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Abstract

The predictive control developments in the literature have often been based on realigned models
whereas industrial packages have made much use of independent models. The transferal of many of
the stability results to the independent model case is not straightforward; this paper develops one
possible means of achieving this. The necessity of the developments is demonstrated for unstable
open-loop processes.

1 Introduction

Predictive control is by now a popular strategy [4] and has acheived signiﬁé-é,nt takeup in industry
(8, 2]. However, there are still significant differences between popular industrial variants and those
appearing in the academic literature. One noticeable difference is that the literature tends to make use
of state-space or transfer function models whereas industrial packages are often based on FIR (Finite
impulse response) models. The implication of this is that some strong stability results that have
appeared in the literature (e.g.[5, 6, 7, 12, 14, 15]) need significant reworking to be applicable, even
though the general principles of the proofs still apply. However, such reworking is rarely supplied in the
literature. This paper considers one issue where transferal of the stability results is not straightforward
and develops a systematic base for such a transferal.

There are a few principal components in predictive control algorithms [1]. These are a prediction
model, a performance index, some tuning parameters and an online computation to find the current
control. The computation'® involves optimising the performance index, with respect to prespecified
degrees of freedom in the prediction model. The success of such a strategy usually depends upon
using a sensible performance index, sensible values for the tuning parameters and having predictions
that are accurate enough. A poor choice of performance index can give either overtuned (not robust)
control or undertuned control, a poor choice of tuning parameters likewise and inaccurate predictions
due to model uncertainty can cause inappropriate control actions or even instability.

In addition to these points, there is another important but perhaps less well understood issue, that
is the need to parameterise the degrees of freedom appropriately for the process to be controlled.

*Some variants such as PFC (Predictive functional control) do not involve optimisation




For instance a common policy (e.g [1, 2, 7]) is to parameterise the degrees of freedom as the changes
in control, but usually in industrial applications, for computational reasons, only one or two control
changes are allowed in the predictions even though more would be desirable [15]. More recent work
in the literature on apriori stability results has shown that one can restrict the degrees of freedom in
the future output trajectories or equivalently place more structure into the input trajectories in order
to ensure nominal stability at least. The key concept adopted is to force the predictions to behave
in a convergent fashion beyond a certain point; such a convergence is assured by either an implied
stabilising feedback or by forcing the predicted state into a stable manifold. The benefit of this is that
the costing horizon can be taken to infinity and then stability is established from a simple Lyapunov
analysis.

As stated at the outset however, the above works have concentrated on the use of state-space and
transfer function models. This implies the use of state realignment in prediction [13] whereby one
assumes that one can initialise a model with the process measurements and then use this in prediction.
With the exception of [3], the use of realigned models for prediction is widespread in the literature,
however it has been noted [13] that this does not always give the best predictions. In fact this is
implicitly recognised in many industrial packages such as DMC and PFC where much use has been
made of FIR representations which unsuprisingly are often less sensitive to measurement noise. More
recently, the PFC algorithm has adopted independent models (IM) [3] in place of FIR models. In fact
for prediction the use of an IM is equivalent to the use of an FIR model [13]. However IM have the
advantage of requiring less parameters and also there is no implied truncation error.

The apparent weakness of IM (or FIR models) is that they do not easily take account of open-
loop unstable processes which are common in some industries, however simple mechanisms [9] for
overcoming this do exist. What is more significant was pointed out in [14], it is not generally wise or
safe to use unstable predictions as a basis for a predictive control law design. There is a need to ensure
that the prediction class is stable, even for unstable open-loop plant. It does not take much experiment
with the GPC algorithm [1] on plants of the form (s —a)/(s—ra)(s+b) to see the truth of this. Hence
this is a clear gap in the literature. The work of [12, 14] gives a good solution, or reparameterisation of
the degrees of freedom to ensure stable predictions, for realigned models. However, as yet the issue of
how to form stable predictions for a unstable process represented by an independent model is unsolved.
This is a necessary first step in the transferal of the many apriori stability results. Moreover, such a
solution is required before algorithms such as PFC can take systematic account of unstable plant. Due
to its ‘intuitive’ and simple philosophy, PFC cannot really use terminal constraints (e.g. [5, 15]) but
it requires stable predictions for the intuitive arguments to be effective. Although it is also important
to reformulate the MPC algorithms deploying terminal constraints for the IM case, that is not done
here.

In this paper we first give some background to independent models and then in section 3 develop a
neat algebraic form for the predictions. This form is used in section 4 to divise a simple structure
for the future input trajectory that is guaranteed stabilising. Section 5 then gives examples of how
effective this structure is and demonstrates enormous improvements in performance on conventional
approaches.




2 Background

2.1 Independent models of unstable processes

Let y, u be the process outputs/inputs respectively and y,, the output of the independent model (IM).
In general due to uncertainty ¥ # ym. The norm is to simulate the IM in parallel with the process,
using the same inputs u. However, with an unstable process this cannot work because it is unlikely
that the same input would stabilise the IM and an uncertain plant. The solution in [9] is to decompose
the model into two parts as in Figure 1. Hence if the process is modelled by G, then

G=(I+M)'M (1)

where both M; and M, are stable. Next note that, in the nominal case of y = y,, (recall y is the
process output), the output of figure 2 is the same as that of figure 1, so equivalent to using the
structure of Figure 1, one could use the structure of figure 2. In this case if u is stable, so is w and
if y is stable so is z. Hence when the process is stabilised, so is the output of the independent model
given in Figure 2.

u W ym

—»Ml ——vo >

M,

Figure 1. Independent model used for prediction

u W }‘m
— M, .

———>M2

Figure 2. Implementation of independent model for open-loop simulation

A convenient decomposition in the SISO case is as follows:

no nyn_ n bo
—_ = 2 — 2 = o b =n_ — d
i dd M, M, ;i bo=n e (2)

T d’ n_

G =

where n, dy are the numerator/denominator factors respectively containing roots outside the unit
circle (unstable). It is clear that both M; and M, have stable poles.




2.2 Independent models for prediction

When using an independent model for prediction, a different structure is required because future y
are unknown; in fact precisely because these are what we want to predict. In this case the structure
of figure 2 cannot help us. Hence, we can use partial state realignment. That is return to figure
1 and realign the loop variable y,, on the process output measurement, then use this as a basis for
prediction, where now the only unknown is the future input variable u; these values of course are the
usual degrees of freedom used in MPC.

2.3 Forming predictions using Toeplitz matrices

Assuming a model transfer function model (we ignore noise/disturbances so as not to introduce un-
necessary notation for this paper) of the form

d(z)yr = n(z)ux (3)

where yg,u; are the output/input respectively at the kth sampling instant. Define vectors of future
(arrow pointing right) and past values (arrow pointing left)

Aug, Yk+1 Tk+1
Augiq Yk+2 Tk+2
Ay = | . P g= ; ; L= .
_>
Auk'{“ﬂu‘-l yk"!’ﬂay Tk""'ny
Aug_q Yk

= | Aur.o |- = y
AE_ u.kz,g_ %%1

In general the vector of future values can be any length, but the lengths n,, n, correspond to output
and input prediction horizons common in GPC and will be used later. For computing predictions, we
will use the Toeplitz/Hankel notation as this is algebraically very neat and also easy to code?. Write
equation (3) as a difference eqn. D(z)yr = n(z)Aug, where D = dA, at each future time instant and
then place the set of simultaneous equations in matrix/vector format e.g.

CpY, +Hpy, = OnAym—l +Holy, (4)
where for a generic polynomial n(z),

o 0 0 e ny -.- Nm—1 Nm
n1 g 0 - o o T 0
n n n w5 5 i . _ . . . .
C, = 2 1 0 . H, = : - : : (5)
Ny 0 5 0
L "m Tm-1 Tm-2 ] L : i

Clearly (4) implies a prediction equation
Y =HAy +PAu + QY (6)
with H = C5'C,, P=Cp'H,, Q =—CplHp.

*Although an efficient coding is equivalent to less transparent mechanisms via diophantine identities [11]
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Remark 2.1 It is noted that throughout this paper, because Toeplitz/Hankel matrices can be viewed
as operators, matriz and vector dimensions are defined flexibly. That is dimensions are obuvious from
the context and will not be defined explicitly in this paper. So for instance z can be interpreted as
both [zx] and also [Tk, Tg_1, .., Th—n]T- Moreover in computations of the form v = Kiz + Kgg where
initially K1, Ko have different dimensions, then K; and/or Ky are understood to be padded with zeros
as required so that v = [Kj + Kg]gs_

Also note the further definition that 'y, is a tall and thin variant on the square matriz C, so that
[1,271,272..)Twb = n(2)[1, 27}, ...]b. Finally note the commutative and inverse properties

CnCy = CyCh; Cd_l = Gl/d (7)

2.4 A typical MPC algorithm

The basis of predictive control is the computation of the predicted system behaviour and how this
depends on the selected degrees of freedom. For instance a typical performance index takes the form:

T =Wy(x = )IE + Wl )

where W,. 11, are weighting matrices. Substitution of (6) into (8) and minimisation w.r.t Ay gives
! =

Ay = [HTWyH + W, " HTW,[r — PAu — QY] (9)

Only the first element Aug = [I,0,0, ]Ay; is implemented.

3 Prediction based on an independent model without prestabilisa-
tion

When an IM is used, prediction is slightly more involved. Here we assume that past outputs are

known and use Figure 1 as a basis for prediction. It is assumed that Yy is always defined on plant

measurements so there is partial state realignment around M> but no realignment around the dynamics
in M1 s

3.1 The basis of prediction with IM implementation of figure 1

Set up a prediction equations around M; and M, separately:

Cd._ﬂ = Cn+'z_L>+H?+y_—Hd-1uﬁ
Cn_z = Cbz[y,m +d] + Hy,y —Hn_z (10)
Y = z+4w
Sm 505
y = g, +d

where d represents a correction for offset which is used in IM based MPC (and DMC etc.) to ensure
integral action. Define
z —w) (11)




where L is a vector of ones. For convenience (to ensure that J = 0 is consistent with zero offset) it
is usual to express the degrees of freedom in terms of future input increments (rather than absolute
inputs), hence

yv=FEAu+Lyu (12)

where FE is a lower triangular matrix of ones. One can then rewrite (10) as

Cd_g = Cn+(EAH+Lg) +Hn+£—Hd_E
Cnoz = Cplz+w+L(y—z-w)+Hy,Y—Hn 2z 13)
Y = _g}-’-i__}u

—m

L= 4, tif-p-p
With an IM, prediction reduces to the solution of the simultaneous equations in eqns.(11,13).
3.2 An algebraic solution for the prediction equations

In the first instance, solve the simultaneous equations (13) for ¥ :

[[-ClCulY, ={ Ci'lCn,(BAu+Ly)+Hn,u~Hy

14
+CHCRL(Y — 2 — 1) + Hipy — Hu_2]) -
However, we further note that [I — C;2Cy,] = Cy. C;}. Hence we can now write that
Yy = CilCu{ Cl[Cay(BAy +Ly)+Hy u— Hy o]
c;jc;_l{ 20 [Cn_'_(EAi_J.} + Lfi) + Hn+}£ —Hy_ E]
+Ca_[Co, L(Y — z —w) + Hyp, Y — Hn_z]}
Putting common terms together gives
y = C;i{ C’n_[Cn+EAy)+(CH+L+Hn+)g] (16)
"-(Cn_Hd__ + Cy_ ObgL)E +Cy_ (Cb2L + Hbz)g - Cy (Csz += Hn_)é}
Finally adding in the equation =g+ L( J == }E) and tidying up gives
Y HA3+PHH+PwE+Pyg+PZ£
H = B
P, = C7YC.L+ Cn_Hy,) (17)
By = —C;l(On_Hd_ +Cy_Cy,L)—L
B, = C;'Cy_(Co,L+Hp,)+L
P, = —C;'Cy_(Cy,L+H,_)-L;
For simplicity one may which to represent this as
y= HAE + Mu;
o= (18)

M= [Pu:P'lU1Py1Pz];

T = 1€ T

where clearly there is a nice separation between the part H A_q) depending on the d.o.f. (often called
‘forced response’) and the notional ‘free response‘ part Mwv, i.e. the response should the input remain
unchanged.




Remark 3.1 The predictive control law is obtained by substituting (18) into (8) and minimising wrt
to /_\y} . This gives
Ay = (HTWyH + W,I) "  HT Wy [r, — Mu] | (19)

of which only the first element Auy is implemented. Clearly v comprises known data obtained from
the IM and the process.

Remark 3.2 The predictions of (18) are correct algebraically and easy to code given the summary of
(17). However, as noted in [14] and any simple ezamples based on the GPC algorithm, the resulting
control law based on these will often be unstable. This can be due to:

1. Numerical ill-conditionning (divergent predictions cause numerical difficulties in computing H, M
and the control law accurately) for large Ty

2. The objective J is ill-posed in that with small number of degrees of freedom it is difficult to make
the output predictions near stable. Hence even though J itself maybe small, the predicted errors
beyond the output horizon ny will diverge rapidly.

3. As one increases ny to overcome this, one must increase ny (guidelines give ny > n,,) and then
numerical ill-conditionning may occur.

In conclusion one cannot choose ny small or ny large. Terminal conditions can overcome the restriction
on small ny to some extent, but that issue is not the topic of this paper.

4 Stabilising the predictions from a realigned model

The solution implicit in the use of endpoint constraints (e.g. [7, 12]) is to to find a parameterisation
of future inputs that forces the output predictions to be stable (and hence errors do not diverge
beyond the output horizon n,). Once the output predictions are stable one can reliably compute J
for ny = oo, should one want to, by using Lyapunov equations®. The problem that is solved here is
to find a mechanism for ensuring stable predictions from (18) without invoking constraints, say via
Lagrange multipliers, on the latter part of the prediction; these constraints can exacerbate numerical
ill-conditionning [14].

Start with eqn.(16). This is arranged as follows (noting that E = C31):

Y, = Ci'CZY [Cnlu+ Ca(ChL+Co_Hp,)u
—Ca(Cr_Hy_ +Cy_ C’sz)g + CaCy_(Cy, L + Hbg)}_’ — CaCy_(Cy, L + Hy,_ )ﬁ}
(20)
Now separate into parts to be chosen (that is those depending on A u ) and known parts (that is those
depending upon v):

J=

= Ci'CAIC H{Cr Ay + Miw}
g = [KuaKw:KyiKZ];

Ky, = CaA(CrL + Cn_Hn+)

Ky =—Ca(Cs_Hy_ + Cz_Cp,L)
Ky =CaCy_(Cv, L + Hy,)

K, =—CaCy_(Cy, L + Hyp_)

<

(21)

*Infinite horizons are an easy way to give apriori stability guarantees




where v is defined in (18). Finally rewrite in terms of z-transforms
n(z)Au(z) + z(z)
4l = T A |
Clearly the output predictions are stable iff the numerator term contains a factor d.(z). Hence one
gets the following constraint on Awu (z):

z(2) = [1,27}, .. ] My (22)

n(2)Ay(z) + z(2) =di(2)7(2) =y (2) = ﬁ(ﬁ%@

where (z) is a degree of freedom (taken here to be a polynomial). Constraint (23) (a diophantine

equation) is easy to solve and gives a parameterisation of inputs (and output predictions) in the
following form)

(23)

Ay KiMsv+Tq4, c
= e
Y, = [CaCu |7 ly+Tng] (24)

where matrices K;, K2 depend upon (23) and are trivial to compute and c comprises the d.o.f. in
the solution. The notation I'() is defined in remark 2.1.

In order to ensure offset free prediction use eqn. (11) to give:

[CACy_ | MK Msv + l“n_c)] + L(g = & =)

25
= H1E>+My?) ( )

I e

where Hy = [CACy 7Ty, M, =[CaCy |7 KoM, +[0,—L, L, —L].

Remark 4.1 Minimising J w.r.t. ¢ does not give rise to the same control law as minimising w.r.t
A U, even assuming of course the same number of degrees of freedom. This is because predictions of
(24) are already stabilised, so all the d.o.f. in ¢ can be used for performance optimisation. However
in (18) some of the d.o.f. contained within Ag will be needed to counteract the effect of the unstable
poles and moreover it is unlikely that the predictions will remain bounded beyond the prediction horizon.
Hence, the prestabilised approach is to be preferred because in the part of the predictions not within the
cost, it s known that the predictions are stable. This has significant advantages for feasibility analysis
(e.g. [6, 10]). It also allows straightforward eztension of horizons to ny = co if desired.

Remark 4.2 The predictive control law is obtained by substituting from (24,25) into (8) and minim-
imising wrt c.
g = [F:{+Wul“d+ +H?WyH1]*1
[Ca, Wu K1 Msv + Hf Wy (1, — Myv)]
The optimum Ay comes from substitution of (26) into (24).

(26)

5 Examples

5.1 Example 1

The following unstable process was used

7~ = 1.5:~24-0.3627
— i
& 1—33224322-0.823 (27)
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which has poles at 2,0.8,0.5 and zeros at 1.2,0.3. Simulations were performed for various output and
mput horizons of which typical results are illustrated here. The main emphasis is to compare the use
of predictions equations (6,18,25).

5.1.1 Simulation results

In the first instance we took n, = 1. In this case the prestabilised predictions gave stable and satisfac-
tory closed-loop performance for ny > 10. With predictions (6,18) we did not get good performance
for any n,. In figure 3, we illustrate the closed-loop simulations to a unit step demand for predictions
(25) with ny = 1,my = 15. It is clear that with just one degree of freedom (which implies a low
computational load), the performance is good.

1 - e e T
05F 4
04—\ -
HO.S 1 i ] 1 1 1 1 1L 1
0 10 20 30 40 50 60 70 80 g0 100
Outputs and reference
0.8 T T T T T T T T

_04 1 1 L 1 1 .l 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Inputs

Figure 3. Simulations for n, =15, n, =1

Next we illustrate a case where stable performance is achieved with all 3 prediction equations, Ny =
15, ny = 4. The interesting part of this simulation (figure 4) is the latter part (after the 60th sample)
where measurement noise is introduced. The dashed line is for prediction eqn. (6) and the solid lines
for prediction eqn.(25)%. It is clear using total state realignment resulted in poor noise rejection where
as using only partial state realignment gives far better results. This topic is the subject of further
investigation.

“Prediction eqn.(18) has equally good noise rejection




1.5 T T T T T T T T T

—0‘5 1 1 L 1 1 L 1
0 10 20 30 40 50 €0 70 80 90 100

Outputs and reference

Figure 4. Simulations for n, = 15, n, = 4 and with measurement noise

5.1.2 Numerical ill-conditionning

For completeness a check was made on the maximum horizon for which conventional algorithms would
cope. For prediction horizons greater than this closed-loop oscillation and instability began to occur
due to numerical ill-conditionning. It is noted that these examples are on MATLAB so 16 significant
figures are allowed. We tested (25) with n, = 4 upto n, = 100 without any indication of problems.

Predictions (6) | Predictions (18) | Predictions (25)

22 27 > 100
Table 1. Prediction horizon at which failure occurs

It is clear from this table that without prestabilisation numerical ill-conditionning can occur at low
prediction horizons whereas with prestabilisation there is no illconditionning. This benefit could be
far more important in industrial processors with less significant figures.

5.1.3 Example 2

This example has a Laplace transform

s—1

G(s) = s2—15s—1

(28)

and is sampled at 0.2sec sampling rate. Here the results are summarised in tabular form (Tables 2,3
below) only for different choices of n,. For n, > 1 the results are similar so a single table is used. The
weightings are W, = W, = 1.

Once again three conclusions are immediately clear. Using prestabilised equations:
e allows the use of less degrees of freedom (e.g. n, =1 is possible).
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e gives a far greater range of output horizons for which closed-loop stability is achieved.

e avoids numerical ill-conditionning (‘failed’ is due to this).

iy =2
Ty Predictions (6) | Predictions (18) | Predictions (25)
ny <9 unstable unstable unstable
9 unstable unstable very slow
10-11 unstable unstable slow
12-18 unstable unstable good
ny > 18 Very slow Very slow good

Table 2. Description of nominal closed-loop performance

ny >1
Ty Predictions (6) | Predictions (18) | Predictions (25)
ny < 10 unstable unstable unstable
10 unstable unstable very slow
11-12 unstable unstable slow
13-14 | unstable unstable good
15-17 | slow slow good
18-40 good good good
41-48 | failed good good
Ty > 48 failed failed good

Table 3. Description of nominal closed-loop performance

6 Conclusion

It is known that using mdependent models can improve noise rejection and also has parallels with
the FIR models commouly adopted in industry. However, extension of this concept to the unstable
case is not straightforwird. especially given the difficulties with tuning guidelines and numerical ill-
conditionning. In this paper the method of prediction prestabilisation has been developed for the IM

case and demonstrated to provide a very effective solution to both these problems. Tuning becomes
easier as beyond a logical ninimum output horizon, stability is achieved with any number of degrees of
freedom. Also numerical ill-conditionning is avoided which could be vital in processors with less than

16 significant figures or where large output horizons are desired. The technique is straightforward, in
fact a simple reparameterisation of the future input trajectory, and allows the user to have a good
assurance (though not au apriori guarantee) of stability without the need for terminal constraints.

There are other benefits to be investigated which constitute future work. The underlying motivation
was applications in PFC where terminal constraints would not be acceptable and there is a minimalist,
but intuitive, approach to control design. Hence the next step is to investigate whether this approach
will allow systematic extension of PFC to the unstable case. Secondly it is known that the use
of independent models in prediction can allow better noise rejection than realigned models. This
expectation was borne out in example 1. Future work will investigate whether this benefit does

carry over more generally to the unstable case and whether prestabilisation helps or hinders. A more

11




obvious gap in the literature is to extend the guaranteed stability results of [5, 7, 15] to make use of
the independent form of model.
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