This is a repository copy of Intelligent Genetic Algorithms in Evolutionary Computation Part
ii Application to Combinatorial Multimodal Optimization Problems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82970/

Monograph:

Liwen, He. and Mort, N. (1998) Intelligent Genetic Algorithms in Evolutionary Computation
Part ii Application to Combinatorial Multimodal Optimization Problems. Research Report.
ACSE Research Report 690 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Intelligent Genetic Algorithms in Evolutionary Computation

Part II. Application to Combinatorial Multimodal Optimization
Problems
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Abstract: Combinatorial Multimodal Optimization Problems (CMOP) arising in the
scheduling of manufacturing systems involve the determination of multiple integer
solution vectors that optimize a given objective function with regard to some definite
constraints. The genetic algorithm is an efficient computational paradigm to search such
a large optimization space for the best solutions. But simple genetic algorithms are
notorious for their ‘premature convergence’ to a unimodal (global or local) optimum
because of genetic drift. Following the previous discussion in Part I, a new Intelligent
Genetic Algorithm is developed to include spatial structured population, relative fitness
vector, absolute fitness value with dynamic fitness sharing function, super conservative
selection strategy, intelligent recombination through speciation, optimal outbreeding
and neutral mutation. Experimental results and simple fitness landscape analysis
illustrate that intelligent genetic algorithms can effectively solve a typical combinatorial
multimodal optimization problem, which is a challenging problem for GA applications.
These advanced intelligent genetic algorithms present a prospective arena for multi-
objective optimization [Fonseca & Fleming., 1995a,b; Shaw & Fleming,1996] and
multimodal optimization problems in evolutionary computation.
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1. Introduction

Many problems in the scheduling of manufacturing systems and artificial intelligence can
be regarded as combinatorial multimodal optimization problems, which require the
determination of multiple integer solution vectors that maximize (minimize) a given
objective function with regard to some definite set of constraints [He & Mort, 19974, b;
Luling, R & et al, 1996]. Problems of this class, which are characterized by their high
discreteness, high dimension and noise, are quite different from multimodal continuous
. function optimization problems [Goldberg & Richardson, 1987], [Deb & Goldberg,
1989]. The combinatorial multimodal optimization problem is arguably one of the most
deceptive problems for GA applications [Ohkura and Ueda, 1995]. As far as we know,
very few contributions have either addressed this problem or have solved it satisfactorily.

Intuitively, this problem can be solved by searching all possible elements in the finite
solution space for all multimodal optimal solutions. However, the solution space
increases exponentially with input size, and intolerable computation times result. This
problem is known as a NP-hard combinatorial optimization problem.

The genetic algorithm is a well-known stochastic optimization search method which is
based on a global search procedure . When we use a simple genetic operator (selection ,
multi-point crossover and mutation) to solve a typical combinatorial multimodal
optimization problem, only a unimodal (global or local) optimal solution is obtained for
every search procedure [ He & Mort, 1997a). The reason is that, as there is no selective
pressure on any of the peaks for the finite population in the fitness landscape, the
population converges to one alternative or another randomly. This problem is known as
genetic drift -- stochastic errors in sampling caused by small population size [Goldberg,
1989]. In other words, this difficulty comes from the fundamental theorem of genetic
algorithms [Holland, 1975; De Jong, 1975; Goldberg, 1989] which tells us that
exponentially increasing trials will be given to the best schemata observed, thus losing
some potentially useful schemata in the evolution.

Therefore , the problem is how to reduce the effect of this genetic drift and enable stable
sub-populations to form around different fitness peaks, and lead populations to move
from local optima to global optima.

Previous works which have attempted to address these issues are:

(1) De Jong (1975) used a crowding method to let individuals replace the most similar
genotype strings measured by the Hamming distance in an overlapping population. This
replacement tends to maintain diversity within a population and reserve room for other
species in a limited-size population.

(2) Goldberg and Richardson (1987) introduced the idea of a sharing function to permit
the formation of stable subpopulations of different strings within a genetic algorithm,
thereby permitting the population to investigate many peaks in parallel.

(3) Deb and Goldberg (1989) introduced the natural concepts of niche and species into a
population of strings to optimize a number of multimodal functions; phenotypic and
genotypic sharing and a mating restriction in the recombination strategy are implemented
to improve genetic search performance. Simulation results showed that a GA with a
‘sharing function’ is able to converge and distribute tnals to all the peaks of the test
functions.

jee]




(4) Collins and Jefferson(1991) and Davidor ef a/ (1993) implemented the Parallel
Genetic Algorithm, where spatially structured populations are developed according to
some topology and distance metric, to maintain genetic diversity, allow niche
differentiation and several competing subpopulations to search more effectively, thus
finding multiple global optima in the same run.

(5) Srinivas and Patnaik(1994) recommended the use of adaptive probabilities of
crossover and mutation to realize the twin goals of maintaining diversity in the
. population and sustaining the convergence capacity of the GA. Their experiments
demonstrate that the adaptive genetic algorithm represents the first step in self-
adaptation for locating the global optima in a multimodal landscape.

(6) Jelasity and Dombi(1995) developed a niching technique called GAS (here ‘S’ stands
for Species) which creates a subpopulation structure using a radius function and a
‘cooling’ method similar to simulated annealing. An NP-completeness combinatorial task
is examined, where 93 percent optimal solutions and many near-optimal solutions were
found per run.

(7) Schneider et al (1996) provided a simple evolution strategy based on a mutation and
selection scheme without recombination for a multimodal optimization search space, and
proposed a relation between the search time and the number of optimal offspring.

These methods can be categorized into three types of solution: niche techniques, parallel
GA (spatially structured populations) and adaptive GA. These niche techniques
distribute sub-populations across multiple peaks of search space. The sharing method is
similar to ecological competition to distribute individuals across fitness peaks in
proportion to the heights of the peaks. Adaptive GA is the alternation of crossover rate
and mutation rate for a specific problem. Both niche techniques and adaptive GA require
a previous understanding of the number and the distribution of fitness peaks, and need
careful setting of various parameters. Spatial Structuring has proven very reliable and
efficient in exploring multimodal fitness peaks, and it also needs fewer assumptions than
niche methods. However, when we use only these niching or spatial structuring methods
for the combinatorial multimodal optimization problem discussed, the solutions are
disappointing.

All the success of niche techniques , adaptive GA and parallel GA in preserving deep
genetic diversity overlook the main method that nature uses to produce biodiversity:
sexual selection based on assortative mating, selective mating and speciation [Miller,
1994]. In assortative mating, only similar animals pair up, implying animals prefer the
mate’s similarity. In selective mating, female animals will favor the mate’s quality
displaying attractiveness, novelty and some desired trait. In speciation, a lineage is
divided into reproductively isolated sub-populations (species) that have no interbreeding,

Traditional genetic algorithms use recombination (crossover) under random mating,
which results in the production of many useless offspring, and the disruption of good
schemata at early stage thus eroding genetic diversity.

In this paper, based on the biological background discussed in Part I, we propose an
original mechanism -- Intelligent Genetic Algorithms where the interactions between
natural selection and sexual selection in biology are integrated with evolutionary
computation perspectives as a process of search, diversification and optimization. The
power of intelligent genetic algorithms is examined via a typical combinatorial
multimodal optimization from a manufacturing scheduling problem.

(5]




2. Combinatorial multimodal optimization problems

The general mathematical model of a typical combinatorial multimodal optimization
problem can be stated as follows :

Let n be a positive integer, ¥ ={vi, v»,..., Va } be the search vector, W be the solution
space which is the combinatorial set of all elements in the search vector, § be a domain
defined as the discrete set of all vectors x in the solution space that satisfies a set of
" constraints, and /- W — R be the objective function from W onto a completely ordered
set R. We call x € S a feasible solution and f(x) the fitness value of x. Without losing
generality, we are maximizing problem. A feasible solution x is better than x'e S if
f(x) > f{x"). We search for an optimal solution x“, which satisfies the condition: f(x") > f
(x) forallx € §. We assume § finite and non-empty, and the set of all best feasible
solutions, §” <  finite and non-empty. If the number of entries in the optimal solution

space S is greater than or equal to two, this problem is named as a combinatorial
multimodal optimization problem. Minimization problems can be stated and dealt with
similarly. This problem is NP-hard.

Now we consider a practical scheduling optimization problem [Fanti, et al, 1996, He &
Mort, 19974, b] as follows: '

A batch processing machine (BPM) which consists of a number of identical servers is

regarded as a processor that can operate on a batch of jobs simultaneously with common
start and end times.

There are n types of jobs available to be processed on m identical servers, where each
job type requires an appropriate tool to be fixed on the server. Furthermore there exists
no priority order within job types. Once the process begins, no job can be interrupted
until the entire batch is completed. The processing time of a batch of jobs is constant
and independent of job type and on the number of jobs in the batch.

Since the servers operate synchronously, the BPM alternates between running intervals
(operation steps) and breaks for unloading the old tool and choose a new tool to
process the next job. Moreover, the duration of each operation step is fixed and
coincides with the time necessary for any server to complete a job. It is assumed that
the time to load a new tool on a server and the time for the corresponding unloading
operation are constant, and that the duration of the breaks for the BPM depends on the
tool change time. Obviously, one tool changing (for loading and unloading tool ) time is
necessary for each job type (i.e. n job types need at least n tool change times). If some
jobs cannot be completed in one server, they have to be divided into two segments of
varying size and another tool change operation is required.

Since the operation for replacing a tool is time-consuming, the scheduling objective is to
determine the batches of different type jobs and their loading sequence to minimize the
tool replacing times and to maximize the BPM’s utilization.

In a particular case study describing a shoe factory (Fanti, et al, 1996), there are n (=21)
job types and tools and m (=7) servers available. A production mix of » types of jobs is
described as a search vector:

V={vy, va,..., va}={176 380 216 683 144 497 153 12 714 231 310 170 ©& 660
50 114 282 12 454 128 266} (i.e. the quantity of job type #2 is “3807 ).




Since for each operation step the BPM can process m jobs at most, the length P of
operation steps necessary for the BPM to complete the whole production mix must
satisfy the relation: P > sum(V)/m= 5663/7 = 809.

In order to balance the load among the servers and minimize the tool change times,
different jobs are combined into different batches, where each batch can be completed in
one server within the entire length of P operation steps. The sum of the number of this
batch of jobs should be close to the P and no more than P, and we define this batch of
. jobs as a “combination”. For example, when P is chosen as 809, if job ‘497" and ‘310’
is processed within one server, and 497 + 310 (= 807) <809 is valid, then we can name
job ‘497" and ‘310’ as a combination.

To represent the solution with binary strings, we give the following correspondence relation:

machine | 1 2 3 4 5 6 7
string 001 010 011 100 7101 110 000, 111

The bitlength of the chromosome is : bitlength=r1x n =3 x 21 =63.
A binary string whose length is 63 is randomly generated, for example:
b=000 101 111 010 110 001 101 100 010 100 001 011 110 110 010 100 111 101 100 000 101
V={176 380 216 688 144 497 153 12 714 231310 170 6 660 50 114 282 12 454 128 266}

We map the 63-bit binary string into the loading matrix M; . It is easy to compute the
binary string’s fitness value.

The fitness function f{x) of a feasible solution x is the number of combinations searched
in the solution x. Obviously because of the limitation of BPM’s processing capability,
the constraint condition for a feasible solution is:

i (P-sum(C))<b

and b=P x m - sum (V)
where N; is the number of combinations in a feasible solution; C; is the j-th combination.

When the length P of operation steps for this production mix is chosen as ‘811°, the
maximization of processor utilization is achieved: the minimum tool changing times 1is
“22” . Four different but equally valued optimal results have been obtained (For detail
see [He & Mort, 1997a, b].), two of them are:

machine 1 2 i o 5 6 T
497 688 170 12 380 144 176
M, 310 714 0 231 153 660 216
0 50 0 114 12 6 282
0 0 454 266 0 0 128 |
sum 807 1452 170 811 811 810 802
Combination C, Cs Cs Cy Cs
phenotype schema A B C D E




machine 1 2 3 4 5 6 7

| 216 ess 497 12 380 144 176 |
0 714 310 231 153 660 454
M, 0 0 0 114 12 6 128
0 0 0 170 266 0 50
.0 0 0 282 0 0 0o
sum 216 1402 807 809 811 810 808

(Note: We notice that job ‘714" should be divided into two segments because it cannot
be combined with any other job to make a batch close to P and no more than P. That is
to say, only one another tool change time is necessary for this production mix. The
minimum number of tool change times for the P(=811) operation steps isn + 1 =22).

According to the loading matrix M, it is clear that C1=(497 310), Co=(12 231 114 454),
Cs=((380 153 12 266), Cs=((144 660 6) and Cs=(176 216 282 128) are different
combinations, and the condition:

Ne

>, (@ -sum(G)) = (811-sum(Cy))+(811-sum(C2)+(811-sum(C3))+ (811-

sum(Cy))+(811-sum(Cs)) = 14 <b (where =P m -sum(}) = 811 x 7 - 5663 = 14)
holds, therefore the loading matrix M is a feasible solution. Its fitness function f(M,) is
the number of combination , equal to 5.

Furthermore, the job ‘714’ should be divided into two segments of size 73’ and ‘641’
This adds another tool change operation for job type ‘714°. The schedule for server 2 is
to process job ‘688, ‘50 and ‘73’ ( 688 + 50+73 = 811,), and the schedule for machine
3 is process job ‘641° and *170” ( 641+170 = 811). Therefore all jobs are almost evenly
distributed into different machines, all the servers complete their jobs at nearly the same
time and the minimum number of tool changes is 22.

Following a similar analysis procedure, we find that the loading matrix M, 1s a feasible
solution. Its fitness function f(M>) is also equal to 5

Assume that x is a feasible solution, S is the solution space, since the condition
f(M)=f(x) and f(M,)> f(x) for allx € § holds, the set of all optimal feasible solutions
S" S is finite and non empty, and the number of entries in optimal solution space S is

at least equal to two, so this problem is a NP-hard combinatorial multimodal
optimization problem.

Before we use Intelligent Genetic Algorithms to solve this typical combinatorial
multimodal optimization problem, we must identify the solution space S as a phenotype
space; the combination is named as a phenotype schema. For example, the phenotype
schema A can be expressed as { * (497+310) * }, **’ means "do not care’, we just need
a combination (497+310), we do not care about where it is and the circumstances of
other combinations. The phenotype space is mapped into a binary genotype space with /
- dimension according to some kind of topology (see [He & Mort, 1997a), [ is the
length of the binary representation.




3. Intelligent Genetic Algorithms

Natural selection and sexual selection are the twin engines that drive evolution in the
natural world. ‘Natural selection’ was dominant and sexual selection was overlooked in
biology for over a hundred years following Darwin (1871). In the evolutionary
computation community, natural selection is mature in genetic algorithms simulation,
while GA simulations of sexual selection have emerged only recently [Todd, 1991].
- Sexual selection through evolvable mate choice can provide a robust and effective
solution for problems that natural selection finds difficult or impossible, such as
preserving genetic diversity, discovering evolutionary innovations, and guiding a search
from local optima to global optima.

Intelligent genetic algorithms are proposed to combine both natural selection and sexual
selection with evolutionary computation, such as spatially structured population, super
conservative selection strategy, dynamic sharing fitness function, individual’s relative
fitness vector, intelligent recombination and neutral mutation.

Note that, in sexual selection, assortative mating searches for diversification and optimal
outbreeding through automatic niching and speciation to maintain genetic diversity,
whereas selective mating guides the stabilizing selection that reduces stochastic sampling
errors and noise arising in the mapping from genotype to fitness [Miller, 1994].

Through the interaction of both natural selection and sexual selection, intelligent genetic
algorithms create speciation automatically based on the individual’s relative fitness
vector and the degree of similarity along certain phenotypic dimensions make sub-
populations explore more ‘intelligently’ around each peak in the fitness landscape by
directing future evolution according to previous information .

3.1. Spatially Structured Population through Phenotypic Analysis

The concept of ‘spatially structured population’” comes from Parallel Genetic Algorithms
(Muhlenbein, 1991). The spatial population structure can introduce diversification
naturally, and facilitate the diversity of the whole population more effectively in
evolutionary computation, typically through local competition and local recombination.

In intelligent genetic algorithms, we construct a kind of ‘spatially structured population’
based on similar phenotypic schemata through phenotypic analysis: around any
schemata, those individuals which contain these common schemata will naturally
construct a subpopulation. So, the number of sub-populations is equal to the number of
phenotypic schemata searched so far. This kind of sub-population is semi-isolated, that is
to say: any individual with more than one phenotypic schemata will be a member of
more than one sub-population, the more phenotypic schemata it has, the higher fitness
value it has , and the more subpopulations it belongs to.

For example, {* (497 310) *} is a phenotype schema A, then all individuals who have
this phenotype schema will automatically form a subpopulation A.

It will be shown that this spatially structured population proves both reliable and

efficient for intelligent genetic algorithms to explore multimodal optima in the fitness
landscape.




3.2. Individual’s Relative Fitness Vector

Since an individual is characterized by the phenotype schema, its raw fitness value is
decided by the number of phenotypic schemata in the individual. It is seen that when a
phenotype schemata vector is built up as a database of all searched phenotype schemata
in the entire population, then the individual’s phenotype can be mapped into a binary
form in relation to the schemata vector according to the following principle

the schemata vector M =[M; M, ... Mq]; for M; (i=1,.., q, ¢ <m) is the distinct
" schema searched in the entire population;

the phenotype of individual j is converted into its relative fitness binary vector:
Sv(j)=1[bi by ... bgl;and b;(i=1, .., q)isa binary bit,

b= 1 if the phenotype of individual j includes the schema Mi ;
l 0 if the phenotype of individual j does not include the schema Mi

(1)

Then the individual’s relative fitness value is represented by a binary vector.

According to the Definition 7 in Part I, the individual j is characterized by its relative
fitness vector. If it is non-dominated by any other individuals in the entire population, it
is defined as an non-dominated individual.

For example, the fitness vectors of individual @, b and c¢ are fv(a), f(b) and fi(c), and
Ma)=[01011001];
f(b)=[01001001];
f(c)=[01100001];

It is easy to see that individual a dominates individual & , and individual a , individual ¢
are non-dominated with each other. If both a and ¢ are non-dominated by any other
individuals in the current population, they are non-dominated individuals.

This individual’s relative fitness vector by combining Pareto-based ranking with
individual’s phenotype information produces a suitable high-dimensional (relative)
fitness landscape, facilitating the ‘super-conservative selection’ strategy, and ‘hybrid
drift’, thus helping population explore new adaptive zones. This will be discussed in the
following section.

3.3. Initial Population, Subpopulation, Entire Population and Constraint
Population

We do not know the exact number of multiple optima and the actual fitness landscape in
this problem, so the initial entire population size is chosen as Nchrom=100.

Since all subpopulations construct an entire population, it is obvious that the size of
entire population is very great. So a new concept of ‘constraint population’ chrom is
introduced to limit the ‘entire population’ size to a relatively small scale: all superior
non-dominated individuals (chromA) are part of the ‘constraint population’ chrom, the
remainder are selected from the current entire population using a stochastic sampling
method [Baker, 1987]. The subpopulation in the next generation is selected from the
constraint population according to their similar phenotype schemata; the dynamic fitness




sharing function operates on the ‘constraint population’. “Entire population’ includes all
the offspring generated from every subpopulation.

So the constraint population is the central population. At first, the constraint population
size equals to the initial population size. As the computation procedes, if the size of all
superior non-dominated individuals is greater than initial population size, the constraint
population size is increased by 100 so as to keep some ‘room’ for natural selection
through stochastic universal sampling--allowing individuals with higher absolute fitness
~ value with dynamic sharing to obtain more copies in the constraint population of the
next generation.

3.4 Absolute Fitness Value with Dynamic Sharing Function

The objective function is the number of phenotypic schemata in the individual, so we
name absolute fitness value as the value of the objective function. The best individuals
have the maximum absolute fitness value. Clearly, the set of all best individuals in
optimal solution should be the subset of non-dominated individuals in relative fitness
landscape.

It is convenient to calculate the absolute fitness value fa(j) of an individual j by summing
all the elements in the relevant individual’s relative fitness value:

fa(j)=sum (fv(j)) (3)

The difficulty is how to employ this absolute fitness value in the multimodal optimization
problem. Goldberg and Richardson (1987) invented a sharing function to impose niche
and speciation on the string based on some measure of their distance from each other.
This sharing function is a method of determining the degradation of an individual’s
payoff due to its similarity with all other individuals in the entire population. Deb and
Goldberg (1989) considered two forms of sharing functions, so called phenotypic and
genotypic sharing, and implemented them with a mating restriction scheme to improve
the on-line performance in continuous multimodal functions.

Phenotypic sharing seems to work better than genotypic sharing (Deb and Goldberg,
1989; Goldberg, Deb, & Horn,1992) because more or less error may be induced while
an individual is mapped from phenotypic space to genotype space, such as binary
encoding of phenotype; phenotypic sharing is more directly utilized also. In intelligent
genetic algorithms, the dynamic phenotypic sharing function of individual ; has been
created as follows:

fis(j)=fa(j)y™? (4)

where, 0< y < 1; sh( j ) is the similarity coefficient of individual ; with all other
individuals in the constraint population, and is obtained by calculating the phenotypic
similarity with all other individuals (excluding itself):

Neps

()=, [AOAGT  but i) (5)

where N, is the constraint population size. ( ‘'’ means * the transpose of *).

This dynamic phenotypic sharing function requires few assumptions about the number
and distribution of fitness peaks than the previous ‘sharing function’ [Goldberg and
Richardson 1987; Deb and Goldberg, 1989] where many parameters such as the distance




metric Csure, and the power of the sharing function o should be established because it is
not possible to know much a priori knowledge about the fitness landscape. The only
parameter v is normally selected as 0.85 to determine the payoff of individual’s absolute
fitness value due to its similarity to all other individuals in the constraint population.

Absolute fitness value with dynamic sharing function works on the basis of relative
fitness vector, fights against the ‘genetic drift’, prevents ‘premature convergence’, and
permits a stable subpopulation to investigate different fitness peaks in parallel.

3.5 Super Conservative Selection Strategy

Eshelman (1991) described a ‘conservative selection’ strategy as one that always
preserves the best individuals found so far.

In intelligent genetic algorithms, a ‘super conservative selection strategy’ is developed,
where different non-dominated individuals should be kept in the constraint population of
the next generation after selection until they are dominated by other new-born
individuals with higher performance. The remainder of the constraint population are
selected from the entire population using a Stochastic Universal Sampling method
[Baker, 1987] in order to reduce the sampling bias and increase efficiency.

In practice, if all non-dominated individuals are included in the next generation, their
population size increases greatly, and becomes larger than the initial population size.
Actually, most of these non-dominated individuals contain few schemata; they are
inferior individuals with relatively smaller absolute fitness values, and might not continue
to evolve. So these individuals are ranked according to their absolute fitness value, The
following ‘ranking’ method is used here: non-dominated individuals with greatest
absolute fitness value Ma so far are ranked as ‘first class’ individuals, and non-
dominated individuals with absolute fitness value (Ma-k) (Ma>k, for positive integer k)
are ranked as & class individuals. In order to speed up optimization, only distinct non-
dominated individuals with top % absolute fitness values will be kept in the next
generation. The choice of & is determined by the initial population size and the number of
non-dominated individuals; the greater the value of %, the more genetic diversity will be
preserved, and the more computation complexity will be required. For this combinatorial
multimodal optimization problem , we choose k=2; that is to say: only first-class and
second-class non-dominated individuals searched so far are guaranteed to be preserved
in the next generation in order to maintain suitable genetic diversity and accelerate
convergence speed.

Super Conservative Selection Strategy lets intelligent genetic algorithms exhibit explicit
parallelism by always keeping suitable distinct non-dominated individuals, helping
preserve appropriate genetic diversity, and enhancing speciation and parallel search in
evolutionary computation.

3.6 Intelligent Recombination with Neutral Mutation

In simple genetic algorithms, recombination under random mating results in
interbreeding across different species, thereby producing many useless offspring,
disrupting good schemata at early stage and eroding genetic diversity.
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In nature , animals pair up, breeding occurs within the same species. Animals prefer the
similarity in mates. Female animals will favor quality in mates that display attractiveness,
novelty and some desired trait [Miller, 1992].

In intelligent genetic algorithms, recombination is limited within subpopulations whose
individuals share some kind of phenotypic similarity. “Male tournament’ strategy lets
several ‘male’ individuals compete with each other in order to obtain a mating
opportunity with a ‘female’ individual, the winning male with the optimal mate
. preference will recombine with the female. The Intelligent Recombination operator can
be stated as follows:

1) randomly designate an individual as ‘female’; and several other individuals as ‘male’;
2) determine the mutual ‘Mate Preference’ of every two ‘female-male’ mate pairs

3) choose the pairs with best ‘mate preference’ value using the ‘male tournament’
strategy;

4) mutate them with the ‘neutral mutation” method;
5) perform crossover using the highly disruptive universal crossover operator (HUX)

Eshelman & Schaffer (1991) developed an ‘incest avoidance’ method of preventing
premature convergence by allowing two individuals to crossover only if their Hamming
distance is above a certain threshold. This threshold drops according to some schedule
as evolutionary computation converges. The difficulty of this method is how to choose
the appropriate threshold reduction schedule.

In intelligent genetic algorithms, the ‘mate preference’ function MP is defined as
Nsc H

T 5

where,

Nsc : the number of similar phenotypic schemata between two individuals
H: Hamming distance between two individuals

r: length of binary representation of all m elements, (when m=7, r =3, we need
3 binary bits to represent different 7 elements; see He & Mort, 1997a)

y : number of entries in the search vector included in all similar phenotypic
schemata between two individuals

Because the m and r is the same for all individuals, for simplicity, we calculate the ‘mate
preference’ function MP as:

I = (1)
n—4Nsc

Phenotypic Analysis is utilized to calculate the number of similar phenotypic schemata
(Nsc) between two individuals, thereby differentiating the speciation; Hamming distance
is calculated for optimal outbreeding in the similar species. The term ( n -4 * Nsc ) is
regarded as a Bias Rate which favors the two individuals with higher similar phenotypic
schemata (Nsc) and enhances speciation by differentiating separable subpopulations and
allowing recombination to occur within the subpopulation.

11




Optimal Outbreeding is a way of improving the safety ratio of crossover. It allows
individuals to avoid breeding with others who are so similar as to produce useless
offspring. Unlike the ‘incest avoidance’ method (Eshelman & Schaffer, 1991), where
individuals mate only if their Hamming distance is above a certain threshold, Genotypic
Analysis 1s fulfilled in intelligent genetic algorithms by calculating the Hamming distance
between two individuals for optimal outbreeding and needs fewer assumptions than the
alternative method.

. Ohkura and Ueda (1995) presented an extended genetic algorithm with ‘neutral
mutation’ , which is motivated by the fact that most parts of DNA sequences in
biological creatures are inactive for their entire lives. Since these inactive parts are
invisible to an objective function, a genetic transition occurring to a subset of this gene
has no effect on an individual’s fitness value. The extended GA succeeds in finding all
the global optima of a massively multimodal test function.

Though mutation in simple GAs can bring about new evolutionary innovations for the
entire population, it is easy to disrupt useful genetic schemata in the process of
evolution; so it leads populations away from local optima in a passive, random and
undirected way.

In intelligent genetic algorithms, ‘neutral mutation’ flips a bit in an individual’s genotype
string at a very small rate, and the effect on phenotypic schemata and fitness value can
be neglected. In the model of ‘neutral drft’, the individual’s fitness value remains
unchanged, but actually its genotype has been changed, allowing individuals to explore
new adaptive areas of the search space around current local optima without losing any
fitness cost.

The above Intelligent Recombination method, combining both phenotype and genotype
information together, can produce more viable, fertile and productive offspring than
general genetic operators in simple genetic algorithms, and thus increases the
convergence speed and robustness in finding global optima.

3.7. Pseudocode of Intelligent Genetic Algorithms
We outline Intelligent Genetic Algorithms in the following pseudocode: (see table 1).

4. Experimental Results

10 replications of applying intelligent genetic algorithms to a practical scheduling
problem (Fanti, et al, 1996) are described, each run starting with a different random-
number seed. In each run the algorithm is allowed to continue until the maximum
number of generations is reached. The parameters used in the simulation are as follows:

initial population string n | m | mutation | crossover | decreasing | maximum
size bitlength rate rate rate y generation
100 63 2] 0.02 0.06 0.85 1000




Procedure IGA

Initialization of Entire Population

generation = 0

while termination condition not satisfied do

Construct phenotypic schemata vector M, relative fitness value fv, absolute fitness
value with dynamic sharing function fis through phenotypic cluster analysis

Select suitable superior non-dominated individuals to form chromA, part of new

‘constraint population’ in the next generation using ‘super-conservative
selection’ strategy

Aside from chromA, the remainder of ‘constraint population’, chromB are
selected from the previous population according to absolute dynamic sharing
fitness value using ‘stochastic universal sampling’ method

Combine chromA and chromB to form new constraint population chrom
Construct subpopulation from chrom according to phenotypic schemata
For every subpopulation do
apply ‘intelligent recombination’ with neutral mutation’ to subpopulation

Combine all offspring from every subpopulation to form new entire population

Table 1. Pseudocode of Intelligent Genetic Algorithms

The six optimal solutions which belongs to optimal solut1on space S 15 recorded as
follows, the corresponding genotype is represented as g; , gz gg , g4 gs , g6 .

S =

sum

S =

sum

497 688 170 12 380 144 176
310 714 0 231 153 660 216
0 50 0 114 12 0 6
0 0 0 454 266 0 282
0 o o o 0 o0 128 |

807 1452 170 811 811 804 808

497 688 170 12 380 144 176
310 714 0 231 153 660 216

0 50 0 114 12 6 282
| 0 0 0 454 266 0 128
807 1452 170 811 811 810 802




216 688 170 12 380 144 176
53 = 310 714 0 231 153 6 497
282 50 0 114 12 660 128
0 0 0 454 266 0 0
sum 808 1452 170 811 811 810 801

216 688 170 12 380 144 176
ss= | 310 714 0 231 153 660 497
282 50 0 114 12 0 6

|0 0 0 454 266 0 128

sum 808 1452 170 811 811 804 807

216 688 497 12 380 144 176

0 714 310 231 153 660 282
§5 = 0 0 0 114 12 6 128
0 0 0 454 266 0 170

sum 216 1402 807 811 811 810 806

216 688 497 12 380 144 176
0 714 310 231 153 660 454

6= 0 0 0 114 12 6 128
0 0 0 170 266 0 50
L O 0 0 282 0 0 0

sum 216 1402 807 809 811 810 808

Also, in each run, the optimal absolute fitness value, number of optima, number of sub-
optima, number of phenotype schemata searched, number of subpopulations, constraint
population size and entire population size are recorded. The following figures (Figure 1
to 7) from a typical run demonstrate these parameters.

From Figure 1, we can see that entire population achieves one global optima ( absolute
fitness value equals 5 ) when number of generations equals 95.

From Figure 2, we know that moving from generation 95 to the maximum generation
1000, the number of optima obtained is from one to six global optima. Intelligent
Genetic Algorithms have succeeded in finding multiple optima in this combinatorial
multimodal optimization problem.
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Figure 2. Number of Optima ( Nop ) of a typical run
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Figure 3 shows that the number of distinct suboptima is increasing with generation, from
generation 95 onwards, the absolute fitness value of suboptima equals to 4, these
suboptima are non-dominated individuals and are local optima also.

Figure 4 shows that the number of phenotype schemata normally increases with

generation. Sometimes it decreases because some schemata could not be combined with

other schemata to form a individual with higher fitness value, and then it dies out in the

evolution procedure. Since the number of subpopulations is exactly equal to the number
. of phenotype schemata searched so far, figure 5 is the same as figure 4.

Figure 6 shows that the constraint population size is a constant, and equals the initial
population size (Nchrom =100). This indicates that the sum of the number of both first
class and second class non-dominated individuals is no more than 100. For example,
when the generation equals 100, the number of first class non-dominated individuals
(just global optima) is 7; and the number of second class non-dominated individuals (just
local optima) is 73. Thus their sum is equal to 80, which is smaller than 100.

Figure 7 shows that the size of the entire population which is constructed by the
offspring of all subpopulations in the last generation is dynamic. This indicates that when
a non-dominated individual with a higher fitness value is obtained, many non-dominated
individuals with a lower fitness value may die out.

S. Simple Fitness Landscape Analysis

Following the definition of fitness landscape in Part I, a simple analysis method is
provided to indicate the actual positions of six optima in the fitness landscape.

The Hamming distance between the genotype of any two optimal solutions, H,, the
mean Hamming distance between one optimal solution’s genotype and the other five,
Hmo , and the mean fitness value of /-mutant neighbors of an optimal solution’s
genotype, Fin, are calculated, and the results are summarized in the following table:

H, g o o gs g5 g
g 0 2 5 6 7 10
g 2 0 3 4 5 8
g 5 3 0 ] 6 9
e 6 4 1 0 7 10
g5 7 5 6 7 0 7
g 10 8 9 10 7 0
Hio 5.0 4.4 48 5.6 6.4 8.8
Fim 3.3968 | 3.4286 3.4286 3.4286 3.3968 3.3651

Table 2 Hamming distance parameters

For example, the Hammmg dlstances between the genotype of optimum g;” and the
genotype of optima g5, g5, g4, g5, % , are 2, 5, 6, 7, 10, and their mean Hamming
distance is 5.0. The six optlmal solunons are clustered relatively far apart in the fitness
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landscape. Also, the mean fitness value of all [J= 63 1-mutant neighbors of g; is

3.3968. Comparmg with the optimal fitness value 5, it is clear that even the 1-mutant
neighbors cannot provide suitable information about where the optimum, s1, is in the
fitness landscape as the fitness landscape is quite rugged. Furthermore, to demonstrate
the previous discussion, a measure of search difficulty, fitness distance correlation
(FDC), [Jones, & Forrest, 1995] is introduced and examined in relation to genetic
- algorithm performance in the fitness landscape.

Jones and Forrest (1995) suggested that the relationship between fitness and distance to
the goal is very important in GA searching. They viewed GA fitness function values as
estimates of the distance to the nearest global optimum of the search. FDC is one
method of quantifying this relationship. To measure the correlation of fitness function
value with distance to a global optimum, a simple way is to examine the problem with
known optima, sample a number of individuals, and compute the correlation coefficient,
r, given the set of (fitness, distance) pairs.

That is, given a set of F = {fi, f2, ..., fa} of n individuals’ fitness values and a
corresponding set of D = {d, da, ... , dq} of the » Hamming distance to the nearest
global optimum, the fitness distance coefficient 7 is calculated as:

r = cp/ (SF Sp)

1 n
where = > (fi- fuddi- d)
is the covariance of 7 and D, and s¢, Sp, fm ahd dn are the standard deviations and
means of 7 and D respectively.

In this paper, the problem is one of finding maxima, so we might expect that fitness
value increases as distance to a global optima decreases which implies the coefficient 7 is
always negative. With an ideal fitness function, 7 will be -1.0, meaning that the fitness
landscape around this global maximum is very correlated and smooth, whereas if r 1is
close to zero, the fitness landscape around this global maximum is very uncorrelated and
rugged.

In terms of Hamming distance measure, the nearest individuals to a global optima are
the 1-mutant and 2-mutant neighbors. Since the length of global optimum is / = 63, there

L !
are [1}263 I-mutant, and [2J=1953 2-mutant neighbors. For any of the six optima,

there are in total 2016 nearest neighbors and it is straightforward to calculate their
corresponding fitness values. The fitness distance coefficients of the six optima in the
multimodal combinatorial optimization problem are summarized as:

™

251

*

g2

*

23

*

24

*

s

*

26

r

-0.1890

-0.1882

-0.1921

-0.1994

-0.1923

-0.2103

All the global maxima are negative and close to the zero, therefore, the fitness landscape
is very uncorrelated and rugged. That is to say, the global maximum is very difficult for
a simple GA to search. From another viewpoint, it demonstrates the search capability of
intelligent genetic algorithms which can find all six optima in such an experiment.
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6. Discussion, Conclusion and Future Prospects

6.1. Discussion:
This discussion considers a number of properties of Intelligent Genetic Algorithms:

6.1.1. Explicit Parallelism in intelligent genetic algorithms works through their spatial
population structures. The advantages are threefold: firstly, the entire population is split
into subpopulations naturally, and an algorithm is specified which uses only local rules
. and local information, permitting recombination only within the subpopulation, and
making it massively parallel. Secondly, subpopulations are based on the phenotypic
schemata, super-conservative selection strategy always maintains good phenotypic
schemata. Genotype schemata are mapped from phenotypic schemata, thus reinforcing
the power of intelligent genetic algorithms to process many building blocks or genotype
schemata in the search space simultaneously. This power is stronger than that in implicit
parallelism [Goldberg, 1989] in simple genetic algorithms. Thirdly, our simulation
results show that both convergence speed and quality are greatly improved in
comparison with a simple genetic algorithm [He & Mort, 1997a].

6.1.2. Global Optima

In intelligent genetic algorithms, the hybrid drift model through the complementary
interaction between ‘genetic drift’ and ‘neutral drift’ may explain the mystery that
population can be internalized to escape away from local optima to global optima.

Intelligent genetic algorithms utilize a ‘hybrid drift” model to design a multi-dimensional
fitness landscape through a relative fitness vector. When the relative fitness vector of
one individual is non-dominated by that of any other one in the entire population ,
‘neutral drift’ is in effect. If this individual is ranked as first class or second class, it is
guaranteed to have at least one offspring in the next generation through super-
conservative selection. In other words, any superior non-dominated individuals are
regarded as having equal-(relative)-fitness values, thus allowing the exploration of the
different adaptive peaks nearby. On the other hand, when one individual is dominated by
another, genetic drift is in effect which implies this individual will die out and be replaced
by new non-dominated one. This model has proved effective in leading populations to
escape from local optima to global optima in this typical combinatorial multimodal.
optimization problem

6.1.3. Efficiency and Robustness

Intelligent genetic algorithms have a centralized distributed structure: specifically they
have centralized constraint populations and distributed subpopulations. IGAs use
constraint populations in order to limit entire population size and ‘super-conservative
selection’ strategy to choose superior non-dominated individuals, helping to reduce
computation complexity efficiently.

From Figure 3, we see that the number of distinct suboptima is increasing with
generation in approximately linear fashion. This fact demonstrates the linear speedup of
intelligent genetic algorithms, and is derived from the explicit parallelism and distributed

algorithm in an IGA. It is seen that this increases the efficiency and robustness of IGA
greatly.

Intelligent Genetic Algorithms solve the given combinatorial multimodal optimization
problem without too much a priori knowledge of the fitness landscape, (such as number
of optima and their distribution) and require few parameter settings, which is very
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convenient to users. These algorithms are independent of encoding of the phenotype,
and are suitable for solving most GA-hard and GA deceptive problems which are
regarded as challenging problems for the application of GAs.

6.2. Conclusion:

Combinatorial Multimodal Optimization Problem is highly-discrete, non-linear, and
discontinuous, and can be regarded as one of the most challenging problems in GA
applications. As far as we know, very few publications have addressed the problem or
- provided satisfactory algorithms and solutions. There are marked differences from
continuous multimodal optimization functions [Goldberg & Richardson, 1987; Deb &
Goldberg, 1989; Ohkura and Ueda, 1995] in which the number of fitness peaks and their
distribution information is known and which can be used to divide populations into
different subpopulations exploring relevant fitness peaks. Exact information about the
fitness landscape cannot be known beforehand, so this kind of problem is a serious
challenge to GA applications.

Experimental results and simple fitness landscape analysis demonstrate that Intelligent
Genetic Algorithms have the capability of generating sufficient genetic innovations,
preserving promising genetic diversity, guiding population escape from local optima and
exploring multiple global optima effectively and efficiently in this difficult combinatorial
multimodal optimization problem.

6.3. Future Prospects
Research is in progress to address the following issues:
1) providing formal analysis of intelligent genetic algorithms.

2) analyzing the statistical properties of intelligent genetic algorithms in the fitness
landscape

3) developing intelligent genetic algorithms applied to the multiobjective optimization

problems and the multimodal optimization problems which traditional genetic algorithms
find difficult,

3) utilizing intelligent genetic algorithms to attack GA-hard and GA-deceptive problems
[Davidor,1991; Liepins & Michael, 1991].
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