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Abstract

A general framework for function approximation from finite data is presented
based on reproducing kernel Hilbert spaces. Key results are summarised and
the normal and regularised solutions are described. A potential limitation to
these solutions for large data sets is the computational burden. An iterative

approach to the least-squares normal solution is proposed to overcome this.
Detailed proofs of convergence are given.




1 Introduction

Approximating functions given only finite data on the function is a problem
common to system identification, nonlinear time series prediction and nonlin-
ear predictive control. Neural networks and the NARMAX methodology are
commonly used in these areas (Chen and Billings 1992). Motivated by recent
activity in kernel methods (Vapnik 1998) we propose an alternative approach
based on the idea of reproducing kernel Hilbert spaces (RKHS).

Basic definitions and results on RKHS can be found in the papers by Aron-
szajin (1950) and Wahba (1990) . Additional useful references on RKHS include
the papers of Parzen (1961) and Kailath (1971) who focus on linear time series
analysis. For function approximation, RKHS are equivalent to the method of
potential functions (Aizerman, Braverman, and Rozonoer 1964) for which it-
erative solutions based on stochastic approximation are well known (Fu 1968).
More recently support vector machines and Gaussian processes have been in-
troduced (Vapnik 1998; Williams 1999) which can be considered as particular
examples of approximation in RKHS.

Our main contribution is an iterative solution to approximation in RKHS
with finite data including detailed proofs of convergence. The solution and as-
sumptions for convergence are well known (Freif and Harrison 1999) but this is
the first time, to the authors’ knowledge, they have been presented for RKHS
with finite data. The proofs are presented in detail unlike the basic assump-
tion in Bertero (1988) which takes results from the continuous operator case
and applies them to the finite data case without detailed proof. The iterative
approach presented in Section 5 uses the basic formulation for general Hilbert
spaces (Bertero, De Mol, and Pike 1985; Bertero, De Mol, and Pike 1988) and
adapts the solution and proof for continuous operators in RKHS (Weiner 1965).
The latter only considers the time series case and not the more general function
approximation problem addressed here.

In Section 2 the general problem of approximation in Hilbert spaces with
finite data is described and specialised to RKHS in Section 3. The normal and
regularised least-squares solutions to approximation in RKHS are then given
in Section 4. The iterative approach to the normal solution is described in
Section 5 together with detailed proofs of convergence.

2 Approximation in Hilbert Spaces

We assume that we have some unknown function f of interest but that we are
able to observe its behaviour. The function belongs to some Hilbert space F
defined on some parameter set A'. This set can be considered as an input set in
the sense that for z € X, f(z) represents the evaluation of fatz.

A finite set of observations {z}_, of the function is made corresponding
to inputs {z;}/L;. It is assumed that the space of all possible observations is
a metric space Z (a metric space is required to premit the quantification of
the effects of errors). Neglecting the effects of errors, the observations arise as




follows
z=Lif (1)

where {L;}, is a set of linear evaluation functionals, defined on F, which
assoclate real numbers to the function f. We can represent the complete set of

observations [z1, ..., 2n]7 in vector form as follows
N
N = Lf =3 (Lif)es (2)
i=1

where e; € RY is the ith standard basis vector.
In general L; permits indirect observation (e.g. via derivatives of f), but we
are concerned with the case

zi = f(zi) (3)

leading to the exact interpolation problem.

The approximation problem can then be formulated as follows (Bertero,
De Mol, and Pike 1985): given a class F of functions, and a set {z}{L; of
values of linear functionals {L;}}, defined on F, find in F a function f which
satisfies Eq. 1.

By assuming that F is a Hilbert space, and further, the {L;}}L, are contin-
uous (hence bounded), it follows from the Riesz representation theorem that we

can express the observations as (Akhiezer and Glazman 1981)

Lif ={f,¥)5, i=1,...,N @)
where (-, -)= denotes the inner product in F. The {t;}}, are a set of functions
each belonging to F and uniquely determined by the functionals {L;}X,.

‘The approximation problem can now be stated as follows: given the Hilbert
space of functions F, the set of functions {¥;}]\; C F and the observations
{z},, find a function f € F such that Eq. 4 is satisfied. This is an inverse
problem, the solution of which is given in Section 4. We now address the case
where F 1s a RKHS.

3 Reproducing Kernel Hilbert Spaces

Formally a RKHS is a Hilbert space of functions on some parameter set X’ with
the property that, for each = € X, the evaluation functional L;, which associates
f with f(z;), Lif — f(=:), is 2 bounded linear functional (Wahba 1990). The
boundedness means that there exists a scalar M such that

|Li f| = | f(z:)| < M||f||= for all f in the RKHS

where || ||+ is the norm in the Hilbert space. But to satisfy the Riesz reprgsen—
tation theorem the L; must be bounded, hence any Hilbert space satisfying the
Riesz theorem will be a RKHS.




We use k(z;,-) to refer to ¢; (i.e. the evaluation of the function k(z;, ) = ¥;
at z; is k(z;, 2;)). The inner product (k(z;,-), k(z;,-))7 must equal k(z;, z;) by
the Riesz representation theorem. This leads to the following important result:
k(z;,z;) is positive definite since, for any z1,... ,2, € &, ai,...,a, E R,

Z aiajk(ziz;) = Z aia;(k(zi, ), k(zj,-))F

[Seates o 21

where || - || is the corresponding norm in the RKHS. The following is then a
standard theorem on RKHS.

I

Theorem 3.1 (Aronszajin 1950) To every RKHS there corresponds a unique
positive-definite function (the reproducing kernel) and conversely given a positive-
definite function k on X x X we can construct a uniqgue RKHS of real-valued
functions on X with k as its reproducing kernel.

We then have a more common definition for RKHS.

Definition 3.1 (Parzen 1961) A Hilbert space F is said to be a reproducing
kernel Hilbert space, with reproducing kernel k, if the members of F are functions
on some set X, and if there is a kernel k on X x X having the following two
properties; for every x € X (where k(-,z2) is the function defined on X, with
value at zy in X equal to k(z1,22):

1. k(-,z3) € F; and
2. (£, k(- 22)) 7 = flz2)
for every f in F.

We can then associate with &(-, ) a unique collection of functions of the form

L
7 =3 cik(ar, ) (5)

g=1

for L € Z* and ¢; € R. A well defined inner product for this collection is (Wahba
1990)

<Zaik(m,‘,-),25jk(mj,-)> =
) j F
Za,-b_.,-(k(a:,-, '), k(xj, )):,r = 2 aibjk(;t:i.:t:j).

For this collection, norm convergence implies pointwise convergence and we
can therefore adjoin all limits of Cauchy sequences of functions which are well




defined as pointwise limits (Wahba 1990). The resulting Hilbert space is then
a RKHS.
Suppose that k(z1,z2) is continuous and

f/kz(:rl,;vg)dxld$2<oo (6)
xJx

then there exists an orthonormal sequence of continuous eigenfunctions {¢;}{2,
in L»(X) with associated eigenvalues Ay > Ag > --- > 0 such that (Wahba 1990)

[ Kanedilen)dan = Nidifo), i=1,2,... (7)
&
It can then be shown that if we let
fi= [ Fe)di(a)da, ®)
then f € F if and only if (Wahba 1990)
00 g
Z _f)-:: < 00 (9)
g=1
and
5 = f?
Ifllz =) _ 3 (10)
i=1 "
Expanding f in a Fourier series
f(z) =) fidi(x). (11)

For proofs of the foregoing results see Wahba (1990) .

4 Normal and Regularised Solutions

Considering still the error free case, returning to the approximation problem of
solving for f € F in Eq. 4, we now assume that F is a RKHS and therefore the
1; are given by k(z;,-). The problem then is to find a function in the RKHS
of the form, Eq. 5, which satisfies the data at the corresponding points. The
solution will not be unique since we can only derive a finite number of values of
f from the observations. Assuming that the k(2;,-) are linearly independent we
can form a finite dimensional space Fy, a subspace of F. We can add to any
solution in Fn any function orthogonal to this space to obtain a new solution.
We must then solve the following linear system

Re=a" (12)




where K is the kernel Gram matrix with elements K;; = (k(z;,-), k(2j, )7 =
E(zs0m5)

This solution is the “normal” solution, f*, and is guaranteed to exist and
be unique as, within the set of solutions, there will always be one of minimal
distance from the null element of F.

It can be shown that the solution depends continuously on the data in the
sense that, for a variation Az" in 2 and corresponding variation Af! in f¥,
[AfH|# — 0 when ||[Az"||z — 0 (Bertero, De Mol, and Pike 1985). In the strict
mathematical sense then, the problem of determining f* is well-posed. For large
data sets, where the Gram matrix will have many small eigenvalues, much of the
data does not effectively add any independent information about the function.
In the presence of errors the problem will therefore be ill-conditioned.

If the functions k(z;, -) are effectively dependent and the data z; are affected
by errors then, in general, the normal solution no longer exists. Instead we must
find a solution by minimising the norm of the errors in Z, i.e. find an f € F
such that

N
> NIf(z:) — zil|z = minimum. (13)
=1
However, this may still be ill-conditioned so we use instead, a solution corre-
sponding to the minimiser of

N
Treglf]1 = D |IF(2:) — zl|% + Al flI% (14)

i=1
where p € R¥ is known as the regularisation parameter. We can rewrite Eq. 14
in terms of Eqs. 10 and 11

N g f2
D2 fidile) —a| +p3 3 (15)
i=1 i z i J
Considering the case where Z = Ly, i.e. || - ||z = | - ||2 then to minimise Eq. 15
we minimise w.r.t. the f;. The solution for ¢ is then given by
(K +pDe =2V (16)
and
J]‘\‘l'
fz) =) cik(z, ). (17)
i=1

5 Iterative Solution

Consider now the case where we wish to compute the solution iteratively. The
adjoint operator of L, L*, is defined through

{Lf, 2™ Yo ={F, B )z (18)




and transforms the observation vector 2"V into an element of 7, or more pre-
cisely the finite dimensional subspace Fp. The adjoint operator in a RKHS is
determined by (Appendix A)

N
e = Zk(mi,-)zz- (19)
3=1
and also we show that
i N N
L=LL"= ZZ k(z:, zi)e el (20)
j=1i=1
which is equivalent to the kernel matrix K. We can re-express Eqgs. 16 and 17 as
f(z) = L*(LL" +pI) 12V, (21)

In the case where p = 0 the solution is the minimum of ||Lf — 2%||z which is
given by the solution of L*Lf = L*2™. We denote this solution by f.

Consider now an iterative solution for fT, then, defining a sequence of esti-
mates as {f"}5%,, the method of successive approximations estimates f**! in
terms of f™ as

= P (22)
where f° € F, 7, € R* and f” is the residual
=L — LV, (23)

In practice the iterations must be made on finite dimensional objects. Returning
to the basic solution in RKHS, Eq. 17, f* can be expressed, using the adjoint
operator, as a linear combination of the ¢;

fﬂ. — L*C'ﬂ. (24)
where ¢ = [c},...,c%]7. Also
=iy, B=Lr% -, (25)

The method of successive approximations then finds estimates of the coefficients
as

LeRN tl=c? - g, (26)

where the v, are chjc\)rsen as below. The function at each iteration is determined
by f* = L*c" = Zj_=1 C?']f?(:l:j, )

To complete the iterative scheme we need to define a schedule for the param-
eters v, and together with this prove convergence in the sense that ||f*||* —= 0

when n — oo.




Lemma 5.1 Let {7,152, satisfy:

1. 0 < Yo < 2/Amas, VN, where Ay 1s the largest eigenvalue of LL* = K;
and

2 z;ozl Tn = CO.

Define the iteration f* = L*c" = Zf\;l k() together with f° € F (i.e.
c® € RY) arbitrary, ¢®t! = ¢ —v,&", & = LL*c® — 2V, then

17 1F = IIZ*&"||F = o.
as n — oo,

Proof.
(a) Monotonicity.

fn-}-l o L*Lfﬂ.-i-l _ L*ZN

but f**1 = L*c**! and **! = ¢" — 4,8, therefore f**1 = L*(c" —4,&") from
which

= BL (%= ) = 7Y
LEL = I — 4 DAL,
Define
AlFIE = IPIE-NFPIE
= |I/M% ~ IIf* =L Lf*||%
and thus
Al IE = I IF = 117 1% — v2 (L L, L L"),

+27a (", L* L") 7 e
= 2", I°Li")F - 7 (L°Lf* L*Lf*) =
= 2%(L5", L")z — ¥(LL'Lf*, L")z
using Eq. 18. Now
(Li LY )’
(LL*Lf* L")z il (72

(27)

where A; is the jth eigenvalue of LL* = K. Eq. 27 therefore satisfies

ALF LYz | 28m()° 2
(LI L LYz © Apar S0y (F7)2 Amas




But by assumption vy, < 2/Anas therefore
Al = 29 (L Lf*)z — v2(LL*Lf*, Lf*)z > 0

O
(b) Convergence.
It was shown above that the residuals satisfy
fn-i—l — L:Lfn _ L*L"Tnfn _ L*ZN
hence

P = it

I
—= 3

(I —wL*L)f H(I v L*L)g

55
Il

1

where g = f° € F which can be expanded as (c.f. Eq. 11)
9= gidi(z) (28)

and

L*Lg = Z gidi () (29)

where \; now refer to the eigenvalues of L*L ®.
We can then write

[T =wLD)g=>"a: [[(1 —mX)es
k=1 k=1

i
and hence

n

H(I" YwL*L)g

k=1

175 =

2 2 n
=) fi\_ T (= 7ex)?
F 1 k=1

(c.f. Eq. 10). Using the assumed inequality on
2X;
Mmar

Then for any L € Z+

L n
I+ < 305 Hl—w XL

i>L

1-—

<1—'Yk)\i<1=>(1_‘7k/\z‘)2< 1.

INote that L*L has the same positive eigenvalues as LL* with the same multiplicity.

We therefore use the same notation to refer to the eigenvalues of each, although strictly

L*L possesses more eigenvalues. The main result applies only to Amaz which is commeon to
both (Bertero, De Mol, and Pike 1985).

oy




For fixed L, let n — oo, and since 3 ;2 = oo (by assumption) and (1 —
YeAi)? < 1 the first term tends to 0. Nowlet L —+ 00,9 € F = 3 2, 92/\; < o0,
and therefore the second term is the tail of a convergent series and therefore
tends to 0. O

If we further define ¢® = 0 (and therefore f® = 0) then for any n, ||f*||r <
||f7*]| = and therefore ||f"||= < |[fT||= (Bertero, De Mol, and Pike 1988). It
then follows that the method of successive approximations defines a regularisa-
tion scheme where the inverse of the number of iterations plays the role of the
regularisation parameter.

6 Example

As an example of the application of the iterative RKHS approach consider the
discrete-time nonlinear dynamical system (Billings and Voon 1986)

y(t) = 0.5y(t—1)+0.3y(t — Lu(t —1)
+0.2u(t — 1) + 0.05y%(t — 1) + 0.6u(t — 1)

with the observations generated as
2(t) = y(t) +&(?) (30)

where £(t) ~ N(0,0.1) (note that this is a very noisy signal with a signal-to-noise
ratio of approximately 30%). In identifying the system the data were generated
from an initial condition of y(1) = 0.1 and the control input was sampled as
u(t) ~ N(0.2,0.1}). The RKHS approach was then applied to estimate a model
of the form y(¢) = f(y(t — 1), u(t —1)).

Throughout, the reproducing kernel used is the Gaussian function, k(z;, z;) =
exp(—p)||zi —z;||3) where B € RT. Ten different sets of training and testing data
with 500 samples each were used. In order to estimate # and A for the static
case a further 500 independent validation data were used. An appropriate value
of B was decided on as 0.1 and the A corresponding to the minimum of the val-
idation MSE was 0.02. A value of +, of 0.002 was chosen which always ensured
that the conditions in Lemma 5.1 were satisfied.

Static and iterated models were then estimated for the ten data sets, for
the iterative models 10,000 iterations were performed. An example prediction
over the first 100 samples of one of the test sets for an iterative model is shown
in Figure 1. In all cases the static and iterative models were very close as can
be seen in Figure 2 which compares the estimated parameters. Note that the
static parameters are scaled by 0.3257 which is necessary due to the effect of
the regularisation.

The average MSE over the data sets for the static and iterative solutions are
0.0011 and 0.0012 respectively which compares favourably to the noise variance
of 0.01. The average performance of the static solution is marginally better
than the iterative solution. However, in four of the ten data sets the iterative
solution was better. This is a feature of the particular test sets used.
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Figure 1: Typical predicted output (-’) for the iterative solution and actual
noise free true output (- -’).
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Figure 2: Example comparison of first 100 parameters for iterative (*-’) and
static (>- -’) solutions. Note the static parameters are scaled by 0.3257.

10




7 Conclusions

A framework for function approximation in the presence of finite data has been
presented based on the idea of RKHS. The function of interest is treated as
belonging to a RKHS, which is uniquely determined by a positive definite func-
tion called the reproducing kernel. Both normal and regularised solutions to the
estimation of the function, given finite data, have been presented. However, in
certain instances (e.g. large data sets) it may be beneficial to solve iteratively
for the function. An iterative approach to the least-squares, normal solution
was presented using the method of successive approximations. Detailed proofs
are given for the convergence of the estimates to the normal solution.
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