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Abstract

The problem of interpolating data in reproducing kernel Hilbert spaces is well
known to be ill-conditioned. In the presence of noise, regularisation can be ap-
plied to find a good solution. In the noise-free case, regularisation has the effect
of over-smoothing the function and few data points are interpolated. In this
paper an alternative framework, based on sparsity, is proposed for interpolation
of noise-free data. Iterative construction of a sparse sequence of interpolants is
shown to be well defined and produces good results.
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1 Introduction

The method of regularisation is usually applied to function approximation where
the available observations are noisy. Reproducing kernel Hilbert spaces (RKHS)
provide a framework for such problems. However, in certain cases we may be
interested in the interpolation problem whereby the observed data are assumed
to be virtually noise-free. This is the case in numerical quadrature or where we
seek to interpolate between solutions of simulations, for example in computa-
tional fluid dynamics, to reduce the high computational burden. Despite the
lack of noise, such problems may still be ill-conditioned owing to a lack of effec-
tive linear independence of the basis functions. Round-off errors in the computer
can then prevent the computation of interpolating solutions. An approach to
overcoming this is to consider a sparse subset of the available data.

In this paper a novel theoretical framework for sparsity is described which
is valid for both batch and iterative applications. In fact key results are given
which ensure that a sequence of iterative sparse solutions will be well defined
and convergent. Again, these results are novel in the context of RKHS. The
motivation for sparsity is, unlike previous approaches, as an alternative to reg-
ularisation. In fact we wish to avoid regularisation in interpolation applications
as the solution will be too smooth to interpolate the data. A simple itera-
tive scheme for constructing a sparse set of data points is proposed based on
minimising the condition number of the kernel (Gram) matrix.

Basic definitions and results on RKHS can be found in the papers (Aron-
szajin 1950; Wahba 1990). Additional useful references on RKHS which focus
on linear time series analysis include . For function approximation RKHS are
equivalent to the method of potential functions (Aizerman, Braverman, and
Rozonoer 1964) for which iterative solutions based on stochastic approximation
are well known (Fu 1968). More recently support vector machines and Gaus-
sian processes have been introduced (Vapnik 1998; Williams 1999) which can
be considered as particular examples of approximation in RKHS.

More generally, the approximation of functions in Hilbert spaces is described
in (Kreyszig 1978) together with properties of projection operators. More par-
ticularly, the theory of generalised inverses for linear operators widely used
in approximation theory can be found in (Groetsch 1978). For details on ill-
conditioning in discrete problems, learning with discrete data and singular sys-
tems see (Bertero, De Mol, and Pike 1985; Neumaier 1998; Hansen 1998). Fi-
nally, for a similar approach to iterative sparsity as described in this paper
see (Partington 1997) on matching pursuit in RKHS.

In the next section approximation from finite data in RKHS is described.
The solution to the approximation problem is then presented in Section 3. In
Section 4 the numerical stability of this solution is addressed. Sparse approxi-
mation solutions are analysed in detail in Section 5 with particular reference to
iterative schemes, and finally, an illustrative example is given.




2 Point Observations from Hilbert Spaces

We assume that we have some unknown function f of interest but that we are
able to observe its behaviour. The function belongs to some Hilbert space F
defined on some parameter set A". This set can be considered as an input set in
the sense that for € X, f(z) represents the evaluation of f at z.

A finite set of observa.tlons {2z}, of the function is made corresponding
to inputs {z;}]L,. It is assumed that the space of all possible observations is a
metric space Z (a metric space is required later in assessing the ill-conditioning
of the problem). Neglecting the effects of errors, the observations arise as follows

2 = L@f (1)

where {L;}[L, is a set of linear evaluation functionals, defined on F, which
associate real numbers to the function f. We can represent the complete set of

observations [z1, ..., zn]7 in vector form as follows
N
V= Lf="Y (Lif)ei (2)
=1

where e; € R¥ is the sth standard basis vector.
In general L; permits indirect observation (e.g. via derivatives of f), but we
are concerned with the case

%= fla) (3)

leading to the exact interpolation problem.

The approximation problem can then be formulated as follows (Bertero,
De Mol, and Pike 1985): glven a class F of functions, and a set {z}¥, of
values of linear functionals {L;}}_, defined on F, find in F a function f which
satisfies Eq. 1.

By assuming that F is a Hilbert space, and further, the {L;}{, are contin-
uous (hence bounded), it follows from the Riesz representation theorem that we
can express the observations as (Akhiezer and Glazman 1981)

F=i{fidde, $=L...,N (4)

where (-, )7 denotes the inner product in F. The {¢;}{\, are a set of functions
each belonging to F and uniquely determined by the functlonals {L}N,.

The approximation problem can now be stated as follows: given the Hilbert
space of functions F, the set of functions {¢;}}_, C F and the observations
{z:}{L,, find a function f € F such that Eq. 4 is satisfied. We now address the
case where F is a RKHS.

Formally a RKHS is a Hilbert space of functions on some parameter set X
with the property that, for each z € X, the evaluation functional L;, which
associates f with f(z;), L;f — f(x;), is a bounded linear functional (Wahba
1990). The boundedness means that there exists a scalar M > 0 such that

|Li f| = |f(z:)| < M||f||= for all f in the RKHS




where || - || is the norm in the Hilbert space. But to satisfy the Riesz represen-
tation theorem the L; must be bounded, hence any Hilbert space satisfying the
Riesz theorem will be a RKHS.

We use k; = k(z;,-) to refer to 4; (i.e. the evaluation of the function
k(zi,-) = ¢; at ; is kij = k(zi, z;)). The inner product (k(z;, -), k(z;, -) )= must
equal k(z;, z;) by the Riesz representation theorem. This leads to the following
important result: k(z;,z;) is positive definite since, for any zi,...,z, € X,
@iy v ,O‘,HER,

Za,:ajk(m;.a:j) = Z&iaj(k(mi;');k(wja'))f

2l-?
2
- [Settnff 20
The following is then a standard theorem on RKHS.

Theorem 1 (Aronszajin 1950) To every RKHS there corresponds a unique
positive-definite function (the reproducing kernel) and, conversely, given a positive-
definite function k on X x X we can construct a uniqgue RKHS of real-valued
functions on X with k as its reproducing kernel.

We also have.

Definition 1 (Parzen 1961) A Hilbert space F is said to be a reproducing
kernel Hilbert space, with reproducing kernel k, if the members of F are functions
on some set X, and if there is a kernel k on X x X having the following two
properties; for every x € X (where k(-,z2) is the function defined on X, with
value at z1 in X equal to k(zy,z2):

L k(@) €F; and
2.(f k(- -1'2))}' = f(:l:g)
for every f in F.

We can then associate with k(+,-) a unique collection of functions of the form
F() =) aik(zi,”) ()
i

for a; € R. A well defined inner product for this collection is (Wahba 1990)

<E aik(xi: ')) Zb.?k(w,jl )> =
i j -
Y aibj(k(zi, ), k(e ))F = ) aibik(zizj).
i,j i
For this collection, norm convergence implies pointwise convergence and we
can therefore adjoin all limits of Cauchy sequences of functions which are well

defined as pointwise limits (Wahba 1990). The resulting Hilbert space is then
a RKHS.




3 Approximation in RKHS

The functions k; associated with the N observations L; f define a (linearly in-
dependent) basis for the N dimensional subspace Fy C F. Therefore we can
express any g € Fn as

N
g= Zaiki. (6)
i=1

Fn is a closed subspace of F and therefore there exists a unique best approxi-
mation f € Fy to any f € F. In fact

T:FNGBT}{} (7)

where Fi represents the orthogonal complement of the closed space Fiy. We
must therefore have (f — f) L Fpn, ie.

(F = f k) =0, ¥k )
Expressing this using Eq. 6

N
<f—2ajk'j,k,~> =0 i=1,...,N (9)
Jj=1 T

giving the N conditions
(f ki)r —ai(ky, ki)r — ---— an(kn, ki)7 = 0. (10)

This is a nonhomogeneous system of IV linear equations in NV unknowns a;, ... ,ay
having a unique normal solution given by the solution of the matrix equation

Ka=2V (11)

where K is the Gram (or kernel) matrix defined by [K)i; = (ki, k;)# = k(zi, z;) =
ki; (using the basic results of RKHS). Similarly z/¥ is the vector of observations

with (f, ki) = Lif = z;. A unique solution exists since the k; are linearly in-

dependent and therefore the Gram determinant det(K’) # 0. Representing the

Gram determinant by G(ky, ..., ky) then the distance between f and f can be

expressed as follows

7 _G(fsklx"'xk‘N)
where, by definition,
G(f k1,...,kn) =
(k1, ) (ki k1) <o (k1 k)
oy 13)
(knv, ) (kn ki) oo (knykn)



where all inner products are in fact (-, ).
We can express the dual form to Eq. 6 using

N
F=) Kk, (14)
i=1
where K% = [K~1);;, as

N
Fay 5k (15)
i=1

Note that the k, k; satisfy (k%, k;)x = ;.

This dual representation is important as it demonstrates that the solution
depends continuously on the data, i.e. ||6f|lz — 0 when ||§2¥||z — 0 where
§zN represents a variation of 2"V and § f the corresponding variation of f.

4 Numerical Stability

In the previous section it was stated that the normal solution depends contin-
uously on the data. We will now explore this in more detail. Although we
are interested in the interpolation problem we assume that the observations are
affected by noise. Even in the so-called noise-free case the observations will
be affected by the numerical precision of the computer. If the problem is ill-
conditioned this limit in numerical precision can mean that no solution can be
found. However, we may desire a solution in any case. The analysis in this
section will guide us in how to construct such solutions.

In order to facilitate the analysis we introduce the adjoint operator L* de-
fined by

(Lf, 2Nz = (f, L* 2V}~ (16)

where Z C RY. The adjoint operator transforms the observation vector z"V into
an element of F, or more precisely the finite dimensional subspace Fy.

The inverse interpolation problem is then well known to be the solution of
the following equation

L*Lf = L*2N (17)

which is equivalent to the orthogonal projection solution previously described.
This can be shown using the identity L! = (L*L)TL* = L*(LL*)! (where {
denotes the matrix generalised inverse) and the results that (Dodd and Harrison

2001)

N
= Zkiei (18)
i=1




and
N
L=LI*= Y ety (19)
i,j=1

in a RKHS. The latter shows that LL* is equivalent to the kernel matrix K.
The solution for the interpolant is then given by

f=LtN = L2 (L) N = kKN (20)

for K full rank and k = [ky,..., kxn]. This is equivalent to Eq. 15.
Given that the we assume the solution is an exact interpolant we have

N =Lf (21)
and perturbing the observations with noise the solution is perturbed accordingly
2+ 82V = L(f + 6§). (22)

Subtracting z¥ = Lf from both sides the errors in the observations and inter-
polant are given by

§zN = Lif. (23)
from which
§f = Lta. (24)
Taking norms
I6F1l= < LT lI6z" |2 (25)
where || - || denotes the appropriate, (operator) norm. But from Eq. 21 we also
have
1112 < 121l (26)
from which
1 L
75 < Tl 0
Substituting into Eq. 25
B < pomonlie (28)

where ||L||||Z]| = C(L) is known as the condition number.




The operators L = LL* and L = L*L are self-adjoint, non-negative definite
operators in Z and F respectively (Edmunds and Evans 1987). We can therefore
form the eigenvalue-eigenvector decompositions of these operators. The positive
eigenvalues are the same and we assume they are arranged to form the non-
decreasing sequence

of 203> > af. (29)

We denote by v; the eigenvector of L associated with o?. Similarly the ith
eigenfunction of I is denoted by u;. The v; and u; form orthonormal bases in
Z and Fp respectively.

The set {a;,u;, v;}L, is called the singular system of L. As the u; form
an orthonormal basis for Fy we can express f in terms of this basis as fol-

lows (Bertero, De Mol, and Pike 1985)

N

J= Eaii(zN,w)zui- (30)

g=1

It can also be shown that ||L]| = @; and ||LT|| = an so that the condition
number (Bertero, De Mol, and Pike 1985)

C(L) = ai;- (31)

Returning to Eq. 28 then for a large condition number, C(L), small errors in 2%V

will result in large (but bounded) errors in the solution. So whilst the solution
strictly depends continuously on the data large errors are possible. In the case
where C(L) > 1, i.e. @1 > ay, the problem of computing f is ill-conditioned.
In the case where Z is the usual Euclidean space then the condition number is
the square root of the ratio between the largest and smallest eigenvalues of the
kernel matrix (Bertero, De Mol, and Pike 1985).

The ill-conditioning arises as the kernel basis functions are effectively linearly
dependent. This manifests itself in many small singular values a;. Because the
terms (2™, v;) z typically do not decay as fast as the singular values the solution
is dominated by those terms corresponding to the smallest o;. These are usually
found to be the most oscillatory in practice (Hansen 1998). Hence the solution
is dominated by highly oscillatory terms.

Various forms of regularisation have been proposed to overcome this prob-
lem. They have the basic characteristic of altering the singular values such that
those corresponding to the highly oscillatory components are damped. In the
case of singular value decomposition the factors 1/a; corresponding to those «;
below a threshold are simply set to zero. However we are interested in the case
of interpolation in the presence of, at most, very small amounts of noise. The
problem can still be ill-conditioned due to the effective linear dependence of the
kernel basis functions in the presence even of the round-off errors of the com-
puter. Any regularisation will have the effect of smoothing the approximation
so that it no longer interpolates the data.




5 Sparse Solutions

The (potential) numerical instability is caused by the effective linear dependence
of the kernel basis functions. Therefore by carefully selecting a subset of the
kernel functions these can be chosen to be more linearly independent resulting
once again in a stable problem. In this section various results will be shown
relating to such a sparse set.

Consider now a subset of the {k;}, {ki,...,kp}, consisting of m elements
where 1 <! < p < N. This set now spans a new subspace, denoted F,,, such
that F, C Fny C F. The direct projection of f onto JFy, follows exactly the
analysis in Section 3. The solution can then be expressed

Py biks (32)
iel

where I = {l,...,p} is the subset index set and the b; are found as previously
described using the reduced Gram matrix consisting of only terms k;;,4,j € I.

The direct projection of the approximation fy using the whole basis set onto
Fm can be found as follows. We require

(fv = fm k)7 =0, i€l (33)
which can be expressed as
<JEN - ijkj,k;‘> =0, i€l (34)
jeI x

But fy = z;le a;k; and hence

N
<Zajkj—ijkj,k,-> =0, iel (35)
=1 P

jel

which is a set of m homogeneous linear equations in m unknowns by, ... ,b,.
Expanding and rearranging

b;(k[, ]Ci>:,t‘ i s bp<kp1 kz’)ﬁ" =
a1(k1,ki)}'+"'+aN(kN|kz‘)}'- (36)

But the r.h.s. is, using Eq. 10, nothing more than (f, k;)r = z;. We therefore
arrive at the expected equation for the parameters b;

Kb = 2™ (37)

where the subscript m indicates that the Gram matrix and observation vector
are now over the subset of m points comprising I only.

The equivalence of the projection from f to f™ directly and that via fN is
encapsulated in the following (general) partial ordering theorem.




Theorem 2 Let P, and Py be projections defined on a Hilbert space H. Denote
by Hi = Pi(H) and Hy = Py(HM) the subspaces onto which H is projected by Py
and Py;. Then the following conditions are equivalent

1. PP, = PP, = Py;
2. Hy C Ha;
3. ||Pih|| < ||P2hl| for all h € H; and
4. PL< P,

Proof. See (Kreyszig 1978). O

Specialising to our case we have Py = P, : Frpy = Pu(F) and P, = Py :
Fn = Pn(F) where by construction F,, C Fn. We then have Py Py, =
PPy = Pp, ||Pnfl| € ||Pnf|| and Pr < Py. The latter is known as par-
tial ordering defined by P, < Py if and only if (Pn.f, f)z < (Pnf, f)r for all
ferF.

The following lemmas on positivity and difference of projections are required
in the subsequent theorem.

Lemma 1 For any projection P on a Hilbert space,
1. (Ph k) = ||PH|;
2. P>0; and
5. 1Pl <1
for all h € H. s
Proof. See (Kreyszig 1978). O
Lemma 2 Let Py and P> be projections on a Hilbert space H. Then:

1. the difference P = P, — Py is a projection on ‘H if and only if H1 C Ha,
where H; = P;(1); and

2. if P = P, — Py is a projection, P projects H onto Hq, where Hq is the
orthogonal complement of H1 in Ha.

Proof. See (Kreyszig 1978). O

Therefore P, — Py is a projection onto the orthogonal projection of F,,, in
Fn.

We now give a theorem (as presented in (Kreyszig 1978)) on the convergence
of iterative sparse solutions. The proof is also given as it contains a further useful
result on the norm of the differenc between the sparse approximation fm and
the full approximation fx .




Theorem 3 Let {P;} be a monotone increasing sequence of projections P; de-
fined on a Hilbert space H. Then {P;} is strongly operator convergent, say,
P;h — Ph for every h € H, and the limit operator P is a projection defined on
H.

Proof. Let i < j. By assumption, P; < P;, so that P;(#) C P;(#H) by
Theorem 2 and P; — P; is a projection by Lemma 2. Hence for every fixed
h € H we obtain by Lemma 1

|\Psh = Pihl|* = ||(P; — Pi)hl?
= ((R? - Pi)h's h)

= (Pjh1h>_ (Plh!h> (38)

|| Pihll* — (| iR, (39)

Now ||P;|| < 1 by Lemma 1, so that ||P;h|| < |||| for every j. Hence {||P;||}
is a bounded sequence of numbers which is also monotone by Theorem 2 since
{P;} is monotone. Hence {||P;||} converges. From this and Eq. 38 {||P;||} is
a Cauchy sequence. Since A is complete (by definition), {P;} converges. The
limit depends on h, say, Pjh — Ph. This defines an operator P on # which is
a projection. 0O i i

Consider now the set of iterated sparse solutions fi,..., fin where each so-
lution is derived from the previous one with the addition of a further basis
function, i.e. F; C -+ C Fp. The associated sequence of projection opera-
tors {F;} will be a monotone increasing sequence which is therefore strongly
operator convergent. In the limit then we have the sequence converging to Py
corresponding to all the available basis functions.

We can also quantify the error between f,,, and fy as follows. Using Eq. 39

I1Pxf = Pufl* = |IPnFI* = ||PmfI®
= |IFn I = |1 fmlf-
This can then be expressed in terms of the kernel functions as:
NI = 11l
2

2
— 1> bk

iel

1l

N
Z a,-k,-
=1

N
= Z aiaj(k;',kj>,7-' - Z bibj(kiikj)}_

fh=1 i€l
N
= Z G.iajkg'j - Z b,'bjkij.
i,j=1 i,jel

6 An Illustrative Example

The question is then how to select such a sparse set. Recall that the ill-
conditioning of the problem is determined by C(L) which is equal to the ratio

10




of the smallest and largest singular values of the Gram matrix (or square root
of the ratio of the corresponding eigenvalues).

The approach we therefore propose to construct the iterative sparse set is as
follows. The first data point is selected as that which minimises the error over
the training data. Successive data points are then added as those which minimise
the corresponding condition number of the kernel matrix. Data points are then
added until a threshold condition number Cp is achieved. The interpolant is
then estimated using this sparse set.

We consider the simple example of approximating a sinc function as used
in (Vapnik 1998) to demonstrate the.sparsity of the representations given by
support vector machines. One hundred random uniformly distributed samples
were generated in the interval [0, 1]. The sinc function was then evaluated using

__ sin(20z; — 10)

= T0z,; — 10 (20)

with z; = 1 for z; = 0.5. The RKHS chosen was that corresponding to the
kernel k(z,z') = exp(—oc||z — 2'||?) with ¢ = 100. The condition number of the
associated kernel matrix was approximately 2 x 10'® and no solution could be
computed using all the data. Various threshold condition numbers were then
investigated. With Cp = 100 the interpolant in Figure 1 was found which
utilises only 15 data points. We note that the data points are approximately
equally spaced. This spacing is determined by a sparsity trade-off between Cr
and the kernel width. In the case of evenly spaced data the separation of the
data points would in fact be equal arising due to equal splitting of the intervals
between already selected data points.

1

0.8r

0.6r

04r

0.2r

0 02 04 06 0.8 1
Figure 1: Typical predicted output (- -’) for the sparse solution and actual

true output (‘-’). The original data points (‘x’) and iterated sparse set are also
shown (‘o’).
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7 Concluding Remarks

A framework for function interpolation in the presence of finite data has been
presented based on the idea of RKHS. The function of interest is treated as be-
longing to a RKHS, which is uniquely determined by a positive definite function
called the reproducing kernel. In the case when the basis kernel functions are
linearly independent the solution is well-conditioned and can be calculated using
a simple matrix inverse. However, in the presence of even very small errors in
the data (such as resulting from the numerical precision of the computer) the
problem will be ill-conditioned if the kernels are effectively linearly dependent.
This is valid even in the case where we are interested in interpolation of noise-
free data. In order to overcome this problem and still interpolate the data it is
necessary to consider a sparse version of the data set. The set of such sparse
solutions can be constructed iteratively by addition of data points. Such a se-
quence of solutions is strongly convergent. Results were shown to demonstrate
the interpolation of noise-free data using an example iterative sparse scheme.
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