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Abstract:

This paper addresses the problem of obtaining finite dimensional models of
distributed-parameter systems from pointwise data using system identification. The
data are first interpolated into a finite dimensional space and expanded in terms of a
finite element basis. A discrete time model is estimated based on the resulting finite
dimensional coordinate vector. The existence and convergence of such a representation
is established for a class of abstract first order systems. The proposed approach is
illustrated in practice using simulated noise contaminated data.
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1. INTRODUCTION

In most practical cases, the analysis, simulation
and control of a distributed parameter system,
which is described by partial differential equations
(PDE’s) and is characterised by an infinite dimen-
sional state-space, cannot be solved using only
analytical methods (Bensoussan et al., 1992). The
solution in these cases is to replace the original
infinite dimensional PDE description with a finite
dimensional approximation which captures, with

sufficient accuracy, the properties of the original
PDE.

Different techniques can be applied to transform
the original PDE into an approximate system of
ordinary differential or difference equations. The
most commonly used approaches are the finite dif-
ference and the finite element methods. All meth-
ods require knowledge of the form and parameters
of the PDE’s describing the distributed parameter
system.

This paper addresses this problem from a system
identification perspective. The idea is to obtain
the finite dimensional approximate model from

pointwise observations without assuming any a
priori knowledge of the structure or the parame-
ters of the PDE’s. The proposed approach involves
two basic steps involving the finite element ap-
proximation of the variables in the spatial domain
and the identification of the finite dimensional
model from the time-dependent coordinate vector
respectively. In the first stage the pointwise obser-
vations are interpolated onto a finite dimensional
space and expanded in terms of a suitably condi-
tioned finite element basis which accounts for the
boundary conditions that are assumed known. If
the number of degrees of freedom is too large the
dimension of the coordinate vector can be reduced
by projecting the initial interpolation onto a lower
dimensional subspace subject to maintaining a
certain degree of accuracy. System identification
techniques are employed in the second stage to
estimate a discrete-time model based on the re-
sulting coordinate vector.

The theoretical aspects of the proposed identifica-
tion approach are also investigated. In particular
the existence, stability and convergence of the fi-
nite dimensional models are established for a class




of first order systems. The proposed approach
is illustrated using simulated noise contaminated
data.

2. THE EVOLUTION EQUATION

Let H be a separable real Hilbert space with inner
product (-, -) and norm |-| and V' another separable
Hilbert space which is embedded continuously and
densely in H. Here H is identified with its own
dual space. Let V'~ denote the dual space of V'
and || - [l denote the norm on V*. It follows
that V. C H C V* with continuous and dense
embeddings. Specifically the following inequality
1s assumed to hold

lel < A2l (1)

The notation (-,-) will also be used to denote
the duality pairing between V and V* where the
pairing between ¢ € H and ¥ € V agrees with the

“inner product (g, ). It follows that llell < Xl

and [|¥]l. < A?||y||. Often in practice it will be
assumed that H = L*(Q2), V is the Sobolev space
H'(Q) with dual V* = H-(Q).

Consider the following evolution equation

b + Au=1u(t) (2)

dt
u(0) = uq (3)
and the equivalent variational formulation

G+ g =0, @

u(0) = ug,Vo e V (5)

where it is assumed that:

(Al) Ae L(V,v*).

(A2) The operator A is coercive that is (A, @) >
all¢l]?, Yo € V for some a > 0.

(A3) The forcing function v(t,z) € C(R4; H) N
L*(0,T; H) is bounded in L*®(IRy; H).

A solution of the initial value problem (2), (3) is a
function u € L?(0, T, V) with D,u € L*(0,T; V=)
that satisfies (2) and (3) for all T > 0. Specifically,
here it is assumed that

(A4) u(t,z) € C(Ry, H)N L*(R4; V) is a unique
solution of (2), (3).

The equation (2) is usually complemented by
boundary conditions which can be of the Dirichlet,
Neumann or periodicity type for example. These
can be accomodated by considering restrictions of
A and v to corresponding closed subspaces V'

3. THE IDENTIFICATION METHOD

In general, the numerical integration of evolution
equations is based on a finite dimensional approxi-
mation of the original infinite dimensional system.

The idea is to reduce the infinite dimensional
system to a system of ordinary differential or
difference equations which can be used either to -
compute an approximate solution or to design
the controller. One well known approach is the
finite difference method which involves approxi-
mating the partial differential operator by finite

“differences. An alternative approach is the finite

element Galerkin method (FEM) (Brenner and
Ridgway Scott, 1994). Unlike the finite difference
method the finite element method is essentially an
approximation of the space V', where the solution
of the partial differential equation is sought, using
finite dimensional subspaces.

The problem addressed in this paper is that of
estimating from pointwise data, a finite dimen-
sional, discrete-time dynamical system which ap-
proximates with sufficient accuracy the unknown
infinite dimensional system. This approach as-
sumes no a priori knowledge of the PDE’s which
governs the distributed parameter system. The
identification method can be viewed as an inverse
finite element Galerkin approach where the solu-
tion is used to derive the finite dimensional model
rather than the original PDE’s.

The identification is performed in two stages. In
the first stage the data is interpolated onto a finite
element subspace V™. This involves computing
the input and output coordinate vectors relative
to the finite element basis. The second stage
involves estimating a finite dimensional, discrete-
time model which approximates this input /output
behaviour.

3.1 Approzimation Results

Let V™ C V withn = 1,2,... be a sequence
of finite dimensional subspaces of H which are
dense in V' and are spanned by a finite dimensional
basis {(p;_?}_;-‘zo. Moreover, there exists a constant
€1 > 0 independent of n such that for any flz) =

Z};D i@y (z) in V7

> leil? < Gl (6)
Jj=0

For example, this condition is satisfied in the case
of the B-spline basis. Let

=1

)

Un(t,2) =D yn i (1)e? (2), t>0 (
=0




Un ;i (t)e7 (z) t>0 (8)

Jj=0

denote the interpolation of u and v respectively in
R,

The following theorem establishes the existence,
stability and convergence of a finite dimensional
dynamical system which provides an approximate
realisation of the input/output behaviour v, (t) =
(vn,0(2), ..., Un,n(t)), ¥n(t) = (ynrﬂ(t)z vy Ynon(1)),
t >0

Theorem 3.1. Assuming (A1)-(A4) to hold, let
u(t, z) be the unique solution of (2) with initial
conditions (3) and forcing function v(t,z). Let
Vn(t), ¥n(t) be the coordinate vectors of v, (t, z)
and y, (¢, z) defined in (8) and (7) respectively. An
n+l-dimensional dynamical system exists such
that If un(t) = (un,0(t), ..., unn(t)) is the tra-
Jectory of the system with input v, (t) and ini-

tial conditions u,(0) = y,(0) and un(t,z) =
=0 Un,j (1)@} (z) then:
a) un(t,z) is bounded n

L=(IR4; H) and un(t,z) = yn(t, ) strongly
in L*(0,7, H) and L*(0,T, V) as n — co.

b) The trajectory wu,(t) is bounded in
L*®(Ry; R and un(t) — Ya(t) in
L0, T;R™*!) as n — oo.

Proof:

For each n = 0,1,2,... define the operator A, :
Vm — V™ by

<-L1un: ‘Pn) = (A-nunz ‘Pn>s ‘Pn evn (9)
for any u, € V™. From the Riesz Representation
Theorem (Naylor and Sell, 1989) applied to the
Hilbert space V™ it follows that A, is a well

defined operator given that (Au,, -} is a bounded
linear functional.

Consider the initial value problem in V7

du,
d—t+Anun:vn(t), (10)
un (0) =y, (0) (11)

which is an ordinary differential equation. For
each n > 1 the existence of solutions on some
interval (0,7,) follows from standard theorems
for ordinary differential equations. The a priori
estimates below show that these solutions are
defined for all ¢ > 0 (i.e T}, = +o0). From (10)
and (9) it follows that for any " V™ u, is the
solution in V™ of

duy,

(T ¥+ (Aun, ") = (o, ") (12)
un(0) = ya (0) (13)

For " = u, it follows that

1d

g a7 lunl® + () = (o, ua) (14)

Since A is coercive

1d 5 2
'Q“EIunl + af|ua|| < |vn||un] (15)_

and subsequently, using the well known inequality,

€ 5 b
b< -a”+ —
Brg e 4 5 (16)
and (1) it follows that
d, 5 5 1 5
Flunl® +ellunll < Sl (17)

and subsequently, after using (1) again that

d 2 2 1 2
&EIUTJ + aA|ug,| Smlﬂnl (18)

Integrating (18) and using the classical Gronwall
lemma yields

2

9 9 Un | =
enf? < fun(O) 228 + 2l (1 - =0y 29
where |v,|? = sup{|vnI2}tE{0 «) Which is finite

since v(t) is bounded in L*(IR4; H). Therefore
Th — 400 as announced earlier i.e. the solution
un 1s defined for all ¢ > 0. It remains to prove that
u, converges to the interpolate y, as n — co.
However, it is well known that the interpolate
Yn — uin L*(0,T,V) and L*(0,T, H) strongly
as n — 0. From the triangle inequality it follows
that it is sufficient to show that u, — u strongly
in in L%(0,T, V) as n — co.

Equation (19) implies that u, remains in a
bounded set of L*(IRy; H) as n — oco. Going
back to (17) it also follows that ||uy,|| is uniformly
bounded for any ¢ > 0 so that for any 7' > 0 u,
remains in a bounded set of L?(0,T; V) asn — oo.

These estimates ensure the existence of an element
v’ and a subsequence n’ — oo such that for all
T >0, upr — u' weakly in L*(0,T, V) dup/dt —
du/dt weakly in L*(0,T, V*) and un — u’ weak-
star in L® (IR, H) , as n’ — co. Owing to a
classical compactness theorem (Temam, 1983) it
follows that u,s — u’ strongly in L2(0, T; H) for
all 7" > 0 as n’ — co. By passing to the limit
in (12) it follows that »' = wu and the whole
sequence converges to u. The strong convergence
result in L2(0, T; V) follows easily by showing that
the expression

T
X = lun(T) = u(T)P + [l it (20
0




tends to zero as n — ~o.

If we expand u, in equation (10) mn terms of
the finite element basis in V" and take the inner
product with @7 for j = 0,...,n, this leads to the
following system of differential equations

du,

M" = + E™Mup = M v, (1) (21)

where MP; = (o7, 27) and E}; = (442, 7).

The second part of the theorem follows easily since
according to (6) ‘

D lunj(8) = gn (1 Cilun — > (22)
=0

which after integrating with respect to ¢

T, T
/ un i (&) = yn g () < Cu [ un — ya%23)
o J=0

J 0

.leads to the convergence result in L*(0, T; R"+1).

3.2 The Identification Problem

Consider the evolution equation (2) with Dirichlet
boundary conditions satisfing assumptions (Al)-
(A3) and u(t,z) a solution satisfying assumption
(A4). Without loss of generality V is identified
with H'(Q), the Sobolev space of order [ > 2.

To account for the fact that in general it is not
possible to measure the full state of the system,
the following observation operator is introduced

Z:C(0,1,c(Q) =Yy (24)

where V is the observation space to which the
measurements y = Zu belong.

In what follows it is assumed that point mea-
surements are recorded from a finite number of
locations distributed uniformly over the spatial
domain i.e. the data is spatially sampled at the
n — 1 nodal points %, %, - ”;l. Note that this is
not a strong requirement. Non-uniform sampled
data in the spatial domain can also be handled.
For simplicity € is assumed one-dimensional, in
particular Q = (0, 1). The results however are also
valid for Q@ C IR? with d > 1.

Specifically, in the case of discrete-discrete obser-
vations considered here, the observation operator
is defined as

UNn = Zu={u(ts,z;) 2% (25)

and the observation space is J = RVM*? [t
is assumed that in the time domain, the data

is uniformly sampled over the interval [0,7] of
observation with a sampling time At. In practice
it is assumed that both Az = L and At are
sufficiently small so that the full behaviour of the

solution u is captured.

Let V'™ be a finite dimensional subspace of V. The
identification problem is to determine, based only

on the given set of discrete observations s =
{u(ti,2;) HZ % and vy, = fultn e )is
a finite dimensional dynamical system whose so-
lution un, € C(IR4; V*)NL2(0,T: H(Q)) approx-

imates the observed dynamical behaviour in V™.

3.3 Finite Element Approzimation

A common choice of finite element. subspaces
V™ on Q are the spaces of continuous piecewise
polynomial functions defined with respect to a
uniform mesh on Q. Let {¢} }7_, be the standard
Ith order B-spline base (de Boor, 1978). In this
case V™ = span{p}}?_; and V is the Sobolev
space H'(Q). Note that |J V™ is dense in H =
neZ

L*(Q) and H*(Q). Moreover, for the B-spline basis
the inequality (6) holds.

When defining the approximation subspaces V™
and the associated basis elements respectively, it
Is important to take into account the boundary
conditions. For instance for zero Dirichlet bound-
ary conditions V' = H{ and V" is the space
of continuous, piecewise, Ith order polynomial
functions corresponding to the uniform partition
{0,2,2,..., 1}, which vanish at 0 and 1 and is de-
noted Sg’[. In parctice the standard B-spline basis
functions {7 }?_; can be modified to account for
specific boundary conditions.

Let yn(t,z) = I3[y u(t,z) be the linear B-
spline interpolation of the pointwise data YNn =
{u(t“azj)}f_ff; where If, and IZ, are the
linear interpolation operators in S™:1([0,T]) and
S™1(Q) respectively. It follows that yy (¢, z) can be
expressed in terms of the two-dimensional linear
tensor splines @M (t,z) = ¢V (t) @ ™ (z) such
that

N n

i=1 j=0

The interpolation v,(t,z) of the perturbation
function from the pointwise data un ., can be
defined in a similar manner.

Choosing the optimal approximation subspace
V™, that is the mesh size h = L is very important.
In practice, the initial mesh size could be selected
based on the frequency content of the solution
along the spatial and temporal coordinates.




As in the numerical integration of PDE’s, if the
mesh is too fine the dimension of the resulting
finite dimensional model will be too large and
computationally expensive. In practice however,
if the sampling is too fine, the inital interpolation
can be projected onto a coarser subspace.

In identification, the mesh size is related to the
number of measurement locations in the spatial
domain. Recent developments in sensor technol-
ogy mean that the number of measurement, loca-
tions can be quite large and still cost-effective. For
example, the data could represent a video record-
ing of patterns in a chemical reaction, a sequence
of MRI scans of brain activity or the web tension
profile measured using a full-web measurement
system during the papermaking process.

The order of the identified dynamical system
could be much smaller than the initial size of
the coordinate vector. Finding a more economical
representation for the initial interpolate y, can
be achieved using a simple iterative algorithm.
Let p be a desired approximation error bound.
. Starting with m = n — 1 the initial interpolate
Yn is projected successively onto coarser spaces
V=2 Vn-1l in order to find the minimum num-
ber of basis functions m = m,,;, for which the
approximation error is less that the given thresh-
old. This approach leads to a more economical
approximation of the solution.

4. NUMERICAL EXAMPLE

This section illustrates the identification of a finite

dimensional, discrete-time dynamical model for

the following diffusion equation (heat equation)
Ou(t,z)  8%u(t,z)

&G * r? 0, (27)

with domain Q = (0, 1), initial conditions

_ [ 2Bz z € (0, 0.5)
Millgad] = {QB ~2Bzrze(05,1) (%)
and Dirichlet boundary conditions. For B = 72
the exact solution u(t, z) of the initial value prob-
lem (27), (28) is given by the following series
expansion !

The solution, based on the first 50 terms of
the expansion (29) with ¢ = 1.0 was sampled
uniformly in both the spatial and time domain
with Az = 1/128 and At = 0.5 x 10~3,

1

Fig. 2. Model predicted output (solid) ¥,(t) of
the MIMO-ARMA model superimposed on
the original noise free trajectory (dash-dot)

ya(l) .

From each location N=1000 data points were gen-
erated and superimposed with white noise with
variance o@ = (.01. The data were interpolated
using linear B-spline functions. The initial inter-
polated solution involving 127 basis functions was
subsequently projected on a lower approximation
subspace and expressed in terms of only 15 basis
functions.

One thousand samples shown in Figure 1, corre-
sponding to the noisy coordinate vector ¥,(t) =
(Fn,1(t), --., Un,15(t)), were used for identification.
The data was used to estimate a MIMO-ARMA
model (not given here for reasons of space) which
included both deterministic and stochastic terms.
The selection of the linear terms included in each
of the 15 subsystems was performed using the Or-
thogonal Forward Regression algorithm (Billings
et al., 1988).

The deterministic part of the model was simulated
and the resulting model predicted output

Yn(t) = A¥a(t)) (30)

was plotted in Figure 2 superimposed on the orig-
inal noise-free trajectory y,(t) The two trajecto-
ries are practically indistinguishable. In equation
(30) A is the matrix of backward shift polynomials




AlLJ) =alg7 + . +dfg™ (31)

where a7 ; represent the estimated coeeficients and

™% is the backward shift operator.

is

Fig. 3. Model prediction errors En k(1)

The model prediction errors Enk(t) = yni(t) —
Un.k(t), relative to the original noise-free coordi-
nate vector yyn(t), plotted in figure (3), are very
* small with a NRMSE of less than 1%. The model
output was used to compute the approximate
PDE solution y(¢, z) shown in Fig.(4).

Fig. 4. Predicted PDE solution g(t, z)

The prediction errors e(t,z) = y(t,z) — y(t, z)
plotted in Fig.(5) have the same order of magni-
tude as the initial B-spline approximation errors.
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Fig. 5. Predicted PDE solution errors e(t, z)

5. CONCLUSIONS

Finite dimensional approximations of PDE’s play
an essential role in the control and simulation of
distributed parameter systems. This paper has de-
veloped, analysed and tested a method for deriv-
ing the finite dimensional approximation directly
from nolsy data using system identification.

The proposed approach can be used to identify,
directly from measurements, a finite dimensional
approximate representation of a distributed pa-
rameter system for which the governing PDE’s are
not available. However, even when the equations
are known, this approach can be used to pro-
vide a more economical and even more accurate
representation than the one obtained by classical
methods. Indeed, in a companion paper it will be
shown both in theory and by means of an example
that, for a given subspace V", the identified model
is more accurate than the equivalent finite element
Galerkin approximation derived from the original
PDE’s.
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