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Abstract

This paper tackles 2 major issues. The first is to develop
a new means of including constraint handling for unsta-
ble processes into the industrial successful and compu-
tationally efficient algorithm, predictive functional con-
trol (PFC); the benefits are illustrated. The second is
to show how the technique to be proposed has recur-
sive feasibility in the nominal case, that is feasibility
now implies feasibility at the next sampling instant.
This is known to be essential for robust stabilisation of
unstable processes.

Keywords: Predictive functional control, computa-
tional efficiency, constraint handling

1 Introduction

Unstable processes provide a particularly hard chal-
lenge to the control engineer. Although for many pro-
cesses, designing a control law to give nominal closed-
loop stability is by now fairly straightforward, there
are significant exceptions to this. For instance take
the popular Model predictive control (MPC) strategy
of GPC (Generalised predictive control, [2]). This has
strong links to optimal control and hence for choices of
input and control horizon that approach infinity, nom-
inal closed-loop stability can be assured for any con-
trollable and observable process. However, in prac-
tice [5] high values of control horizon are not used,
partly because they imply significant online computa-
tion but also they can result in an overtuned control
law which is less robust. If the horizons are restricted
to be small, (say to reduce computational load) then
closed-loop stability is not so straightforward, and in-
deed for many popular default selections of tuning GPC
will fail to stabilise a plant with factors of the form
(s—a)/(s —ra), r > 1. It is known that there are
solutions to this problem (e.g. [8, 11, 16, 23]) however
these algorithms involve endpoint constraints of some
form which can imply the need for many degrees of free-
dom. Also, the online computation involves a quadratic
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program. The need for a demanding online computa-
tion limits the applicability of predictive control.

Much recent work (e.g. [24, 22, 10]) has considered how
to produce an algorithm with a low on line comptua-
tional burden, while still retaining benefits such as on-
line optimisation and constraint handling. PFC (Pre-
dictive functional control [12]) algorithm is one such
algorithm which achieves computational simplicity by
using simpler but more intuitive design guidelines and
has achieved widespread success in industrial applica-
tions. The success of its applications to unstable pro-
cesses was however more variable and hence recent work
[19, 20] has shown how, in the absence of constraints,
PFC can be extended systematically to cater for the
unstable case. The purpose of this paper is to develop,
to validate and to illustrate the efficacy of some compu-
tationally efficient constraint handling tools for PFC.

One challenging complication with constrained unsta-
ble processes is how to ensure feasibility (e.g.[9, 14]).
A MPC algorithm will be taken to be feasible if, with
the degress of freedom specified, all constraints can be
satisfied. In many commercial MPC packages this is-
sue is well recognised and in the event of infeasibility
there are embedded rules for relaxing or even removing
so called soft constraints to regain feasibility. It is not
our intent to consider such approaches as to some ex-
tent they are commiercial rather than control decisions.
There is a more important consideration with unstable
processes, that is not only can constraints (soft and/or
hard) be satisfied but more importantly can the pro-
cess still be stabilised with allowable controls. In other
words, if one ignored all soft constraints including the
desirable set point, can the process be stabilised with
the degrees of freedom available. In fact this problem
can be solved backwards in a straightforward manner
using admissible sets e.g. [6, 22, 24]. For a MPC al-
gorithm deploying a terminal mode (e.g. [23]) and a
some degrees of freedom, it is easy to compute the re-
gion within which the process will be stabilised. As
long as the state is with that set, all is fine. If the state
goes outside that set, the algorithm becomes undefined




and any behaviour could result. Hence our objective is
to develop a PFC algorithm whose stabilisable region
(or invariant set) is as large as possible in the nominal
case.

In summary, recursive feasibility (maintaining the state
inside the admissible set) implies invariance ([1, 6, 9])
and hence stability. For the nominal case one can en-
sure recursive feasibility if: (i) the predicted input tra-
jectory is stabilising and meets constraints over the en-
tire future and (ii) at the next sampling instant the
same trajectory is reachable with the available degrees
of freedom.

So then, what is the contribution of this paper ?

o Firstly, the PFC algorithm is based on indepen-
dent models and hence the standard results in the
literature do not transcribe in a straightforward
fashion. Some work is required to show how such
a transferal can be made and this paper provides
a possible starting point.

e Secondly. by design PFC is far simpler than most
MPC algorithms so one cannot necessarily use
the same high powered mathematical machinery
for online control selection and this in turn has
repercussions on what can be said about recur-
sive feasibility (or invariance). There is a need
first to show how the PFC algorithm proposed in
[20] can be reworked to include constraint han-
dling and then secondly to modify this so as to
ensure recursive feasibility.

This paper gives some background on PFC, indepen-
dent models and prestabilisation, develops two con-
straint handling algorithms, shows how recursive fea-
sibility can be established and illustrates the algorithm
with examples.

2 Background

2.1 The PFC algorithm

In this paper we will adopt the notation of y, u, r for
process outputs, inputs and setpoint respectively. z~?
is the unit delay operator such that z7lyx = yx—1, Yk
is the value of y at the kth sample and yp . is the
predicted value of yr4+; computed at sample k. PFC
makes use of a system model to generate predictions of
the process behaviour in terms of the current state and
future inputs. The current input is selected by substitu-
tion of the predictions into a performance specification.
The performance specification is defined by a desired
closed-loop response in terms of a target first order lag,.

Although more involved variants exist!, in order to

1Usually these are used to cater for setpoints with high order

avoid over complicating this brief paper we concen-
trate on a PFC variant with just one degree of free-
dom. Hence in PFC one chooses: (i) the lag (that is
the desired closed-loop time constant, say Tprc and
(ii) a single prediction horizon say T}, (denoted the co-
incidence horizon). The control move is then selected
as the control which will cause the predicted plant out-
put to coincide with the response of a target 1st order
lag T}, seconds ahead. Let T} seconds correspond to ny
samples (i.e nyT = T}, T the sample period), then the
online computation reduces to solving:

A
target = Yk + (Tktn, — Yr)(1 —e TPrc) (1)
Yk+n, |k = target

Remark 2.1 The implied computational burden is
clearly triviel. In the unconstrained case this reduces
to a fized linear controller.

2.2 Independent models

In PFC it is usual to use an IM (independent model) [4]
for prediction. This can give significant improvements
in sensitivity to measurement noise over the alternative
of state realignment [18]. Also it is equivalent to a
FIR model which is favoured in industry and hence this
article will adopt an IM structure.

An independent model is intended to represent the pro-
cess as closely as possible so that it has matching inputs
and outputs. Let vy, be the output of the independent
models (IM). The norm is to simulate the IM in parallel
with the process, using the same inputs u. In general,
due to uncertainty, y # ym.

With unstable processes a parallel simulation cannot
work because the same input will not stabilise the IM
and an uncertain plant. A typical solution (e.g. [13])
is to decompose the model into two parts as in figures
1,2 where for a process modelled by G:

C=(+M) My =2 2)
where both M; and M, are stable. Figure 1 is used for
prediction and figure 2 for online parallel simulation. A

convenient decomposition in the SISO case is as follows:
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where n,4., d4 are the factors containing unstable roots.
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Figure 1. Independent model used for prediction

Figure 2. Independent model for simulation

2.3 Prestabilisation and prediction

Using unstable predictions as a basis for a predictive
control law design is unwise [17]. Even if the behaviour
is predicted to be good within the horizon, it would
be divergent thereafter and hence one can not make
recursive feasibility claims [9] and instability is almost
inevitable due to constraints. There is a need therefore
to parameterise the degrees of freedom in such a way
that the predictions are stable. Here (see [19]) we use
the basic philosophy of [11, 16], but without endpoint
constraints. That is place structure into the predicted
future control trajectory to bring the unstable dynamics
under control.

2.3.1 Notation: Define vectors of future (ar-
row pointing right) and past values (arrow pointing left)

21&;; Yk+1
A,’E-'; = Up+1 ;Y= yk.-i-z
Atpin, -1 Yk+n,
Aug_y Yk
Ay = Au.k—z p B= -yk—l

The vector of future values can be any length, but
ny corresponds to the coincidence horizon and n, the
input horizon (often one in PFC). We will use the
Toeplitz/Hankel notation to compute predictions. For
a given polynomial n(z) = ng + n1z~* + ..., define

Mo 0 0
n1 N 0
g 1 o

Cu=| 0 o " 4

I n Nm—1 Tm i
2 Tom, 0
' '
Nm 0O 0
L ¢ 1

Also define T',, as a tall and thin submatrix of C,, so
that [1,271,272...]0wb = n(2)[1,27%,...]b and note that
dimensions are flexible to fit the context.

2.3.2 Nominal predictions: Set up consis-
tency conditions around M; and M, (Figs. 1,2) at each
future time instance and solve as simultaneous equa-
tions. Hence the predictions are given by ([19]):

S
gm = Cd_ CA Gd+ {FHAE + MS'U}
where
Ms = [KH'JK’W:KL')KZ]; U
Ku = CA(CTLL-I_ CTL_HTL+) E
Ky = —CA(Cn_Hd_ + Cq_ Csz) ; u= =
K, = OuzCy (CiLtH,) 2
B, = =CaCi (Cpl+H, ) £

and L is a vector of ones and A =1 — z~1.

2.3.3 Prestabilised predictions: It is
straightforward to form an FIR? parameterisation of
future inputs that stabilises the predictions of (5).
Clearly stability implies the following constraint on
Ay

—
Ay

[Pn,—rd_}_l [ F}‘-* :| _—.MS’U (6)

Define K;, K3 such that this constraint is satisfied by:
AE _ | Ky Ty

S e o

giving the corresponding output prediction as

= Hzg + Myv
=[CaCy_ ]I (8)
My = [OAcd—]_1K2 + [01 "_LaL: "L]

2.3.4 The PFC algorithmn with presta-
bilised predictions: Using the algorithm of eqn.(1)
as a basis, the description of a PFC algorithm based on
predictions (8) is elementary. Choose G to have just
one variable ¢ and define e, to be the ni* standard
basis vector. Then

Yk+ny |k = €5, [Hick + Myv] (9)

Solving for coincidence (1) gives

.
_ Ukt (Tkan, —yk)(1 — € TFFC) —el Myv (10)
o = e,'{yHl

Substituting (10) into (7) gives the control increment.

Ay, = e?[Kl’U-Frd_,_Ck] (11)

2Current work is looking at IIR paramterisations




3 Prestabilised PFC and constraint handling

3.1 An algorithm based on usual practice in
PFC

The normal practice for constraint handling in many
succesful industrial applications of PFC is to tune up
two separate control strategies. One would be well
tuned and the other detuned in such a way that it
has low input activity and output overshoot is not ex-
pected. Then, one would predict the effect of using the
well-tuned strategy in the closed-loop. If constraint vi-
olations are predicted, then one would resort to the
detuned control law at that sampling instant. This
clearly has analogies to [24, 22]. A proof of conver-
gence, if required, could be tackled using invariant sets
([21]). Here we develop an algorithm which meshs such
a policy with the prestabilised prediction equations.

Algorithm 3.1 Offline tasks: Select control laws
well tuned (S1) and safe (Sz)

Online tasks at each sampling point: Find closed-
loop predictions with S;.

1. If violations predicted use Sz

2. If no violations predicted use Sy

Remark 3.1 It is noted that the success of this philos-
ophy depends very much on whether a safe control law
is easy to find. Nevertheless one can find the limit of
applicability using admissible sets. One practical means
of selecting the detuned control law is to use a slow, but
not too slow, lag as the target.

3.2 A novel constraint handling algorithm for
PFC

The approach proposed developed next has more in
common with the one degree of freedom algorithms (e.g.
[10, 21]) as it allows a smoother movement between al-
ternatives control laws rather than a simple switching
[24]. Also it has analogies with reference governor ap-
proaches (e.g. [7, 15]) in that it has an implicit capacity
to ignore/modify set point changes where this is judi-
cious. This capacity will be seen to be essential and
comes at no extra complication.

Consider the prediction equation of (8). This comprises
of 2 parts: (i) the part depending on the current state
and (ii) the totally free part. If one uses a minimal
order solution to (6), then the part Au = Kyv has
the minimum number of control moves within which
the process can be stabilised, regardless of the setpoint.
One should also note that Ag = Kjv+ Ty, c is the
whole class of solutions, hence all possible solutions can
take K v as a base. The degrees of freedom in the

solution are contained in I'y, &; for PFC g is taken to
have just one element although this is not a restriction
to the prediction class.

Lemma 3.1 Using the minimal order solution, that is
selecting ¢c=0 will cause the predictions to behave
identically to those given at the previous sampling in-
stant (in the nominal case).

Proof: If there are n unstable poles, then the minimal
order solution K;v must have n terms whereas A u has
n+1 terms because 'y, has n+1 rows. At sampling in-
stant k+1, the part of Ay , Yet to be implemented (the

n terms remaining not including Aug, e.g. A3k+llk),
has n terms and hence due to uniqueness must match

the current minimal order solution K;jv. O

Corollary 3.1 One can only change predicted be-
haviour by using non-zero <- Clearly there is a direct
link between non-zero < and set point changes, that is
a direct link to reference governing.

Corollary 3.2 All possible choices of target lag are
subsumed in the variable c. That is all solutions have
the same base K1v and the choice of target affects only
how ¢ is selected (e.g. see eqn.(10)). Hence, if ¢ is left
as a degree of freedom during constraint handling, then
one cen acheive identical control to a PFC algorithm
based on any target lag !

We can now propose a PFC algorithm for constraint
handling.

Algorithm 3.2 Offline: Set up the prediction egqua-
tions (7,8).
Online: Compute < (e.g. 10) for the well tuned target
lag and check for predicted violations.

1. If no violations, use well tuned control

2. If violations scale ¢ as follows:
E4e—ge; 0LyLl (12)

Substitute (12) into (7,8) and select the minimum
v that ensures no violations. Use resulting < in

(11) to compute new control.

Remark 3.2 The 2nd step of the algorithm above is a
trivial computation that reduces to a set of inequality
checks in one variable.




Remark 3.3 Whereas algorithm (3.1) allows only one
value of vy, that associated to the choice of < with the
detuned control, algorithm (3.2) allows far more flezi-
bility in the choice of < and hence less detuning will be
required in general, but also: (i) more detuning is avail-
able when needed and (1) implicity set-point changes
can be ignored if they cause infeasibility.

Theorem 3.1 In the nominal case the PFC algorithm
of (3.2) is guaranteed to be feasible.

Proof: This follows automatically from Lemma (3.1).
As the solution of the previous sampling instant was
feasible and is a subset of the solutions available now,
therefore a feasible solution is available and can be se-
lected with ¢ = 0. Clearly other choices of ¢ may also
be feasible and allow faster convergence. O

Note, as a corollary recursive feasibility implies no in-
stability though a more formal proof of this is required
and consitutes future work.

4 Examples

The following unstable proces: vwis used

1—-15:7"%~ 36:-
Gla) = 1-3327"=3:-"- 115273 (13)
which has an unstable pole it 2 and an unstable zero
at 1.2. The constraints are a- foilows

|Au| <0.5; —-1<u<l -03<y<?2 (14)

The target discrete poles for PFC design are given as 0.6
for well tuned control and 0.8 for the detuned control.
The coincidence horizon is 10.

For comparison (to demonstrate that constraints, de-
noted by dotted lines, are exceeded by a large amount),
the unconstrained simulation is given in figure 3.

15 20 25 30 35 40 15 20 25 30 35 40

Outputs Inputs

-1

-2
15 20 25 30 35 40

Input increments
Figure 3. Simulation with no constraints

With constraints three simulations were performed:

e Simulation 1: Constraint handling by saturation
(not displayed).

e Simulation 2: With algorithm (3.1) - dashed line.

e Simulation 3: With algorithm (3.2) - solid line.

The plots appear in figure 4 where the set point and
the constraints are denoted by dotted lines and «y is
denoted as Gamma. Also displayed on the same plot
as 7y is the control choice for simulation 2, ‘0’ means
the tuned (S1) was selected and and ‘1’ for the detuned
(S2)-

It is clear from simulation 2 that simply selecting offline
a fixed detuned law to avoid constraint violations has
not worked here. In fact for all target poles from 0.9
to 0.95 a detuned law gave large violations. Moreover
if saturation is enforced both simulations 1,2 gave un-
stable closed-loop responses. Therefore the approach
of algorithm 3.1 is not straightforward in this case (al-
though often successful in practice with stable plant).

Allowing ¢ to be free (simulation 3) has given excellent
responses and with no constraint violations. Also the
values of scaling v deployed are seen to be reasonable.
One obvious conclusion is that for constraint handling
to be effective for PFC, then some form of reference
governing action must be allowed; this is implicit in
algorithm (3.2) hence its success and moroever it comes
at not extra computation. Putting reference governing
into algorithm 3.1 would imply more computation and
therefore is not as attractive.




15 20 25 30 35 40 15 20 25 30 35 40
Outputs Inputs
1
1! g
i ! : 1
[ 1] ST J"ll ..... T R 0.8 i 1
1 1
y U 06 ;
o !l‘l ! \
!‘ g 0.4 ;
B EUCCrrl M A 02 !
: W 1
1 0 i
-1
15 20 25 30 3 40 15 2 25 30 35 40

Input increments Gamma/control choice

Figure 4. Simulations with constraints

5 Conclusion

This paper has shown how one means of extending the
computationally efficient PFC algorithm proposed in
[20] to take account of constraints. Moreover it has
been shown that the algorithm has the important prop-
erty of recursive feasibility so that stability now assures
stability thereafter. Also it implicitly allows some ref-
erence governor action where this is beneficial. The
efficacy of the algorithm is demonstrated by examples.
Future work will look at extensions to cater for model
uncertainty, disturbances and measurement noise and
also alternative classes of stabilising predictions.
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