

This is a repository copy of *The relationship between early life modifiable risk factors for childhood obesity, ethnicity and body mass index at age 3 years.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83128/

Version: Accepted Version

Article:

Fairley, L, Santorelli, G, Lawlor, DA et al. (10 more authors) (2015) The relationship between early life modifiable risk factors for childhood obesity, ethnicity and body mass index at age 3 years. BMC Obesity, 2 (9).

https://doi.org/10.1186/s40608-015-0037-5

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

- 1 The relationship between early life modifiable risk factors for childhood obesity, ethnicity
- 2 and body mass index at age 3 years
- 3

4 Authors

- 5 Lesley Fairley¹, Gillian Santorelli², Debbie A Lawlor^{3, 4}, Maria Bryant^{1,2}, Raj Bhopal⁵, Emily S
- 6 Petherick¹, Pinki Sahota⁶, Darren C Greenwood⁷, Andrew J Hill⁸, Noel Cameron⁹, Helen Ball¹⁰,
- 7 Sally Barber¹, John Wright¹
- 8
- 9 1 Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust,
- 10 Bradford, UK.
- 11 2 Institute of Clinical Trials Research, University of Leeds, Leeds.
- 12 3 MRC Integrated Epidemiology Unit at the University of Bristol, Bristol, UK
- 13 4 School of Social and Community Medicine, University of Bristol, Bristol, UK
- 14 5 Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- 15 6 Institute of Health and Well-being, Leeds Metropolitan University, Leeds, UK
- 16 7 Division of Biostatistics, University of Leeds, Leeds, UK
- 17 8 Institute of Health Sciences, Leeds University School of Medicine, Leeds, UK
- 18 9 School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK
- 19 10 Parent-Infant Sleep Lab, Department of Anthropology, Durham University, Durham, UK
- 20

21 Author email addresses

- 22 Lesley Fairley Lesley.fairley@bthft.nhs.uk
- 23 Gillian Santorelli g.santorelli@leeds.ac.uk
- 24 Debbie A Lawlor D.A.Lawlor@bristol.ac.uk
- 25 Maria Bryant M.J.Bryant@leeds.ac.uk
- 26 Raj Bhopal <u>Raj.Bhopal@ed.ac.uk</u>
- 27 Emily S Petherick <u>Emily.Petherick@bthft.nhs.uk</u>
- 28 Pinki Sahota P.Sahota@leedsmet.ac.uk
- 29 Darren C Greenwood D.C.Greenwood@leeds.ac.uk
- 30 Andrew J Hill <u>A.J.Hill@leeds.ac.uk</u>
- 31 Noel Cameron <u>N.Cameron@lboro.ac.uk</u>
- 32 Helen Ball <u>h.l.ball@durham.ac.uk</u>
- 33 Sally Barber <u>Sally.Barber@bthft.nhs.uk</u>
- 34 John Wright John.Wright@bthft.nhs.uk

35

36 Corresponding Author

- 37 Lesley Fairley
- 38 Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS
- 39 Foundation Trust, Duckworth Lane, Bradford, UK, BD9 6RJ
- 40 Tel: 01274 383422
- 41 Fax: 01274 382640
- 42 Email: Lesley.fairley@bthft.nhs.uk
- 43
- 44 Key words
- 45 Body mass index, overweight, early childhood risk factors, ethnicity, Born in Bradford
- 46
- 47
- 48

49 Abstract

50 **Objective:** To describe differences in the prevalence of modifiable risk factors for childhood 51 obesity between children of White British and Pakistani origin and investigate the 52 association between these risk factors and childhood BMI measured at age 3 years. 53 Subjects: We used data from a sub-study of the Born in Bradford birth cohort with detailed 54 follow-up visits throughout early childhood. 987 participants with a BMI measurement at 55 age 3 were included; 39% were White British, 48% were of Pakistani origin and 13% were of 56 Other ethnicities. 57 Methods: Linear and Poisson regression models were used to assess the association between risk factors and two outcomes at age 3; BMI z-scores and child overweight. 58 59 **Results:** Compared to Pakistani mothers, White British mothers were more likely to smoke 60 during pregnancy, have higher BMI, breastfeed for a shorter duration and wean earlier, 61 while Pakistani mothers had higher rates of gestational diabetes and were less active. There 62 was no strong evidence that the relationship between risk factors and BMI z-score differed by ethnicity. There were associations between BMI z-score and maternal smoking (mean 63 difference in BMI z-score 0.33 (95%CI 0.13, 0.53)), maternal obesity (0.37 (0.19, 0.55)), 64 65 indulgent feeding style (0.15 (-0.06, 0.36)), lower parental warmth scores (0.21 (0.05, 0.36)) 66 and higher parental hostility scores (0.17 (0.01, 0.33)). Consistent associations between 67 these risk factors and child overweight were found. Mean BMI and the relative risk of being overweight were lower in children of mothers with lower parental self-efficacy scores and 68 69 who watched more hours of TV. Other risk factors (gestational diabetes, child diet, child 70 sleep, child TV viewing and maternal physical activity) were not associated with BMI.

71	Conclusions: Whilst the prevalence of risk factors that have been associated with childhood
72	greater BMI differ between White British and Pakistani the magnitude of their associations
73	with BMI are similar in the two groups.
74	
75	

77 Background

Risk of obesity begins in early childhood; in England over a fifth of children are overweight
or obese at school entry (aged 4-5 years).[1] At this age the prevalence of obesity is higher
in children of South Asian origin at 10.4% compared to the national average of 9.5%.[1]

82 At birth and in early infancy there is an inverse association between body mass index (BMI) 83 and adult coronary heart disease risk, however from age seven years a positive association 84 emerges that strengthens to adolescence and early adulthood when the magnitude is 85 similar to that seen for BMI measured in mid-life.[2, 3] These studies have however, largely 86 been conducted in White European origin populations. South Asian adults are at increased 87 risk of diabetes and cardiovascular disease [4-6] and South Asian children have been shown 88 to have a greater fat mass for a given BMI than their White European counterparts. [7] 89 Furthermore markers of diabetes and cardiovascular disease risk are increased in South 90 Asian children and adolescents. [8, 9]

91

92 It is important to understand whether modifiable characteristics are related to BMI in early 93 life in order to ensure that appropriate interventions are developed to promote 94 maintenance of healthy BMI levels into mid-childhood, when important relationships to 95 future coronary heart disease risk emerge. Furthermore, knowing whether associations differ between South Asian and White European origin infants is important in knowing 96 97 whether interventions should target different risk factors in these groups in order to reduce 98 the ethnic differences in risk. Epidemiological evidence has highlighted the importance of a 99 number of exposures in pregnancy and early life that are associated with the development 100 of obesity in childhood. Risk factors that have been associated with increased risk of

childhood overweight and obesity include maternal smoking, [10-12] maternal diabetes,
[10] maternal pre-pregnancy overweight, [11, 13] infant feeding (including breastfeeding
duration, age at introduction to solids and dietary intake), [10, 11, 14] parenting styles, [15,
16] sleep duration, [10], sedentary behaviour (including TV viewing time) and physical
activity. [10, 13] The prevalence of these modifiable risk factors and their association with
obesity have not been studied in pregnancy early childhood within children of South Asian
origin in the UK.

108

There are two aims of this paper; (i) to describe differences in the prevalence of potentially modifiable risk factors for childhood obesity between children of White British and Pakistani origin and (ii) to investigate the associations between these risk factors and childhood BMI at 3 years of age.

113

114 Methods and Procedures

115 Sample and participants

116 Born in Bradford (BiB) is a longitudinal multi-ethnic birth cohort study aiming to examine the 117 impact of environmental, social, psychological and genetic factors on maternal and child 118 health and wellbeing.[17] Bradford is a city in the North of England with high levels of socio-119 economic deprivation and ethnic diversity. Approximately half of the births in the city are to 120 mothers of South Asian origin. The majority of women were recruited while waiting for their 121 glucose tolerance test, a routine procedure offered to all pregnant women registered at the 122 Bradford Royal Infirmary, at 26-28 weeks gestation. For those consenting, a baseline 123 questionnaire was completed via an interview with a trained study administrator. The full 124 BiB cohort recruited 12,453 women during 13,776 pregnancies between 2007 and 2010 and

the cohort is broadly characteristic of the city's maternal population. The participants gave
informed consent for the data collection and ethical approval for the data collection was
granted by Bradford Research Ethics Committee (Ref 07/H1302/112).

128

129 A subsample of the BiB cohort (BiB1000) recruited between August 2008 and March 2009 130 were invited to participate in more detailed follow-up with visits at around 6, 12, 18, 24 and 131 36 months of age.[18] This subsample was recruited specifically to examine patterns and 132 aetiology of childhood obesity in order to aid development of a tailored obesity prevention 133 intervention. 1916 women were eligible to be in this sub-study and 1735 consented and 134 were included. Of these women, 1707 had a singleton birth and 28 had twin births. Analyses 135 presented here are restricted to singleton births only. Infant's weight and length/height 136 were measured at each follow-up visit when the mothers also completed an administered 137 questionnaire which collected information on a range of potentially modifiable risk factors 138 for childhood obesity. Approximately 75% of participants completed each follow-up 139 questionnaire, however not all women completed each questionnaire and data may be 140 missing at one time point but available at subsequent visits. Overall 47% of participants 141 completed all 5 follow-up visits and these participants were more likely to be Pakistani and 142 be mothers with higher levels of education. There were no differences by maternal BMI at 143 booking.

144

145 **Outcome measures**

Child BMI was calculated from weight and height data collected at the 36 month visit. BMI
was converted to age and sex adjusted z-scores relative to the WHO 2006 growth
standard.[19] Given the sample size of our study we did not have sufficient power to

examine the binary outcome of childhood obesity we examined associations of modifiable
risk factors with two outcomes at age 3: BMI z-scores analysed on a continuous scale and
infant overweight defined as having a BMI z-score greater than or equal to the 85th centile.
[20]

153

154 Risk factors

155 Risk factors were selected if they had been previously shown to be associated with

156 childhood obesity from the literature and it was plausible that they were modifiable.[10, 11,

157 13, 21] Risk factors that have been shown to be previously associated with childhood

158 obesity but were non-modifiable by interventions aimed at the family/child level were not

159 examined. A summary of risk factors considered in the current study, including the time

160 they were collected are shown in Table 1 and described in the following text.

161

Maternal smoking status was coded from self-report at the baseline questionnaire as smoker during pregnancy or non-smoker during pregnancy. Maternal height was measured at baseline and the mother's booking weight (approximately 12 weeks gestation) was extracted from the hospital maternity IT system. From these, maternal booking BMI was calculated and categorised according to the WHO definitions.[22] Gestational diabetes was defined as either a fasting glucose level ≥ 6.0mmol/l or a 2-hour postload glucose level of ≥

168 7.8mmol/l, according to WHO criteria.[23]

169

Duration of breastfeeding was ascertained at the 6 and 12 month follow-up visits and from
these responses a categorical variable was derived to capture the total duration of
breastfeeding for each infant. Information on age at weaning on to solids was collected at

the 6 and 12 month visits; an indicator of whether or not this was before 17 weeks (i.e. < 4
months) was created based on current recommendations.[24]

175

176 Infant dietary data was collected at 12 months using a validated food frequency

177 questionnaire from the Southampton Women's cohort study [25] which was modified for

178 use in the multi-ethnic population of Bradford. From this, intake of total daily protein (g)

179 and total daily energy (kcal) were calculated.

180

181 The caregiver's feeding styles questionnaire was completed at the 24 month visit.[26] This

182 comprises several questions that measure parental styles of feeding along two dimensions,

183 demandingness and responsiveness, and parents were categorised into one of four feeding

184 styles based on their scores: authoritative (high demandingness / high responsiveness),

185 authoritarian (high demandingness / low responsiveness), indulgent (low demandingness /

186 high responsiveness) and uninvolved (low demandingness / low responsiveness).

187

188 Parents self-rated their parenting behaviour when the child was 24 months, using questions 189 from another large cohort study in Australia, [27] and three domains of parenting practice 190 were derived from the responses; parental self-efficacy, parental warmth and hostile 191 parenting. Most women rated themselves as being self-efficacious, warm and not hostile. 192 Because of this skewed distribution, scores for each domain were summed and divided into 193 quintiles. For parental self-efficacy and parental warmth those in the lowest quintile were 194 classified as having parental self-efficacy scores or parental warmth scores in the lowest 195 quintile. For parental hostility those in the highest quintile were classified as having parental 196 hostility scores in the highest quintile.

198	Information on infant and maternal TV viewing time was collected at 24 months using
199	questions from the EPIC Norfolk EPIQ-2 questionnaire and coded to calculate an average
200	viewing time per day for both mothers and infants.[28]
201	
202	Infant sleep duration during the day and night was collected at the 24 month visit, from this
203	total sleep duration per 24 hours was calculated.
204	
205	Mother's physical activity was measured at 18 months using the methodology of the Active
206	Australia survey.[29] Activity levels were coded into three categories based on self-reported
207	activity time, sedentary (no activity), insufficiently active (<150 minutes of activity per week)
208	and sufficiently active (≥150 minutes of activity per week).
209	
210	Other characteristics
211	Mother's self-defined ethnicity was collected in the baseline questionnaire and used to
212	define the ethnicity of her offspring using the same ethnic group classification as the 2001
213	UK Census [30] and categorised into White British, Pakistani and Other. The numbers of
214	participants in the other ethnic groups were too small to analyse separately and were
215	combined.
216	
217	Highest maternal educational qualification was collected from the baseline questionnaire.
218	Maternal age, infant sex, parity, birthweight, gestational age and mode of delivery were
219	obtained from the hospital maternity system.
220	

221 Statistical Methods

222 We examined the distribution of the risk factors for all ethnic groups and then compared 223 the distributions between the White British and Pakistani ethnic groups only, using chi-224 squared and t-tests as appropriate. We used univariable and multivariable linear regression 225 to examine the association between each risk factor and BMI z-scores. We used univariable 226 and multivariable Poisson regression with robust error variances as described by Zou [31] to 227 determine the relative risk between each risk factor and the binary outcome of child 228 overweight. For each outcome and risk factor we considered two models: unadjusted and 229 adjusted for covariables. For pregnancy risk factors this included ethnicity, child sex, 230 maternal education, maternal age and parity. For postnatal risk factors, we additionally 231 adjusted for birthweight, gestational age and mode of delivery. Finally we fitted a fully 232 adjusted model that included all risk factors and covariables. 233 234 From the fully adjusted multivariable linear regression model we estimated the variance 235 inflation factor (VIF) to assess multicollinearity among the risk factors. 236 237 We examined possible ethnic differences in associations with BMI z-scores by repeating the 238 fully adjusted multivariable linear regression analysis for this outcome by examining 239 statistical evidence for a difference between the two (i.e. interaction tests between 240 ethnicity and risk factor). We then developed models separately in White British and 241 Pakistani origin children. We did not do these analyses for the binary outcome because of 242 limited statistical power.

243

BMI data at age 3 were available for 987 children. Of these, complete data on all risk factors
and potential confounders were available for 669 participants (68%). We used multiple
imputation using chained equations [32] to impute for missing values for risk factors and
confounders using 50 imputed data sets. We carried out sensitivity analysis by performing
complete case analysis and the results showed similar patterns (results available from
author on request).

250

251 Results

252 Table 2 shows the prevalence of risk factors overall and by ethnic group. On average, 253 compared to Pakistani children, White British children were more likely to have mothers 254 that smoked during pregnancy, have mothers with higher rates of obesity at booking, be 255 breastfed for a shorter duration, be weaned before 17 weeks, have higher daily intake of 256 protein and energy, have mothers with an indulgent caregiver's feeding style and have 257 mothers that watch more hours of TV per day. Pakistani mothers were more likely to have 258 gestational diabetes, have parental warmth scores in the lowest quintile and be less active 259 than White British mothers, and Pakistani children were more likely to watch more hours of 260 TV than White British children.

261

262 Overall the mean BMI z-score was 0.54 (SD 1.05) at age 3 and 30% of the children in the 263 study were overweight. BMI z-scores were higher for White British children compared to 264 Pakistani children (mean z-scores 0.74 (SD 0.90) and 0.40 (SD 1.14) respectively) and the 265 percentage of children classified as overweight was also higher (37% for White British and 266 27% for Pakistani).

267

268 Table 3 shows differences in BMI z-scores for each of the risk factors. BMI z-scores were 269 higher in children who had mothers that smoked during pregnancy, were overweight or 270 obese at booking, breastfed between 1 day and 1 month (compared to those who never 271 breastfed), and had an indulgent caregiver's feeding style, lower parental warmth scores 272 and higher parental hostility scores. BMI z-scores were lower in children of mothers with 273 parental self-efficacy scores in the lowest quintile and mothers who watched more hours of 274 TV. 275 276 The variance inflation factor values in the fully adjusted model were all less than 5 indicating 277 that multicollinearity was not present in these analyses. 278 279 Table 4 shows the risk of the child being overweight at age 3 years for each of the included

risk factors. We found similar pattern of associations between the risk factors and

281 overweight and we did between the risk factors and mean BMI.

282

283 Multivariable adjusted associations of each risk factor with BMI z-scores were similar in

284 White British and Pakistani infants (Table 5), and there was no strong statistical evidence

that the associations differed by ethnicity with the exception of breastfeeding (all p-values

for interaction ≥0.1, except p-value for breastfeeding and ethnicity interaction=0.03). White

287 British mothers who breastfed between 1 and 4 months had infants with lower BMI z-

scores, while Pakistani mothers who breastfed for that duration had infants with higher BMI

289 z-scores compared to Pakistani mothers who never breastfed.

290

291 Discussion

292 In this bi-ethnic study we found the prevalence of early life risk factors for childhood obesity 293 differed between mothers of White British and Pakistani ethnicity. However, the 294 associations between these risk factors and BMI at age 3 were similar in the two ethnic 295 groups. Undertaking analyses on both ethnic groups combined, both mean BMI and the 296 relative risk of being overweight were greater at age 3 in children whose mothers had 297 higher BMI at booking clinic, smoked during pregnancy, had more indulgent feeding style 298 and a more hostile or less warm parenting style. Mean BMI and the relative risk of being 299 overweight were lower in children of mothers with lower parental self-efficacy and mothers 300 who watched more hours of TV.

301

302 Consistent with other studies, we found that children of mothers who smoked during 303 pregnancy were more likely to have higher BMI z-scores and greater risk of overweight, [10-304 12] as were children of overweight and obese mothers. [11, 13] Whether this association is 305 causal or not is unclear. Studies comparing maternal smoking with offspring BMI or 306 overweight, to the same association of paternal smoking with this outcome, have found the 307 two to be similar, suggesting that the maternal association may reflect confounding by 308 shared familial characteristics. [33-35] This is also supported by a recent within sibling study. 309 [36]

310

We found some aspects of feeding and parenting style were associated with the child's BMI. Parents with an 'indulgent' feeding style had children with higher BMI z-scores and more likely to be overweight. An indulgent feeding style is a permissive feeding style that uses less controlling feeding practices. These findings are consistent with other studies which have also found that children of indulgent parents had higher BMI z-scores. [16, 26] we also

316 found that children of parents with lower parental warmth and higher hostile parenting 317 styles were more likely to be overweight. In contrast infants of parents with lower self-318 efficacy scores had lower BMI z-scores and reduced risk of being overweight. Different 319 measures and constructs of parenting styles have been studied in the literature, however 320 evidence linking the specific domains analysed in the current study to childhood BMI is 321 scarce. Some studies have looked at the associations with dietary and activity behaviours. 322 [15, 37] and evidence suggests that children raised by authoritative parents had lower BMI 323 levels compared to children who were raised with other styles. [15] The evidence evaluating 324 the relationship between maternal self-efficacy and child weight outcomes are scarce, 325 although, existing evidence does suggest that greater maternal self-efficacy has a more 326 protective effect against obesity related behaviours. [37-39] Many of these studies are 327 cross-sectional, conducted on small samples or on children who are overweight or obese; 328 therefore further replication of our findings in other studies is needed.

329

330 The association of breastfeeding with childhood BMI has been examined in a number of 331 observational studies. Systematic reviews suggest a protective effect of breast feeding, but 332 with heterogeneity between studies. [40] [10] [11] We did not find a protective association 333 of breastfeeding in our study, and indeed found that mean BMI and risk of overweight were 334 greater amongst infants who were breastfed in the first year of life compared to those who were never breastfed, and some evidence that these associations differed by ethnic group. 335 336 Randomised controlled trial evidence and cross-cohort comparisons suggest that the 337 observational associations of breast feeding with BMI are not causal, [41, 42] and it is 338 possible that our findings represent random variation around a true null association that has

to date has not been apparent in systematic reviews because of publication bias, which isdifficult to test in meta-analyses of observational studies.

341

342	We found that children of mothers who watched more hours of TV had lower BMI z-scores
343	and a reduced risk of being overweight, however there was no strong evidence of
344	association between child TV viewing time and BMI. Previous research has shown a positive
345	association between child TV viewing time and childhood overweight and obesity; [13]
346	however little research has been conducted in this young age group, or investigating the
347	association between maternal viewing and child weight outcomes. There are difficulties in
348	accurately measuring screen time in children and accurate measurement to predict the total
349	number of minutes of TV time per day may require a more comprehensive, prospective
350	questionnaire or diary, [43] which was not feasible in this cohort.
351	
352	In this study we did not find strong evidence of an association between gestational diabetes,
353	age at weaning, infant energy intake, infant protein intake, child sleep duration and mean
354	BMI or risk of overweight at age 3 despite evidence of associations between these risk
355	factors and BMI in other studies. [10, 11, 14] However many of these studies were
356	conducted in older age groups and in non-UK populations with different ethnic
357	compositions to the Born in Bradford study population.

358

359 Strengths and limitations

360 The main strength of this paper is that we have considered several key modifiable risk

361 factors that have been collected longitudinally during pregnancy and early childhood in a bi-

362 ethnic cohort. To our knowledge this is the first time these risk factors have been studied in

aearly life in children of Pakistani origin. We were able to assess the associations between the
risk factors and BMI z-scores separately in the White British and Pakistani groups, in
addition to adjusting for several important maternal and child characteristics in our models.
We used multiple imputation techniques to improve the integrity of our results as complete
data were only available for 69% of our sample; results for the imputed analyses and
complete case analyses showed similar patterns.

369

One of the limitations of our analyses is multiple testing, we considered many risk factors
and may have found some associations to be statistically significant through chance alone,
however in reporting our results we have focused on the magnitude and direction of the
effect sizes and not only on the p-values.

374

375 We were unable to assess whether associations of the binary outcome of overweight 376 differed by ethnic group due to limited statistical power. However, for the main analyses it 377 can be seen that associations with BMI z-score as a continuous variable and with it split into 378 a binary variable of overweight or not, are consistent with each other and therefore the 379 finding that in general associations are consistent in the two groups for BMI z-score suggests 380 they are also likely to be so for overweight. We also had inadequate statistical power to 381 examine associations with obesity separate from overweight. Though, again given the 382 associations with BMI z-scores, we assume that for risk factors found to be associated with 383 increased BMI z-score and overweight, they would also be associated with increased risk of 384 obesity. Our analyses are observational and we cannot assume causality for any of the 385 associations we have found.

386

387	Several of the risk factors were collected at multiple time periods during early childhood,
388	however it was not clear which period is the most influential, and this may differ for each
389	risk factor. The correlations between the risk factors collected over time were low and the
390	distributions of these risk factors changed between 6 months and 2 years. We used the risk
391	factor collected closest in time to the outcome as we were unable to derive a meaningful
392	average over early childhood. Our results may be influenced by reverse causality, although
393	we considered risk factors collected up to age 2 and outcomes at age 3 so this is unlikely.
394	
395	Follow-up of this cohort to examine the relationship between these risk factors and longer
396	term health outcomes is important.
397	
398	Conclusion
399	In conclusion, whist the prevalence of risk factors that have been associated with childhood
400	greater BMI differ between White British and Pakistani groups the magnitude of their
401	associations with BMI are similar in the two groups. This work adds to the literature on the
402	association of pregnancy and early life exposures and later childhood BMI and may be useful
403	to identify suitable targets for obesity prevention interventions in childhood.
404	

406 Abbreviations

- 407 BMI Body mass index
- 408 VIF Variance inflation factor
- 409

410 **Competing interests**

- 411 The authors declare they have no competing interests
- 412

413 Acknowledgments

- 414 Born in Bradford is only possible because of the enthusiasm and commitment of the Children and
- 415 Parents in BiB. We are grateful to all the participants, health professionals and researchers who have
- 416 made Born in Bradford happen.
- 417
- 418 This paper presents independent research commissioned by the National Institute for Health
- 419 Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference
- 420 Number RP-PG-0407-10044). DAL works in a unit that receives funding from the UK Medical
- 421 Research Council and the University of Bristol. The views expressed are those of the author(s) and
- 422 not necessarily those of the NHS, the NIHR or the Department of Health.

423 424 Collaborators

- 425 The Born in Bradford Childhood Obesity Scientific Group comprises all named authors and Amanda
- 426 Farrin, Carolyn Summerbell, Neil Small, Pauline Raynor and Rosie McEachan

427

428 Author contributions

- 429 LF, GS, DAL, MB, ESP and JW designed the study, LF analysed the data with support from GS. LF
- 430 drafted the manuscript. All authors contributed to and have approved the final manuscript. All
- 431 members of the Born in Bradford Childhood Obesity Scientific Group designed and managed the
- 432 cohort study from which the data were derived.
- 433
- 434
- 435
- 436

437		Reference List
438		
439	1.	The Health and Social Care Information Centre. National Child Measurement
440		Programme: England, 2011/12 school year. In; 2012.
441	2.	Owen CG, Whincup PH, Orfei L, Chou QA, Rudnicka AR, Wathern AK, et al. Is body
442		mass index before middle age related to coronary heart disease risk in later life?
443		Evidence from observational studies. Int J Obes (Lond) 2009,33:866-877.
444	3.	Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of
445		coronary heart disease in adulthood. N Engl J Med 2007, 357 :2329-2337.
446	4.	NHS Health and Social Care Information Centre. Health Survey for England 2004:
447		The Health of Minority Ethnic Groups. In; 2005.
448	5.	Barnett AH, Dixon AN, Bellary S, Hanif MW, O'hare JP, Raymond NT, et al. Type 2
449		diabetes and cardiovascular risk in the UK south Asian community. <i>Diabetologia</i>
450		2006, 49 :2234-2246.
451	6.	Wild SH, Fischbacher C, Brock A, Griffiths C, Bhopal R. Mortality from all causes and
452		circulatory disease by country of birth in England and Wales 2001-2003. J Public
453	-	Health (Oxt) 2007, 29 :191-198.
454	7.	Nightingale CM, Rudnicka AR, Owen CG, Cook DG, Whincup PH. Patterns of body
455		size and adiposity among UK child Least And health Study in England (OLASE Study)
456		white European origin: Unite Heart And health Study in England (UHASE Study).
437 459	0	IIII.J.Epideiliiloi. 2011, 40 .33-44. Whineun PH, Gila, IA, Panacesta O, Sovmour C, Millor G I, Alberti KG, et al. Early
400	0.	willingup FR, Gily JA, Fapacosia O, Seymoul O, Miller GJ, Alberti KG, <i>et al.</i> Early
460		British South Asian and white children <i>BM</i> . (2002 324 :635
461	9	Whincup PH Nightingale CM Owen CG Budnicka AB Gibb L McKay CM <i>et al</i>
462	0.	Farly emergence of ethnic differences in type 2 diabetes precursors in the UK: the
463		Child Heart and Health Study in England (CHASE Study). <i>PLoS Med</i>
464		2010. 7 :e1000263.
465	10.	Monasta L. Batty GD. Cattaneo A. Lutie V. Ronfani L. Van Lenthe FJ. et al. Early-life
466		determinants of overweight and obesity: a review of systematic reviews. Obes. Rev.
467		2010, 11 :695-708.
468	11.	Weng SF, Redsell SA, Swift JA, Yang M, Glazebrook CP. Systematic review and
469		meta-analyses of risk factors for childhood overweight identifiable during infancy.
470		Arch Dis Child 2012, 97 :1019-1026.
471	12.	Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child
472		overweight: systematic review and meta-analysis. Int J Obes (Lond) 2008, 32 :201-
473		210.
474	13.	Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life
4/5		risk factors for obesity in childhood: cohort study. BMJ 2005,330:1357.
4/6	14.	Pearce J, Langley-Evans SC. The types of food introduced during complementary
4//		teeding and risk of childhood obesity: a systematic review. Int J Obes (Lond)
4/8	15	2013, 37 :477-485. Sladdana FE, Cararda SM, Thiis C, da Virias NIK, Kramara SD, Canaral naranting
479	15.	sieudens EF, Gerarus Sivi, Thijs C, de Vies NK, Kremers SF. General parenting,
40U 401		2011 6:012 27
401	16	Hurley KM Cross MB Hughes SO A systematic review of responsive feeding and
483	10.	child obesity in high-income countries ./ Nutr 2011 141 :495-501
484	17	Wright J Small N Baynor P Tuffnell D Bhopal B Cameron N <i>et al</i> Cohort profile
485		The Born in Bradford multi-ethnic family cohort study. <i>Int.J. Epidemiol.</i> 2012.
486	18.	Brvant M. Santorelli G. Fairley L. West J. Lawlor DA. Bhopal R. et al. Design and
487		characteristics of a new birth cohort to study the early origins and ethnic variation of
488		child obesity: the BiB1000 study. Longitudinal and Life Course Studies 2013.4:119-
489		135.
490	19.	WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards:
491		Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body

492 mass index-for-age: Methods and development. In. Geneva: World Health 493 Organisation; 2006. 494 Dinsdale H, Ridler C, L. E. A simple guide to classifying body mass index in children. 20. In. Oxford: National Obesity Observatory; 2011. 495 496 Han JC, Lawlor DA, Kimm SY, Childhood obesity. Lancet 2010.375:1737-1748. 21. 497 22. World Health Organisation. Obesity: preventing and managing the global epidemic. 498 Report of a WHO consultation. In. Geneva: World Health Organisation; 2000. 499 23. WHO. Definition, Diagnosis and Classification of Diabetes Mellitus and its 500 Complications. In: Report of a WHO Consultation. Part 1: Diagnosis and 501 Classification of Diabetes Mellitus. Geneva: WHO; 1999. 502 Department of Health. Weaning and the weaning diet: report of the working group on 24. 503 the weaning diet of the Committee on Medical Aspects of Food Policy. In. London: 504 HMSO: 1994. 505 25. Marriott LD, Robinson SM, Poole J, Borland SE, Godfrey KM, Law CM, et al. What 506 do babies eat? Evaluation of a food frequency questionnaire to assess the diets of 507 infants aged 6 months. Public Health Nutr 2008, 11:751-756. 508 Hughes SO, Power TG, Orlet Fisher J, Mueller S, Nicklas TA. Revisiting a neglected 26. 509 construct: parenting styles in a child-feeding context. Appetite 2005,44:83-92. 510 27. Australian Institute of Family Studies. Growing up in Australia: The Longitudinal 511 Study of Australian Children: 2005-2006 Annual Report. In. Melbourne: Australian Institute of Family Studies; 2006. pp. 1-44. 512 513 28. Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE. Validity and 514 repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int J Epidemiol 515 2002.31:168-174. 516 29. Australian Institute of Health and Welfare (AIHW). The Active Australia Survey: a 517 Guide and Manual for Implementation, Analysis and Reporting. In. Canberra: AIHW; 518 2003. 519 30. Office for National Statistics. Ethnic Group Statistics: A guide for the collection and 520 classification of ethnicity data. In. London: The Stationary Office; 2003. 521 31. Zou G. A modified poisson regression approach to prospective studies with binary 522 data. Am.J.Epidemiol. 2004,159:702-706. 523 32. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues 524 and guidance for practice. Stat Med 2011,30:377-399. 525 Leary SD, Smith GD, Rogers IS, Reilly JJ, Wells JC, Ness AR. Smoking during 33. 526 pregnancy and offspring fat and lean mass in childhood. *Obesity (Silver Spring)* 527 2006,14:2284-2293. 528 34. von Kries R, Bolte G, Baghi L, Toschke AM, Group GMES. Parental smoking and 529 childhood obesity--is maternal smoking in pregnancy the critical exposure? Int J 530 Epidemiol 2008,37:210-216. 531 35. Howe LD, Matijasevich A, Tilling K, Brion MJ, Leary SD, Smith GD, et al. Maternal 532 smoking during pregnancy and offspring trajectories of height and adiposity: 533 comparing maternal and paternal associations. Int J Epidemiol 2012.41:722-732. 534 Iliadou AN, Koupil I, Villamor E, Altman D, Hultman C, Langstrom N, et al. Familial 36. 535 factors confound the association between maternal smoking during pregnancy and 536 young adult offspring overweight. Int J Epidemiol 2010, 39:1193-1202. 537 37. Campbell K, Hesketh K, Silverii A, Abbott G. Maternal self-efficacy regarding 538 children's eating and sedentary behaviours in the early years: associations with children's food intake and sedentary behaviours. Int J Pediatr Obes 2010,5:501-508. 539 540 Wright JA, Adams WG, Laforge RG, Berry D, Friedman RH. Assessing parental self-38. 541 efficacy for obesity prevention related behaviors. Int J Behav Nutr Phys Act 542 2014,11:53. 543 39. Taveras EM, Mitchell K, Gortmaker SL. Parental confidence in making overweight-544 related behavior changes. *Pediatrics* 2009,**124**:151-158.

- 545 40. Beyerlein A, von Kries R. Breastfeeding and body composition in children: will there
 546 ever be conclusive empirical evidence for a protective effect against overweight? *Am*547 *J Clin Nutr* 2011,94:1772S-1775S.
- 548 41. Brion MJ, Lawlor DA, Matijasevich A, Horta B, Anselmi L, Araujo CL, *et al.* What are
 549 the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from
 550 comparing high-income with middle-income cohorts. *Int J Epidemiol* 2011,**40**:670551 680.
- Kramer MS, Matush L, Vanilovich I, Platt RW, Bogdanovich N, Sevkovskaya Z, et al.
 Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: evidence from a large randomized trial. *Am J Clin Nutr* 2007,**86**:1717-1721.
- 556 43. Bryant MJ, Lucove JC, Evenson KR, Marshall S. Measurement of television viewing 557 in children and adolescents: a systematic review. *Obes Rev* 2007,**8**:197-209.
- 558 559

560

562 Tables

564 Table 1: Summary of risk factors, method and time of data collection and category level in analysis

variable		collection	Category level in analysis
	Pregnancy risk factors		
	Maternal smoking during	Self-report at 26-28 weeks	No, Yes
	pregnancy	gestation	
	Gestational diabetes	Extracted from maternity notes	No, Yes
	Maternal booking BMI	Weight at booking from maternity notes, height measured at 26-28 weeks gestation	Underweight/normal (BMI≤24.9) Overweight (BMI 25-29.9) Obese (BMI≥30)
	Postnatal risk factors		
	Duration of any breastfeeding	Self-report at 6 and 12 months	Never, 1 day to <1 month, 1 to 4 months, 4+ months
	Age at weaning on to solids	Self-report at 6 and 12 months	>=17 weeks, <17 weeks
	Infant's total energy intake	Food Frequency Questionnaire	Kcals per day: continuous
	per day	(FFQ) at 12 months	
	Infant's total protein intake per day	FFQ at 12 months	Grams per day: continuous
	Caregivers feeding style	Questionnaire at 24 months	Authoritative, Authoritarian,
			Indulgent and Uninvolved
	Parenting style – Parental self-efficacy	Questionnaire at 24 months	High, lower scores (bottom quintile)
	Parenting style – Parental warmth	Questionnaire at 24 months	High, lower scores (bottom quintile)
	Parenting style – Parental hostility	Questionnaire at 24 months	Low, higher scores (top quintile)
	Infant TV viewing time	Questionnaire at 24 months	Hours per day: None, 0-1hr, 1-2hrs, 2+ hours
	Maternal TV viewing time	Questionnaire at 24 months	Hours per day: 0-2hrs, 2-4hrs, 4+hrs
	Total infant sleep duration	Questionnaire at 24 months	Hours per day: <11hrs, 11-12hrs, 12-13hrs, 13+hrs
	Mothers physical activity	Questionnaire at 18 months	Sedentary, insufficiently active, sufficiently active

569 Table 2: Early life risk factors overall and by ethnic group (White British and Pakistani), % or mean

(SD)				
Risk factor	All ^a (N=987)	White British (N=382)	Pakistani (N=474)	P ^b
Pregnancy risk factors				
Smoked during pregnancy (%)	N=986	N=382	N=474	< 0.001
No	85.2	72.3	96.0	
Yes	14.8	27.7	4.0	
Gestational diabetes (%)	N=967	N=376	N=461	0.001
No	89.7	92.8	85.9	
Yes	10.3	7.2	14.1	
Maternal booking BMI category (%)	N=949	N=366	N=458	0.003
Underweight /normal	51.2	45.1	55.2	
Overweight	30.1	30.9	29	
Obese	18.7	24.0	15.7	
Postnatal risk factors				
Duration of any breastfeeding (%)	N=987	N=382	N=474	<0.001
Never	27.0	36.1	23.4	
1 day to 1 month	26.3	29.6	26.2	
1 to 4 months	18.5	13.9	21.7	
4+ months	28.2	20.4	28.7	
Weaned <17 weeks (%)	N=924	N=363	N=440	<0.001
No	73.8	63.6	81.4	
Yes	26.2	36.4	18.6	
Daily protein intake, mean (SD)	N=866	N=330	N=417	0.001
g per day	38.0 (17.2)	40.9 (17.6)	36.5 (17.0)	
Daily total energy intake, mean (SD)	N=866	N=330	N=417	0.003
Kcal per day	1105 (433)	1169 (445)	1075 (412)	
Caregivers Feeding Style (%)	N=904	N=343	N=443	<0.001
Authoritative	14.7	15.2	14.4	
Authoritarian	32.4	21.3	39.3	
Indulgent	34.8	48.1	26.0	
Uninvolved	18.0	15.5	20.3	
Parental self-efficacy (%)	N=899	N=341	N=440	0.49
High	80.0	80.6	78.6	
Lower scores (bottom quintile)	20.0	19.4	21.4	
Parental warmth (%)	N=897	N=341	N=439	0.001
High	73.4	79.8	69.5	
Lower scores (bottom quintile)	26.6	20.2	30.5	
Hostile parenting (%)	N=896	N=341	N=439	0.42
Low	76.8	75.7	78.1	

Risk factor	All ^a (N=987)	White British (N=382)	Pakistani (N=474)	P ^b
Higher scores (top quintile)	23.2	24.3	21.9	
Infant TV viewing time (%)	N=901	N=340	N=443	<0.001
None	7.2	6.5	8.1	
0-1 hour	37.6	44.1	34.1	
1-2 hours	27.0	29.4	23.7	
2-3 hours	28.2	20.0	34.1	
Maternal TV viewing time (%)	N=904	N=343	N=443	< 0.001
0-2 hour	43.1	33.5	49.4	
2-4 hour	41.9	50.4	36.6	
>4 hour	14.9	16.0	14.0	
Infant sleep duration (%)	N=898	N=337	N=443	0.23
<11 hours	19.3	17.2	19.0	
11-12 Hours	27.6	30.6	25.5	
12-13 Hours	30.2	32.3	30.7	
13+ hours	22.9	19.9	24.8	
Maternal activity level (%)	N=902	N=345	N=439	< 0.001
Sedentary	15.9	9.0	20.7	
Insufficiently active	44.2	33.9	53.1	
Sufficiently active	39.9	57.1	26.2	

^a This includes 382 White British participants, 474 Pakistani participants and 131 participants of

"Other" ethnicities ^b Difference between White British and Pakistani (chi squared test or t-test as appropriate)

Risk factor	Category	Мо	Model 1 ^ª Model 2 ^b M		Mo	del 3 [°]	
		mean difference	95% CI	mean difference	95% CI	mean difference	95% CI
Pregnancy risk factors							
Smoked during pregnancy	No	0	-	0	-	0	-
	Yes	0.29	(0.11,0.47)	0.21	(0.01,0.41)	0.33	(0.13,0.53)
Gestational diabetes	No	0	-	0	-	0	-
	Yes	-0.13	(-0.35,0.09)	-0.13	(-0.35,0.10)	-0.11	(-0.33,0.11)
Maternal booking BMI	Underweight /normal	0	-	0	-	0	-
	Overweight	0.27	(0.12,0.42)	0.26	(0.11,0.42)	0.23	(0.08,0.38)
	Obese	0.48	(0.31,0.66)	0.45	(0.27,0.63)	0.37	(0.19,0.55)
Postnatal risk factors							
Duration of any breastfeeding	Never	0	-	0	-	0	-
	1 day to 1 month	0.22	(0.09,0.40)	0.23	(0.06,0.41)	0.22	(0.05,0.40)
	1 to 4 months	0.08	(-0.12,0.27)	0.16	(-0.04,0.36)	0.14	(-0.06,0.33)
	4+ months	0.04	(-0.14,0.22)	0.05	(-0.14,0.23)	0.06	(-0.12,0.24)
Weaned <17 weeks	No	0	-	0	-	0	-
	Yes	0.13	(-0.02,0.29)	0.05	(-0.11,0.20)	-0.05	(-0.21,0.10)
Daily protein intake	Per 1SD increase	0.08	(0.01,0.15)	0.05	(-0.02,0.12)	0.02	(-0.12,0.15)
Daily total energy	Per 1SD increase	0.08	(0.01,0.14)	0.05	(-0.02,0.12)	0.04	(-0.10,0.17)
Caregivers Feeding Style	Authoritative	0	-	0	-	0	-
	Authoritarian	-0.11	(-0.32,0.10)	-0.07	(-0.27,0.14)	-0.10	(-0.31,0.11)
	Indulgent	0.24	(0.04,0.45)	0.19	(-0.01,0.40)	0.15	(-0.06,0.36)
	Uninvolved	0.06	(-0.18,0.29)	0.04	(-0.19,0.27)	0.05	(-0.18,0.28)
Parental self-efficacy	High	0	-	0	-	0	-
	Lower scores (bottom	-0.10	(-0.27,0.07)	-0.13	(-0.30,0.04)	-0.18	(-0.35,-0.00)

|--|

Risk factor	Category	Mo	del 1ª	Мс	odel 2 ^b	Model 3 ^c	
		mean difference	95% CI	mean difference	95% CI	mean difference	95% CI
	quintile)						
Parental warmth	High	0	-	0	-	0	-
	Lower scores (bottom quintile)	0.13	(-0.02,0.29)	0.19	(0.03,0.34)	0.21	(0.05,0.36)
Hostile parenting	Low	0	-	0	-	0	-
	Higher scores (top quintile)	0.11	(-0.05,0.26)	0.09	(-0.06,0.25)	0.17	(0.01,0.33)
Infant TV viewing time	None	0	-	0	-	0	-
	0-1 hour	-0.16	(-0.44,0.11)	-0.18	(-0.45,0.09)	-0.15	(-0.41,0.12)
	1-2 hours	-0.06	(-0.35,0.22)	-0.07	(-0.35,0.21)	-0.02	(-0.30,0.25)
	>2 hours	-0.17	(-0.45,0.11)	-0.11	(-0.38,0.17)	-0.02	(-0.30,0.25)
Maternal TV viewing time	0-2 hour	0	-	0	-	0	-
	2-4 hour	0.03	(-0.12,0.18)	-0.02	(-0.16,0.13)	-0.08	(-0.23,0.07)
	>4 hour	-0.26	(-0.46,-0.05)	-0.29	(-0.49,-0.08)	-0.39	(-0.60,-0.18)
Infant sleep duration	<11 hours	0.03	(-0.16,0.23)	0.10	(-0.10,0.29)	0.11	(-0.08,0.30)
	11-12 Hours	0.08	(-0.10,0.26)	0.07	(-0.11,0.24)	0.04	(-0.14,0.21)
	12-13 Hours	0	-	0	-	0	-
	13+ hours	-0.06	(-0.25,0.12)	-0.01	(-0.19,0.18)	-0.02	(-0.20,0.17)
Maternal activity level	Sedentary	0	-	0	-	0	-
	Insufficiently active	0.06	(-0.13,0.26)	0.04	(-0.15,0.23)	0.08	(-0.11,0.27)
	Sufficiently active	0.20	(0.00,0.40)	0.07	(-0.13,0.27)	0.11	(-0.09,0.31)

^aModel 1: unadjusted

^bModel 2: pregnancy risk factors adjusted for ethnicity, infant sex, maternal age, maternal highest educational qualification, parity. Postnatal risk factors additionally adjusted for birthweight, gestational age at delivery and mode of delivery.

^cModel 3: adjusted for all risk factors and ethnicity, infant sex, maternal age, maternal highest educational qualification, parity, birthweight, gestational age at delivery and mode of delivery

Risk factor	Category	Ν	Model 1 ^a Model 2 ^b		Model 3 ^c		
		RR	95% CI	RR	95% CI	RR	95% CI
Pregnancy risk factors							
Smoked during pregnancy	No	1	-	1	-	1	-
	Yes	1.25	(0.99,1.60)	1.17	(0.90,1.52)	1.36	(1.05,1.76)
Gestational diabetes	No	1	-	1	-	1	-
	Yes	0.98	(0.72,1.35)	0.96	(0.69,1.32)	0.98	(0.71,1.35)
Maternal booking BMI	Underweight normal	1	-	1	-	1	-
	Overweight	1.36	(1.09,1.71)	1.33	(1.06,1.67)	1.28	(1.02,1.61)
	Obese	1.65	(1.30,2.09)	1.55	(1.21,1.99)	1.44	(1.11,1.86)
Postnatal risk factors							
Duration of any breastfeeding	Never	1	-	1	-	1	-
	1 day to 1 month	1.40	(1.09,1.81)	1.42	(1.11,1.84)	1.38	(1.07,1.79)
	1 to 4 months	1.10	(0.81,1.49)	1.21	(0.88,1.65)	1.16	(0.85,1.557)
	4+ months	1.05	(0.80,1.39)	1.07	(0.80,1.42)	1.08	(0.82,1.44)
Weaned <17 weeks	No	1	-	1	-	1	-
	Yes	1.04	(0.83,1.29)	0.96	(0.77,1.20)	0.86	(0.68,1.08)
Daily protein intake	Per 1SD increase	1.08	(0.99,1.18)	1.05	(0.95,1.15)	1.09	(0.90,1.30)
Daily total energy intake	Per 1SD increase	1.07	(0.97,1.18)	1.04	(0.94,1.15)	0.96	(0.79,1.16)
Caregivers Feeding Style	Authoritative	1	-	1	-	1	-
	Authoritarian	0.83	(0.58,1.19)	0.87	(0.61,1.24)	0.85	(0.60,1.22)
	Indulgent	1.42	(1.03,1.94)	1.34	(0.97,1.84)	1.29	(0.94,1.78)
	Uninvolved	1.06	(0.73,1.53)	1.03	(0.71,1.49)	1.07	(0.74,1.55)
Parental self-efficacy	High	1	-	1	-	1	-
	Lower scores (bottom quintile)	0.83	(0.63,1.09)	0.79	(0.61,1.03)	0.76	(0.58,1.00)

Table 4: Relative risk (R	R) and 95% confidence intervals for	r infant overweight for each early	v life risk factors from Poisson re	gression models

Risk factor	Category	Model 1 ^ª		Model 2 ^b		Model 3 ^c	
		RR	95% CI	RR	95% CI	RR	95% CI
Parental warmth	High	1	-	1	-	1	-
	Lower scores (bottom quintile)	1.22	(0.98,1.51)	1.29	(1.04,1.60)	1.33	(1.07,1.65)
Hostile parenting	Low	1	-	1	-	1	-
	Higher scores (top quintile)	1.04	(0.83,1.31)	1.04	(0.83,1.31)	1.16	(0.91,1.48)
Infant TV viewing time	None	1	-	1	-	1	-
	0-1 hour	1.03	(0.68,1.56)	0.99	(0.65,1.50)	1.04	(0.69,1.56)
	1-2 hours	1.08	(0.71,1.65)	1.08	(0.70,1.64)	1.19	(0.78,1.80)
	>2 hours	0.98	(0.64,1.50)	1.03	(0.67,1.58)	1.18	(0.78,1.80)
Maternal TV viewing time	0-2 hour	1	-	1	-	1	-
	2-4 hour	1.00	(0.81,1.23)	0.96	(0.78,1.17)	0.88	(0.71,1.09)
	>4 hour	0.61	(0.42,0.90)	0.60	(0.41,0.88)	0.54	(0.37,0.79)
Infant sleep duration	<11 hours	1.09	(0.82,1.45)	1.17	(0.87,1.56)	1.18	(0.88,1.56)
	11-12 Hours	1.05	(0.80,1.37)	1.04	(0.80,1.35)	1.00	(0.77,1.30)
	12-13 Hours	1	-	1	-	1	-
	13+ hours	1.05	(0.79,1.38)	1.12	(0.85,1.47)	1.13	(0.86,1.49)
Maternal activity level	Sedentary	1	-	1	-	1	-
	Insufficiently active	0.96	(0.72,1.30)	0.93	(0.69,1.25)	0.99	(0.74,1.33)
	Sufficiently active	1.13	(0.84,1.51)	0.98	(0.73,1.32)	1.04	(0.77,1.40)

^aModel 1: unadjusted

^bModel 2: pregnancy risk factors adjusted for ethnicity, infant sex, maternal age, maternal highest educational qualification, parity. Postnatal risk factors additionally adjusted for birthweight, gestational age at delivery and mode of delivery.

^cModel 3: adjusted for all risk factors and ethnicity, infant sex, maternal age, maternal highest educational qualification, parity, birthweight, gestational age at delivery and mode of delivery

Risk factor	Category	White British (N=382)		Pakistani (N=474)		
		mean difference ^a	95% CI	mean difference ^a	95% CI	Interaction p- value
Pregnancy risk factors						
Smoked during pregnancy	No	0	-	0	-	0.12
	Yes	0.37	(0.11, 0.62)	-0.06	(-0.53, 0.42)	
Gestational diabetes	No	0	-	0	-	0.10
	Yes	0.18	(-0.22, 0.58)	-0.23	(-0.51, 0.05)	
Maternal booking BMI	Underweight /normal	0	-	0	-	0.51
	Overweight	0.36	(0.11, 0.60)	0.18	(-0.04, 0.40)	
	Obese	0.34	(0.07, 0.61)	0.35	(0.08, 0.62)	
Postnatal risk factors						
Duration of any breastfeeding	Never	0	-	0	-	0.03
	1 day to 1 month	0.09	(-0.17, 0.34)	0.28	(0.02, 0.54)	
	1 to 4 months	-0.24	(-0.57, 0.09)	0.41	(0.13, 0.69)	
	4+ months	0.00	(-0.31, 0.31)	0.15	(-0.11, 0.40)	
Weaned <17 weeks	No	0	-	0	-	0.33
	Yes	-0.09	(-0.32, 0.14)	0.08	(-0.17, 0.33)	
Daily protein intake	Per 1SD increase	0.04	(-0.18, 0.26)	-0.09	(-0.29, 0.12)	0.41
Daily total energy	Per 1SD increase	0.05	(-0.17, 0.27)	0.08	(-0.13, 0.30)	0.83
Caregivers Feeding Style	Authoritative	0	-	0	-	0.98
	Authoritarian	-0.15	(-0.52, 0.21)	-0.10	(-0.40, 0.20)	
	Indulgent	0.08	(-0.24, 0.39)	0.15	(-0.17, 0.47)	
	Uninvolved	-0.05	(-0.44, 0.35)	-0.04	(-0.38, 0.30)	

Table 5: Mean difference in BMI z-score and 95% confidence intervals for each early life risk factors from regression models with interactions between ethnicity and each risk factor (White British and Pakistani only) fully adjusted model

Risk factor	Category	White British		Pakistani (N-474)		
		mean difference ^a	95% CI	mean difference ^a	95% CI	Interaction p- value
Parental self-efficacy	High	0	-	0	-	0.73
	Lower scores (bottom quintile)	-0.25	(-0.53, 0.04)	-0.18	(-0.43, 0.06)	
Parental warmth	High	0	-	0	-	0.73
	Lower scores (bottom quintile)	0.14	(-0.12, 0.41)	0.20	(-0.01, 0.42)	
Hostile parenting	Low	0	-	0	-	0.42
	Higher scores (top quintile)	0.06	(-0.21, 0.32)	0.20	(-0.04, 0.44)	
Infant TV viewing time	None	0	-	0	-	0.56
	0-1 hour	0.13	(-0.32 <i>,</i> 0.57)	-0.26	(-0.64, 0.12)	
	1-2 hours	0.23	(-0.23, 0.70)	0.02	(-0.38, 0.42)	
	>2 hours	0.25	(-0.24, 0.74)	-0.05	(-0.43, 0.33)	
Maternal TV viewing time	0-2 hour	0	-	0	-	0.10
	2-4 hour	0.09	(-0.16 <i>,</i> 0.33)	-0.22	(-0.44, -0.01)	
	>4 hour	-0.43	(-0.77, -0.09)	-0.40	(-0.70, -0.10)	
Infant sleep duration	<11 hours	0.08	(-0.23 <i>,</i> 0.39)	0.12	(-0.16, 0.39)	0.97
	11-12 Hours	0.00	(-0.27 <i>,</i> 0.28)	0.09	(-0.16, 0.35)	
	12-13 Hours	0	-	0	-	
	13+ hours	-0.05	(-0.35 <i>,</i> 0.25)	0.03	(-0.23, 0.28)	
Maternal activity level	Sedentary	0	-	0	-	0.75
	Insufficiently active	0.18	(-0.22 <i>,</i> 0.58)	0.02	(-0.22, 0.26)	
	Sufficiently active	0.16	(-0.23 <i>,</i> 0.55)	0.09	(-0.19, 0.38)	

^aAdjusted for all risk factors and ethnicity, infant sex, maternal age, maternal highest educational qualification, parity, birthweight, gestational age at delivery and mode of delivery