The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Finite Element Galerkin Models and Identified Finite Element
Models-A Comparative Study.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82996/

Monograph:

Billings, S.A. and Coca, D. (2001) Finite Element Galerkin Models and Identified Finite
Element Models-A Comparative Study. Research Report. ACSE Research Report 803 .
Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

FINITE ELEMENT GALERKIN MODELS AND IDENTIFIED
FINITE ELEMENT MODELS - A COMPARATIVE STUDY

PATE OF RETURM

S. A. BILLINGS D. Coca

Department of Automatic Control and Systems Engineering,
University of Sheffield
Sheffield, S1 3JD,
UK

Research Report No. 803
September 2001

200704638

(TR




FINITE ELEMENT GALERKIN MODELS AND
IDENTIFIED FINITE ELEMENT MODELS - A
COMPARATIVE STUDY.
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Abstract:

A new approach to derive a finite element discretisation of PDE equations soley from
pointwise observations is compared, in terms of approximation accuracy, with the
standard finite element Galerkin approach which assumes knowledge of the governing
PDE’s. It is shown both in theory and by means of an example that, for a given
model order, the identified model is more accurate than the equivalent finite element
Galerkin approximation derived from the original PDE’s.
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1. INTRODUCTION

The numerical computation of the solution of
PDE’s and of the control laws assoclated with a
distributed parameter system is often based on
a finite dimensional discretisation of the original
PDE. A well known approach is the finite element
Galerkin method (Brenner and Ridgway Scott,
1994).

The standard method of discretisation however
assumes a complete knowledge of the governing
PDE’s for the system of interest. But in many
cases the evolution equations will not be known a
priori and only measurements of the state (solu-
tion) of the system are available. In a companion
paper (Coca and Billings, 2002), a new approach
to derive a finite element discretisation of PDE
equations from pointwise observations using sys-
tem identification has been introduced to address
this kind of problem.

The identification data could represent a video
recording of patterns in a chemical reaction or
the web tension profile measured using a full-
web measurement system during a papermaking
process, for example. In another scenario, the

data could be the result of a high order numer-
ical simulation of a known PDE. The proposed
identification approach can be used to derive a
simpler, reduced order model which preserves ac-
curacy and which is much less expensive from a
computational point of view.

The proposed approach involves two basic steps,
the finite element approximation of the variables
in the spatial domain and the identification of the
finite dimensional model from the time-dependent
coordinate vector respectively.

Transforming the original, infinite dimensional
system of PDE’s into a finite dimensional prob-
lem poses at least two very important questions.
The first is whether or not the finite dimensiona)
discretisation of say, order n, converges to the true
solution as n — oo. The second question is how to
choose the right order of approximation knowing
that if the order is too small the finite element
solution will provide a poor approximation to the
original PDE solution or even display qualitatively
different behaviour. On the other hand, choosing a
very fine finite element approximation subspace,
that is a large n, will result in large scale finite




dimensional models which are not always conve-
nient for real-time control applications involving
dynamic optimisation because this would lead to
a significant increase in the computational work.

The convergence of the identified finite dimen-
sional models has been established in (Coca and
Billings, 2002) for a class of linear first order
systems. With regard to the issue of model order,
the proposed approach allows optimisation of the
number of degrees of freedom by projecting the
initial interpolation onto a suitable coarser finite
element subspace subject to predefined accuracy
constraints.

In the standard finite element Galerkin method,
reducing the order of approximation by using a
coarser approximation subspace ignores the ’high
frequency’ components of the solution lying in
the orthogonal subspace with negative effects on
the behaviour and accuracy of the approximate
solution.

The aim of this paper is to analyse the effects of
the reduction in the model qrder on the approx-
" imation accuracy of the identified finite element
models derived from spatio-temporal measure-
ments. Theoretically, it is shown that the iden-
tified models are more accurate than the models
derived by the standard finite element approach
with respect to the same finite element basis. The
analysis is supplemented by test computations
which confirm the theoretical results.

2. THE EVOLUTION EQUATION

Let H be a separable real Hilbert space with inner
product (.-} and norm |-| and V' another separable
Hilbert space which is embedded continuously and
densely in /. Here H is identified with its own
dual space. Let "~ denote the dual space of V
and || - |l. denote the norm on V*. It follows
that 1° € H C V'~ with continuous and dense
embeddings. The following inequality is assumed
to hold

[l < A7l (1)

Consider the following evolution equation

d

E; + Au=1(t) (2)
u(0)=ug e H (3)
with A a bounded linear, coercive operator
((Ap, ) > alle|l*, ¢ € V for some o > 0),
v(t,z) € C(R4;H) N L*(IRy; H), bounded in
L*(IR4: H). The initial value problem (2), (3) has

a unique solution u(t, z) defined for all > 0 such
that v € C(IRy; H) N L*(0,T, V), VT > 0.

The equation (2) is usually complemented by
boundary conditions which can be of the Dirichlet,
Neumann or periodicity type for example. These
can be accomodated by considering restrictions of
A and v to corresponding closed subspaces V'

3. THE IDENTIFICATION METHOD

The identification method propesed in (Coca and
Billings, 2002) can be viewed as an inverse finite

.element Galerkin approach where the solution is

used to derive the finite dimensional model rather
than the original PDE’s.

To account for the fact that in general it is
not possible to measure the full state (solu-
tion) of the system, an observation operator Z :

C([0,T],C(Q)) — Y is introduced as follows

N = Zu={u(ti, z) 2008 (4)

where V = IRY*" is the observation space to
which the measurements y = Zu belong.

It is assumed that point measurements are
recorded from a finite number of locations dis-
tributed uniformly over the spatial domain with
a sampling step Az (i.e. the data is spatially
sampled at the n — 1 nodal points 1, %, .y 221
and that the data is also sampled uniformly over
the time interval [0,T] with a sampling time At.
In practice it is assumed that both Az = L and
At are sufficiently small so that the full behaviour

of the solution u is captured.

Let V™ be a finite dimensional subspace of V. The
identification problem is to determine, based only
on the given set of discrete observations yy, =
{u(ts, ) HZh % and uwa = {o(ts z5) Hmr
a finite dimensional dynamical system whose so-
lution u, € C(IRy; V*)NL3(0, T; H(Q)) approx-
imates the observed dynamical behaviour in V™.

The identification is performed in two stages. In
the first stage the data is interpolated onto a finite
element subspace V™. This involves computing
the input and output coordinate vectors relative
to the finite element basis. The second stage
involves estimating a finite dimensional, discrete-
time model which approximates this input/output
behaviour.

A common choice of finite element subspaces
V™ on § are the spaces of continuous piecewise
polynomial functions defined with respect to a
uniform mesh on Q. For simplicity it is assumed
that Q = (0, 1).

Let {¢7}7_, be the standard /th order B-spline
base (de Boor, 1978). In this case

V™ = span{e? 7—o and V' is the Sobolev space




H'(0.1). Note that |J V™ is dense in ¥ —
neZ

L*(0.1) and H'(0.1). Let

Unlt2) =y j (102 (), t>0 (5)
Jj=0

n

tn(t.2) = 3 " vn 5(t), P (2) t>0 (6)

=0
denote the interpolation of u and v respectively in
V.
It was shown in (Coca and Billings. 2002) that
the input/output behaviour given by va(t) =

(Un,ﬂ(t): Risiy Uﬂ,ﬂ(t)}) Yﬂ.(t) = (yn,ﬂ(t)) oalaty yn,n(t))
can be approximated by the following differential
equation

du,,

dt

+ Anun = 'Un(t), (7)
Un (0) = yn (0) (8)

where A, V" — V" is a finite dimensional
: operator define by

(f‘lun;@n> = (Anun, "), et ey (9)

for any u,, € V.

More precisely it was shown that the solution
un(t,z) to (7) is bounded in L*(IR4; H) and that
Un(t, ) = yn(t,z) strongly in L?*(0,T. H) and in
L*(0,T,V) as n — oo.

Assuming that V" is a high order approximation
subspace, let V™ be the coarser subspace such
that V™ C V™ and let

Ym = I'mln = Zym,j(t)‘:o;'n(x,]

7=0

Um = Prtin = ) " ym i ()T (x)  (10)
j=0

Um = Ppu, = Z Um,j (t)(p;n(.‘r)
Jj=0

be the orthogonal projections of y, (the interpo-
lation of u in V"), u,, and Un respectively on the
coarser subspace V™ and

Up—m = Qn—mun = Z un—m,j(t)w?_m(r)
j=1
n—m
Un—m = Qn—mt’n = Z Un—m,j(t}w;l_m(;rill)
J

i=1

be the projection of u,, and Un respectively on the
orthogonal subspace Wn=m of ym iy yn spanned

by the basis {us-" o

' Corollary 3.1. With the notation introduced ahove

it follows that:

a) um(t, z) = ym(t. z) strongly in L*(0, T, H)
and L*(0.T, V) as n ;
b) um(t) = ymu(t) in L*(0,T, R™! asn — co.

Proof: Projecting equation (7) on V™ and Wn-m
respectively leads to the following dynamical sys-
tem

d

;‘—f + P (tm + Unm) = v (£), (12)
< —
T =+ anm(fln Um + Un—m) = 'Un—m(t)

with initial conditions, um (0) = m¥n(0) and

Un-m(0) = Qn-mya(0).

The convergence results a) and b) follow as a
consequence of Theorem 3.1 in (Coca and Billings,
2002).

Remark 3.1. Assuming that only u, is observable
and that the system (12) admits an external dif-
ferential representation (input/output equation)
with inputs v,,, v,_,, and output u,, it follows
that based on the inputs Vm, Van—m and the out-
puts ym 1t should be possible to estimate an in-
put/output dynamical respresentation to approxi-
mate the dynamics in the coarser space V™ which
according to Corollary 3.1 converges to the inter-
polate ¥, and to the true solution u as n — 0o.

The resulting model provides a better description
for the dynamics in the V™ subspace than a stan-
dard Galerkin approximation, involving the same
number of equations, because the input/output
model derived from (12) accounts for the dynam-
ics of the small scale structures in the complemen-
tary subspace W"~™ represented by the coupling
term P A u,_pp in (12)).

In numerical simulation, an initial high dimen-
sional approximation on a fine grid, could be
replaced with a discrete-time approximation of
lower dimension obtained from data generated
by the high-dimensional model using a system
identification approach. The resulting discrete-
time model will be able to predict better the low-
frequency part of the PDE solutions than the
standard Galerkin approximation involving the
same number of equations.

Assuming that the data used in identification is
the result of numerical simulation, let v, = u, and
u™ be the solutions of the Galerkin approximation
of order n and m respectively, with n > m.
Recalling the minimum distance properties of the
projection u, = P,u, with respect to u,, let
€m = Um—u"" be the approximation error, relative




to U, of the low-order Galerkin approximation in
T4

[t easy to show that e,, satisfies the following error
equation

dem m m m
(‘?, i} >+<_“l€m,§0 >+<Un+r71<'~,-‘7 ):O
(13)

for any ™ € V™. By taking ¢™ = e,, and thanks
to the coercivity of A4 it follows that

1d 5
§d—tf€m|‘+ﬂl|€m“25 lem|[tn—m] (14)
and subsequently after using twice (1) that
d . o 1
—1em|” A m|" < — n—m 1
gleml +aXen < Sfun_nl  (15)

Integrating (15) and using the classical Gronwall
lemma yields

2 < 9 —art , |Un-ml? _ —aAt

Ieml s Iem(o)‘ € + (O{)\)Q (]‘ € )
(16)
where |up_p,|2 = s.up{[un_m(t)lz}tEfo oo)? Which

provides an upper bound for e,, (t) in L (IRy, H).

4. NUMERICAL EXAMPLE

This section provides a comparison of the quan-
titative approximation properties of the identified
finite element model and the model derived by us-
ing the standard finite element Galerkin approach
for the following diffusion equation

Ou(t,z)  H%u(t,z)

with domain Q = (0, 1), initial conditions

_ | 2Bz z € (0, 0.5)
80, 2] = {23 ~2Bz z€(05,1) (19
and Dirichlet boundary conditions. In this case
H =L?(0,1) and V is the Sobolev space H}(0,1)
endowed with the usual inner products and corre-
sponding induced norms.

The operator 4 ¢ L(V, V=) is given by

(o ;D):ng{r)Dzb(:r)dz (19)
0

with o0 € HE(0,1). It it easy to see that
assumptions (A1) and (A2) are verified in this
case.

x10”

Fig. 2. Prediction error y,(t) — u”(t) for the
identified MIMO-AR, model.

For B = 7% the exact solution u(t, z) of the initial
value problem (17), (18) is given by the following
series expansion

1 2
ut,z) =) oo AT o)
k=1

= B(—1)k-
. 51:1 ((2k — 1)mz) .

The solution, based on the first 50 terms of
the expansion (20) with ¢ = 1.0 was sampled
uniformly in both the spatial and time domain
with Az = 1/128 and At = 0.5 x 10~3.

From each location N=1000 data points were gen-
erated. The data were interpolated using linear B-
spline functions. The initial interpolated solution
involving 127 basis functions was subsequently
projected onto a lower approximation subspace
and expressed in terms of only 15 basis functions.

One thousand samples shown in figure 1, cor-
responding to the coordinate vector Yalt) =
(Yn,1(t), -, Yn,15(t)), were used for identification.
The data was used to estimate a deterministic
MIMO-AR model (not given here for reasons of
space). The selection of the linear terms included
in each of the 15 subsystems was performed with
the help of the Orthogonal Forward Regression
algorithm (Billings et al., 1988).
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Fig. 3. Approximation error e, (t,2) = Jult,z) -
u"(t, z) of the solution in V7 {(h=18).

The model was simulated and the resulting model
predicted output was compared with the coordi-
nate vector u™ () corresponding to the orthogonal
projection of the original solution u® = Pou(t, z)
on the approximation subspace V" ¥n(t). The
prediction error vector én(t) = ¥a(t) — u(t) is
plotted in figure 2 and the corresponding approx-
imation error of the solution in the /™ subspace
en(t.x) =P (t, ) — u™(t,z) is plotted in figure 3.

A standard finite element Galerkin discretisation
was derived using the same linear B-splines basis
with n = 16, defined with respect to the uniform
mesh 0.1 2 . 1 This leads to the following
system of differential equations

d

M™ 0 (t) = K™ (1) (21)
dt

where /™ denotes the Gramm matrix corre-

sponding to the linear B-spline basis {7 }i=15

1
M™ =M} = /go?(z'}tpf(m)dm (22)
0
and the stiffness matrix K is given by
1
K" =[R])] = /Dg?(.ﬂ)D@;(m)d.r (23)
0

The system was integrated using a stiff differential
equation solver with a very fine integration step
dt = 0.25- 107, The resulting coordinate vector
" (t) was compared with the same coordinate vec-
tor u”™(¢) corresponding to the orthogonal projec-
tion of the original solution on the approximation
subspace V™. The error vector = (f) = a*(t) -
u™(t) is shown in figure 2 and the corresponding
approximation error e”(t, z) =u"(t,z) — ut(t,z)
in V™ is shown in figure 3.

From the figures 2, 3, 4 and 5 it is evident that
the identified model approximates far better the
solution of the original PDE equation in the /"
subspace than the finite element Galerkin model.

Fig. 4. Prediction error U, (t) — u™(t) for the

standard Galerkin model.

& (t.x)

Fig. 5. Approximation error e, (t,2) = Gult,z) -
u”(t, z) of the solution in V™ (n = 16).

In particular the NRMSE of ¢, (1) 15 0.3-107% %
compared with the NRMSE of ;(¢) which is 0.58
%.

In order to compare the two models in terms of
number of parameters, equation (21) is written in
equivalent form as

iﬁ”(t) = (M")"'K™an(t) (24)
dt
which has 225 nozero parameters compared with

the estimated discrete-time MIMO-AR model
which has only 97 parameters.

Moreover, it should be noted that the model (21)
is a continuous-time model which should have
been further discretised in time in order to per-
form a fair comparison. The process of translating
(21) into a discrete-time model, will normally in-
troduce additional approximation errors or could
produce an unstable model.

5. CONCLUSIONS

The above analysis has shown that the finite ele-
ment discretisations obtained by system identifi-
cation are more accurate and more parcimonlous
than the standard finite element Galerkin discreti-




-

sations derived over the same finite dimensional
approximation subspace.

The system identification approach analysed in
this paper can be used both when the govern-
ing evolution equations which characterise a dis-
tributed parameter system are known and in the
cases when only process measurements are avail-
able. When the PDE’s are known an initial high-
order approximation derived by standard discreti-
sation methods from the known equations can be
replaced by a simpler model estimated from the
simulated data.
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