per decade for GMST and ERF trend, respectively. (b) 62-year 587 

trends; bin sizes are 0.0125 °C per decade and 0.025 Wm
-2

 per decade for GMST and 588 

ERF trend, respectively. The “climate resistance”, , is given by  (refs. 35-37). 589 
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Each joint distribution is normalised such that its area integral is unity. Notice the 590 

different axes, reflecting the much tighter correlation of the 62-year trends. 591 

 592 

 593 

Extended Data Figure 4. Regression-based 15-year GMST trends since 1900. (a) Joint 594 

relative frequency distribution of regression result (from equation (8) but without the 595 

ensemble-mean trend) as a function of start year and trend size. The p-values of the 596 

regression have a median across start years of 0.075, based on the null hypothesis that 597 

all regression coefficients are zero. (b) Joint relative frequency distribution of regression 598 

contribution from trend in effective radiative forcing (ERF). (c) Joint relative frequency 599 

distribution of regression contribution from climate feedback parameter . (d) Joint 600 

relative frequency distribution of regression contribution from ocean heat uptake 601 

efficiency . In all joint relative frequency distributions, GMST trend is collected in 602 

bins of 0.025 °C per decade, and each vertical cross section is normalised such that its 603 

area integral is unity.  604 

 605 

Extended Data Table 1. CMIP5 models used in this study. The originating institutions 606 

and publications documenting the models are listed comprehensively in Table 9.A1 of 607 

ref. 5. 608 

 609 
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Model name Number of realisations Forcing available? 

ACCESS1-0 1 Y 

ACCESS1-3 1  

bcc-csm1-1 3 Y 

bcc-csm1-1-m 3 Y 

BNU-ESM 1  

CanESM2 5 Y 

CCSM4 6 Y 

CESM1-BGC 1  

CESM1-CAM5 3  

CMCC-CM 1  

CMCC-CMS 1  

CNRM-CM5 10 Y 

CSIRO-Mk3-6-0 10 Y 

FIO-ESM 3  

GFDL-CM3 5 Y 

GFDL-ESM2G 1 Y 

GFDL-ESM2M 1 Y 

GISS-E2-H 5  

GISS-E2-H-CC 1  

GISS-E2-R 6 Y 

GISS-E2-R-CC 1  

HadCM3 10  

HadGEM2-AO 1  

HadGEM2-CC 1  

HadGEM2-ES 1 Y 

IPSL-CM5A-LR 6 Y 

IPSL-CM5A-MR 3  

IPSL-CM5B-LR 1  

MIROC5 5 Y 

MIROC-ESM 3 Y 

MIROC-ESM- 1  

MPI-ESM-LR 3 Y 

MPI-ESM-MR 3  

MRI-CGCM3 3 Y 

NorESM1-M 3  
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