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Abstract

A novel non-linear design method based on linear quadratic optimal control theory is presented that applies to a
wide class of non-linear systems. The method is easy to apply and results in a globally optimal solution that can
be implemented in real-time. The key feature of the design method is the introduction of state-dependence in the
weight matrices of the usual linear quadratic cost function, leading to a non-linear control policy, even for linear
dynamics. To demonstrate the method, a simple vehicle suspension model with a cubic damping force is used, in
conjunction with non-linear state penalties that better reflect the engineering objectives of active vehicle
vibration suppression. A number of simulations is conducted and compared with a passively mounted vehicle.
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1. Introduction

Linear quadratic (LQ) optimal control theory is a
highly developed approach for the synthesis of linear
optimal control laws that has been widely applied. In
particular, the infinite-time-horizon solution has
appeal for the regulation of processes that are well
modelled by linear time-invariant dynamics because
the solution comprises a set of static gains that are
calculated once, off-line, and are implemented
causally thereafter. The finite-time-horizon solution,
while being more general, and admitting of time-
varying dynamics or weighting parameters, is
essentially an off-line procedure because the
associated (differential) Riccati equation must be
solved backwards in time. Incorporation of such a
scheme in a closed-loop, real-time process is not
therefore possible. The receding horizon approach
attempts to overcome this difficulty by repeatedly
solving the open-loop, finite-time-horizon problem
for short periods into the future, and using this as the
feedback gain over the time step. It does this at the
expense of optimality, which may or may not be
important from the point of view of the practising
engineer.

A further disadvantage of the LQ philosophy is that,
being a linear feedback, the control signal is affected
in the same way by small and large signals. In many
applications it may be preferable to ignore small
error signals (due, for instance, to measurement
noise) as far as possible, while responding optimally
to large errors. It may also be desirable to switch
attention between control objectives depending on
their current values. The receding horizon strategy

approximates the former behaviour té a certain '
extent, but is unable to address the latter.

For non-linear dynamics the situation is exacerbated,
with few explicit solutions for their optimal
quadratic control as yet known except those based
on series expansions. These are unrealisable, unless
via truncation, leading to a loss of optimality and
possibly stability. Normally optimal quadratic
control for non-linear systems is conducted
numerically and tends, inherently, to be non-causal.

In this paper we make use of a new result that
generalises the LQ theory to non-linear systems to
provide a non-linear design method that overcomes
some of the difficulties mentioned above. This non-
linear quadratic (NLQ) method applies to systems
having a broad class of non-linear dynamics with
state-dependent weighting matrices (the design
degrees of freedom). In brief, it turns out that the
infinite-time-horizon LQ regulator problem, when
solved afresh at every point on the state trajectory,
leads to a globally optimal control policy [1]. For
admissible system dynamics, the weighting
parameters can be made to be functions of the state
variables. Thus, in addition to handling non-linear
dynamics, the design stage allows for the
introduction of state-dependence in the weighting
matrices, leading to a more flexible control strategy.

Our method is causal, but has considerable
computational overhead. However, by using a
solution to the Riccati equation based upon the
matrix sign function [2], it is possible to derive a
parallel algorithm [3] suitable for real-time
implementation.

In order to demonstrate the approach we consider
the active control of a vehicle suspension system in
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order to reject disturbances induced by surface
asperity: a problem that has received much attention
in the past although usually for linearised dynamics.
Clearly, the assumption of linearity may often be
valid but some designs are inherently non-linear
such as the oleopneumatic shock struts of aircraft
landing gear.

While the LQ approach is attractive in that it is
possible to penalise different variables so as to
trade-off between, say, ride comfort and handling, or
comfort and suspension travel, the way these
variables are treated is essentially fixed — no
provision is made to allow the suspension to
distinguish between a smooth surface and a rough
one. Evidently, while comfort might be a prime
objective under normal circumstances, in extreme
conditions the suspension should be stiffened to
avoid hitting its limits, hence incurring damage. This
is true even if the dynamics are linear up to this
point. Although, in principle, time-varying weighting
parameters are allowed in the (finite-time) LQ
approach, lack of prior knowledge of the surface
profile, and the acausal calculation for the solution
makes the introduction of these difficult. The
required amplitude dependence can never, therefore,
be achieved through the LQ approach.

We illustrate our approach on a simple non-linear
model incorporating a non-linear damping element,
and compare our results with the passive system and
the optimal NLQ solution using fixed weighting
matrices.

The remainder of the paper is organised as follows.
In §2, to motivate the work, the LQ regulator
problem is first set out, the generalised results are
stated and the robust solution of the infinite-time-
horizon LQ problem is outlined. In §3 the
suspension model is presented and the choice of
design parameters is discussed. The results of a
series of experiments are described in §4, followed
by conclusions in §5.

2. The design method

2.1. Linear quadratic regulator

The LQ optimal regulation problem is expressed as
follows:

minimise the cost function:

J = |(x'Ox+u'Rujds (1)

st—3

subject to the linear time invariant dynamics:

X = Ax+ Bu ()
where x is an n-vector of system states, u is an m-
vector of control variables, A and B are matrices of
appropriate dimension and the superscript, ¢,
indicates transposition. The matrices Q and R are

positive semi-definite and definite, respectively, and
are used to penalise particular states and controls
according to the engineering objective.

It is well known (e.g. [8]) that the control policy
which solves the above optimisation problem is a
linear combination of the system states and is given
by:

u=Kx (3)
where K is in turn given by:
K=-R'B'P 4)

and P is the positive definite solution of the
algebraic matrix Riccati equation:

O:PA+A’P—PBR”B'P+Q (5)

A unique, positive definite solution to the above
exists if the pair (4,B) is stabilizable and (A,I")is

detectable, with Q=T"T".

2.2 Global, non-linear quadratic
regulator

The extension of the above to non-linear systems
looks identical, except that, instead of performing a
single optimisation and applying the resulting gain-
matrix for all time, the optimisation has to be carried
out at every time step. Consider a non-linear
dynamical system that can be expressed in the form:

x = A(x)x + B(x)u (6)

where the Jacobians of A(x) and B(x) are subject to
some bounded growth conditions (Lipschitz), then at
each point, X, on the state trajectory, a linear system
is defined with fixed A= A(SE) and B= B(i‘) LIn[1)

it is shown that solving the infinite-time LQ optimal
control problem, point-wise on the state trajectory,
results in the globally optimal, stabilising quadratic
control policy for systems described by equation (6).
Thus, by choosing the u that minimises the usual
quadratic cost function at every time step, we have a
globally optimal control policy for a very wide class
of non-linear systems. Evidently, A(X), B(X) and Q

are subject, point-wise, to the same conditions as for
the linear case. It is clear that the proposed solution
is identical to the one obtained from equations (3, 4
and 5) when the dynamics are linear.

As an aside, the dual situation follows directly from
the reasoning in [1] and thus state estimation is
possible via a non-linear observer although this
aspect is not dwelt on here.

Because the control synthesis takes place point-wise,
the designer is now free to select Q and R in ways
which are more directly applicable to the control
engineering objettives-In particular, these can be
made to bé finctions of the instantaneous state
variables{ie:

:




J=[(x'QE)x+u'R(X)u)d (7

s 1

subject to the requirements for the solution of the
Riccati equation and the invertibility of R. Ensuring
that A(X), B(X), R(X) and O(X) satisfy these
requirements a priori, is difficult in general,
however, for polynomial functions which are not
identically zero, the required properties will be lost
only at isolated points and will not, therefore,
persist.

2.3 Solving the matrix Riccati equation

In order to calculate the optimal solution, it is
necessary to solve the matrix Riccati equation at
each point in time. In practice this will be done in a
computer and it will be necessary to solve the
equation at each discrete time-step. The usual
approach to the solution of this problem is via an
eigen-decomposition of the Hamiltonian matrix for
the system [4]. For sizeable dynamics such an
approach is computationally intensive and may not
be able to deliver solutions at the required sample
rate (i.e. in “real-time”). It can also be sensitive,
depending as it does on the numerical solution of an
eigen-problem. It should be noted that, even though
the problem is to be solved in discrete-time, we do
not solve the discrete-time Riccati equation: the
dynamics are essentially continuous-time.

The matrix-sign-function (MSF) is an appealing
alternative to eigen-decomposition owing to its
simplicity [5], requiring only the operations of
matrix inversion and addition, and multiplication of
a matrix by a scalar [2]. This simplicity also suits the
MSF algorithm to parallel computation [3].

The algorithm is as follows [2]:

Z.=H

Z- =l(lzl+clz'lJ (8)
2\¢:

i+]

where ¢, = |daL(Z,. )|”2"

convergence, and n is the dynamical order. H is the
Hamiltonian matrix of order 2n, given by:

"Lora 2
BR'B'" -A

Assuming H has no eigen-values on the imaginary
axis Z, converges to Sign(H)= S, say, [2]. For the
solution of the Riccati equation we require the
quantity [5]

is a scaling used to speed

S* =Sign*(S) =-1:_-)~(Ih +5)

Now, by decomposing S* thus: S* =[V W] we

write, P, the solution of the Riccati equation (5)
thus:

P=V'W(WW)" ©

In [3] an algorithm for diagonal pivoting
factorisation [6] — a form of Gaussian elimination
with partial pivoting — is used to develop a parallel
algorithm involving no sequential computations.
Complexity is of order (2n)’, which dominates the
communication burden. The speed-up achieved over
the conventional method [4] is demonstrated on a
hypercube architecture. We do not implement the
parallel solution here. The discussion is included
simply to underline the feasibility of real-time
operation.

3. Suspension model

The two-degree-of-freedom, quarter-car model of
figure 1 has been widely studied in the literature. It
represents an active element operating in parallel
with passive elements — a linear spring, k, ,and a

non-linear damper with characteristic
f,=c&+c,E’, where f, represents the damping

force and £, the relative velocity between the

sprung and unsprung masses. The model parameters
are based on the one published in [7].
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f
) l < @Eg :

Y

Figure 1 Schematic of the two-degree-of-freedom,
quarter-car model.

The motions of the body and wheel (sprung, m, , and
unsprung, m,, masses, respectively) are denoted by
¥, and y, respectively, while the deviation of the
surface from some datum is denoted by d. The tyre
is represented by a linear spring, k,, with no

damping, for simplicity. We assume that the control
force, f, can be applied directly as a result of the
control signal, with negligible actuator dynamics.
Again this is chosen for simplicity, so as not to
obscure the main point of the paper.

The equations of motion for the quarter car are given
by:




X Z_n_ili(y' _)}2)*¥U1 = 3-’2)
. - |
—%hrwﬂ+af
10
k (10)

[ . . 33 k 1
+_2(-‘"1 - }'2) -"_2'(3’1 _d)"_f
m, m, mn,

We choose state variables thus:

X, = ¥,X, = Y, %, = ¥, %, = ¥, , and identify the
control signal, u, with the force, f. Evidently
equations (10) can be put into the required form (6),
and the Jacobians of both A and B are clearly
Lipschitz.

3.1. Design objectives

For the purposes of this paper let us suppose that our
primary objective is to minimise passenger
discomfort. We do this by attempting to reduce the
accelerations to which the passenger is subject —
vertical only, in this simple case. Thus a candidate

for the cost function is ¥, = C,(X)x+ D, (X)u, where
C,(X) is the second row of A(X)and D,(X) is the

“

second element of B(i} . However, ride comfort can

only take precedence when safety and integrity are
not compromised. Thus it is necessary to penalise
some measure which embodies these ideas, usually
via the “rattlespace deflection”,

»-y,=Cx= [1 0 -1 O]x . In the conventional

LQ approach we construct a cost function thus:
T = [(q,37+ 4,03, - 3,) +nd)a

mXT%QQ*%QQﬁ p i
= e
+2x'q,C.D,u+(g,D] + 1)’

Letting N =q,C.D, and R=g,D} +r we
accommodate the cross-term in the usual way [8]
thus:

Q< Q-NR'N', A« A-BR"'N' with the
original 0=¢4,C,C.+q,C,C,. g,,q, are used to
control the trade-off between ride and handling. The
new O and A are now used in the standard equations
(6) and (7).

In the non-linear design procedure we make g, state-
dependent, thus: g,(X) = 500y/(y, - y,,.02,.001)
with

(&-€)/3)’ &>6
0, lE<e (12)
((&+6)/5), e<-s6

where 6 20 defines a dead-zone and & >0, the
distance within which  first reaches unity. The

w(5.6.8)=

rationale for this functional form is as follows. The
primary objective is to reduce body acceleration
hence the constant g, =10000 . The secondary

objective, which can over-ride the first for safety
reasons, is to reduce overly large excursions in the
suspension strut. Thus, for a rattlespace of +0.055m,
a dead-zone of +0.02m is allowed before control
action is taken; the non-linearity increasing to unity
within the next 0.001m of travel and dominating the
cost function very rapidly as the limits are
approached. We have been guided here by the
function chosen in [7], however, any other suitable
function is a candidate. In addition, acceleration or
other variables could equally well be weighted in
this way. For comparison, we also consider a
conventionally weighted rattlespace deflection with
g, =1000. r = 0.0001 throughout.

We use the passive system (equation (10) with
f(1)=0 for all 1) as a reference and compare its

behaviour with that of the actively controlled models
for a surface profile [7] given by

dir)= {a(l— cos8m), 0<r<025

0, otherwise

(13)

where a is one-half the height of the hump.

4, Results

Each of figures 2 onwards shows the passive,
conventionally weighted (CW) and state-
dependently weighted (SDW) behaviour of the
vehicle model. These are indicated by a dashed, a
dotted and a solid curve, respectively. Figures 2—5
relate to a modest disturbance of maximum height
2cm which does not threaten an approach towards

the rattlespace limits. Here, because | ¥ - jf2| <002

for all time, the rattlespace deflection is never
penalised, and because acceleration dominates
strongly in the cost function for both CW and SDW,
it is not possible to distinguish between these
behaviours. Figures 6-9 show the behaviour for a
much more severe disturbance, with a maximum
height of 11cm that forces the rattlespace weighting
into play.
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Figure 2 Acceleration vs. time, a=0.01.

Figures 2, 3 and 4 indicate the improvements
attained by both CW and SDW, while figure 5 hints
that these come at the expense of marginally
increased unsprung mass displacement.
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Figure 3 Rattlespace deflection vs. time, a=0.01.
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Figure 4 Sprung mass deflection vs. time, a=0.01.
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Figure 5 Unsprung mass deflection vs. time,
a=0.01.
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Figure 6 Acceleration vs. time, a=0.55.

Figure 6 shows how, for a severe disturbance the
transient acceleration is degraded while tending
towards an improved steady-state. Although the
acceleration is penalised conventionally, there is an
effect when the SDW for rattlespace becomes
operative (~0.06s). This sacrifices comfort for safety
leading to a response which is worse than the
passive system for the first ~0.5s. There is little
difference between the passive and CW systems.
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Figure 7 Rattlespace deflection vs. time, a=0.55.

Figure 7 highlights a more important difference in
rattlespace behaviour. Again CW and SDW deliver




improvements over the passive behaviour but now
the value of SDW is evident. The CW system
exceeds the limits of travel in the suspension strut —
“bottoming” occurs — while SDW rapidly
counteracts the approach (albeit for a deterioration
in ride). Nonetheless, only by de-tuning the CW
system can bottoming be avoided, and this could not
be guaranteed.
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Figure 8 Sprung mass deflection vs. time, a=0.55.
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Figure 9 Unsprung mass deflection vs. time,
a=(0.55.

Figures 8 and 9 indicate that improvements in ride
and handling may come at the expense of increased
excursions of the sprung and unsprung masses
themselves. However, in a fuller design it would be
straightforward to penalise these too.

5. Conclusions

A new method for the design and synthesis of
globally optimal, non-linear control laws is
proposed, based on a generalisation of LQ optimal
control theory. The method is simple to apply and
affords greater design flexibility (SDW) than the
conventional approach (CW). The resulting
controller is non-linear, even for linear dynamics,
and can be implemented in real-time. To illustrate
the method a simple two-degree-of-freedom quarter-
car model with cubic damping has been studied
using a non-linear penalty function. Preliminary
results show that the method has applicability and
could easily be tuned to provide desirable closed-
loop behaviour. Some areas for future work are the

selection of more appropriate penalty functions,
Q(x), R(x), and the real-time implementation of

such a system.,

NB In the final paper a fuller analysis of the
results would be presented,
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