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A New Approach to Multi-Phase field for the

Solidification of Alloys
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E-mail: p.c.bollada@leeds.ac.uk

Abstract. We show that the standard approach to the modeling of multi-phase field dynamics
for the solidification of alloys has three major defects and offer an alternative more successful
formulation. The model contains an action made up of a free energy functional of the
temperature, concentration and the phase variables. In addition there is a penalty functional
for the gradients of the phase variables, which keeps all field variables continuous — the phase
field method. A variation of this action is related to time derivatives of the variables in the field.
At any physical point there exists up to N phases, φi, each of which represent the proportion
of each phase at that point, thus implying the constraint,

P

N

i=1
φi = 1. The standard Lagrange

multiplier treatment for imposing this constraint has three major defects: non-reduction to
standard single phase formulation; a dependence on the value of N ; generation of unphysical
additional phases. We demonstrate a multi-phase formulation that avoids these two defects
and, partly as a consequence, does not generate spurious additional phases. Moreover, this aim
is achieved without losing the active part that three non-zero phases should play if present at
any point.

1. Introduction

In recent years the importance of phase-field simulation as a tool to understanding microstructure
formation during solidification has grown significantly. The key advantage of such models is that
by introducing a continuous (differentiable) phase variable, φ, the value of which represents the
phase of the material, the need to explicitly track the solid-liquid interface is removed. Instead,
the mathematically sharp interface is replaced by a diffuse interface of finite width, the motion
of which may be tracked using standard techniques for partial differential equations.

Early phase-field models of solidification concentrated on single-phase systems, in which there
was the liquid and only a single solid phase present. However, the phase-field concept may be
extended to systems where there is more than one solid phase present, resulting in multi-phase
field models. For a topical review of multi-phase field modelling in material science see [1].
In multi-phase field models the scalar variable, φ, is replaced by a vector, θ, where the ith
element θi, is the amount of phase i present1. This extension has, though, yielded variations
in the derivation techniques used to obtain the equations of motion for the interface from the
starting equations, with consequent differences in the properties of the resulting models. One
of the main issues to arise in multi-phase field models is that because the phases, θi, can act

1 We use the notation θi, i ∈ [1, N ] for the linearly dependent physical variable and φi, i ∈ [1, N − 1] for the
independent variables



independently, an additional condition must be applied to ensure that the sum of the phases
remains everywhere constant.

2. Standard Lagrange multiplier treatment

Most phase field models of solidification (both single and multi-phase) have a common starting
point, this being the definition of a free energy functional, F , of the phase variables, θi,
concentration, c and temperature, T . The appropriate form of F for the multi-phase problem
has been adapted from several sources in the literature, e.g. [2]

F ≡
∫

Ω

1
2

j−1
∑

i=1

N
∑

j=2

Γij|θi∇θj − θj∇θi|2 d3x +

∫

Ω
f(θ, c, T ) d3x (1)

where: Ω is an arbitrary volume; Γij includes the gradient energy coefficients and the anisotropy
between phases i and j necessary, for example, for dendritic growth; and f is the free energy
density. A particularly simple example of the latter, sufficient for this paper, is given by a
minor modification to the formulation of [2] (though the arguments to be presented here are
independent of the precise form assumed for f):

f ≡
j−1
∑

i=1

N
∑

j=2

Wijθ
2
i θ

2
j −

∑

j

mjθ
3
j (6θ

2
j − 15θj + 10) +

RT

vm
[c ln(c) + (1 − c) ln(c)] , (2)

with the coefficients governing the concentration-dependent double-well potential extended to
N phases given by

Wij = W A
ij c + (1 − c)W B

ij

mj = mA
j c + (1 − c)mB

j .

Here R is the universal gas constant, vm the molar mass (assumed constant), the constants W A
ij

and W B
ij are entries of symmetric matrices whose values are dependent upon the double-well

potential barrier between phases i and j and the constants mA
i and mB

i relate to the Gibbs
energy of phase i, for either pure component A or B. Specifically, this formulation omits any
enthalpy of mixing terms, which restricts the type of solid phases that can result to ideal binary
solid solutions.

The equations governing the evolution of the phase and solute profiles can be given as

−τ
∂θi

∂t
=

δF

δθi

, i ∈ [1, N ] (3)

and

∂c

∂t
= ∇ ·

(

D(θ)c(1 − c)∇δF

δc

)

(4)

together with the constraint

N
∑

j=1

θj = 1, (5)

where: τ is a characteristic time equivalent to inverse mobility, which is here assumed constant;
D is a function defining the local diffusivity, which is a sum of the diffusivities for each phase
weighted by the amount of each phase present.



The constraint (5) implies a linear dependence of the variables indicating that the system
can be represented by N − 1 independent variables, which we denote by φi, i ∈ [1, N − 1]. In
particular, when N = 2 the multi-phase system is related to a single phase system with variable
φ. This may be set to, say, φ = θ1, but there are other equally valid alternatives.

The Lagrange multiplier method for ensuring the constraint (5) expresses (3) as

−τ
∂θi

∂t
=

δF

δθi
+ Λ, i ∈ [1, N ]

where, to guarantee
∑N

j=1 θ̇j = 0, we must have

Λ = − 1

N

N
∑

j=1

θj.

2.1. Non-reduction of the multiphase formulation to single phase

We now demonstrate that the standard Lagrange multiplier treatment of multi-phase field
dynamics, e.g. [2], does not reduce to the equivalent single phase form. Let F (θ1, θ2, c) be
the free energy for an N = 2 phase system dependent on liquid phase, θ1 and solid phase, θ2

and concentration, c. Then θ1 + θ2 = 1 and we choose a single variable φ so that

θ1 = φ

and

θ2 = 1 − φ.

The multi-phase gradient contribution for N = 2, for example, is

G(θ1, θ2) =

∫

Ω

1
2Γ12|θ1∇θ2 − θ2∇θ1|2 d3x

which reduces to

G(φ, 1 − φ) =

∫

Ω

1
2Γ12|∇φ|2 d3x

The single phase equation is

−τ φ̇ =
δF

δφ

This is equivalent, in the multi-phase (two phase) variables to

−τ θ̇1 =
δF

δθ1
− δF

δθ2

−τ θ̇2 =
δF

δθ2
− δF

δθ1
(6)

since2

δF

δφ
=

∂θi

∂φ

δF

δθi

=
δF

δθ1
− δF

δθ2
.

2 Note that throughout this paper repeated sufficies will imply summation, unless they appear on both sides of
the equation.



Whereas in the multi-phase formulation the Lagrange multiplier gives

−τ θ̇i =
δF

δθi
− 1

N

N
∑

j

δF

δθj
,

which for N = 2 gives

−τ θ̇1 = 1
2

δF

δθ1
− 1

2

δF

δθ2

−τ θ̇2 = 1
2

δF

δθ2
− 1

2

δF

δθ1
.

Thus the Lagrange multiplier approach does not reduce to the single phase formulation and in
the particular case for N = 2 gives precisely half that of the single phase formulation.

2.2. Spurious extra phases and N dependence

This section shows that the formulation in [2], when used with solidification from a pure seed,
say θ2 growing into melt θ1, leads to the unphysical formation of the other phase(s), θi for i > 2.
This is illustrated in Fig. 2 (left) for N = 3). See also [5] p301. A new alternative model that
does not exhibit spurious growth, see Fig. 2 (right), is presented in Section 3. The Lagrange
multiplier formulation in [2] is

−τ θ̇i =
δF

δθi

− 1

N

N
∑

j=1

δF

δθj

where for isotropy (Γij independent of θ) we have

δF

δθi
=

N
∑

j 6=i

Γij{2(θi∇θj − θj∇θi) · ∇θj + (θi∇2θj − θj∇2θi)θj}

+

N
∑

j 6=i

2Wijθiθ
2
j − 30miθ

2
i (1 − θi)

2. (7)

Consider a system of N phases but only two phases θ1, θ2 present in some region with no
interaction with other phases. With θi>2 = 0 the Lagrange multiplier gives

−τ θ̇1 = (1 − 1
N

)
δF

δθ1
− 1

N

δF

δθ2

−τ θ̇2 = (1 − 1
N

)
δF

δθ2
− 1

N

δF

δθ1

−τ θ̇i>2 = − 1
N

(

δF

δθ1
+

δF

δθ2

)

, (8)

and clearly the growth depends on N . Moreover, it is only for N = 2 that a pure phase grows
as single phase growth (up to a factor of two).

It should be added that with careful choice of potential, see [3], spurious growth can be
mitigated. However, this only holds for N = 3 and the generalisation to N > 3 is not clear
within the Lagrange multiplier formulation.



The Lagrange multiplier approach may be viewed as an N × N matrix projection, P,

−τ θ̇ = P(N)
δF

δθ
, −τ θ̇i = P ij

(N)

δF

δθj

where the projection equivalent to the Larange multiplier is given by

P(N) = I − nnT . (9)

For example with N = 2, we have

n =
1√
2
[1, 1]T

is the outward normal to the line θ2 = 1 − θ1. If we consider the phase variables, θ1 and θ2 to
be Cartesian coordinates, then n has unit length.

3. A new formulation

The essence of the new formulation is to alter the projection matrix, P, in such a way as to
eliminate the defects we have highlighted with the Lagrange multiplier approach. To this end we
propose a set of properties that the matrix (metric) P must possess (like the Lagrange multiplier
specification of P does not affect material properties of the model):

(i) Reduces to n < N case when only n phases are present locally in a N phase system.

(ii) The projection must never be zero at any point, as this will inhibit growth from a pure
phase.

(iii) The projection must be symmetric with positive or zero eigenvalues as a result of the
consistency requirement between the left-hand and right-hand side components.

(iv) The metric should be degenerate and continuous: that is, it must map from dimension N
to dimension n < N smoothly.

(v) Triple points should be active parts of the system: this excludes the model proposed by
Steinbach [4].

These criteria do not fix a unique value for P. We now give a form for P which satisfies most
(but not all at this stage) of the criteria.

By inspecting (6) we see that for N = 2 we must have

P =

[

1 −1
−1 1

]

In order to generalise this result we note that we may trivially write this

P =
θ1θ2

(1 − θ1)(1 − θ2)

[

1 −1
−1 1

]

(10)

since θ1 = 1 − θ2. This suggests a more general form for P given by

P =
N

∑

j=2

j−1
∑

i=1

θiθj

(1 − θi)(1 − θj)
(xi − xj) ⊗ (xi − xj),



Figure 1. Eigen values and vectors
displayed as ellipses as a function of
position on the triangular simplex.
As a point approaches the boundary
the ellipse degenerates to a line, but
as we approach a vertex from the
centre the circle becomes elliptical.

where xi are the barycentric coordinates of each vertex of the simplex representing the multiphase
field, e.g. a triangle for N = 3, tetrahedran for N = 4 etc. The vertices are thus, (xi)j = δij , so
that in components, P kl

P kl =

N
∑

j=2

j−1
∑

i=1

θiθj

(1 − θi)(1 − θj)
(δki − δkj)(δli − δlj). (11)

The N = 3 case follows as

P =
θ1θ2

(1 − θ1)(1 − θ2)





1 −1 0
−1 1 0

0 0 0



 +
θ2θ3

(1 − θ2)(1 − θ3)





0 0 0
0 1 −1
0 −1 1



 +

θ3θ1

(1 − θ3)(1 − θ1)





1 0 −1
0 0 0

−1 0 1



 .

where we note that if, say, θ3 = 0 we obtain the N = 2 case.

3.1. Some properties of P

This section considers the new model from the perspective of eigenvectors and eigenvalues of
the matrix P in order to see the effect on the system. The interface defined by θ3 = 0 gives the
matrix

P =





1 −1 0
−1 1 0

0 0 0





This has one positive eigenvalue, 2, with corresponding eigenvector [1,−1, 0], which aligns
with the the interface. On the other hand, in the centre of the simplex, θ = [1/3, 1/3, 1/3], we
find one eigenvalue of 3/4 corresponding to any vector lying on the simplex. So in the centre



the matrix, P, simply projects out the term normal to the simplex and multiplies by 3/4. On
the other hand, on the interface, P has the effect of also projecting out the term normal to
the interface. In general P has the double effect of projecting out the normal component and
rescaling the components of the vector along the two eigenvectors. Representing P at any point
on the simplex by an ellipse with major and minor axes of lengths and direction given by the
eigenvalues and eigenvectors, we can view the action of P in the centre as a circle and at an
interface a degenerate ellipse — a line (see Fig. 1).

Consider a typical path on an N = 3 simplex given by

x(t) = [θ1 = t, θ2, θ3 = 1 − 2t], t ∈ [0, 1
2 ]. (12)

We are interested in the property of P as we approach the vertex θ3 = 1 as t tends to zero. We
find that P is an ellipse with major axis of length 3/2 pointing along the line and minor axis of
length 1/2.

In contrast, for the Lagrange multiplier, P is represented as a circle throughout the triangle.

3.2. Ill-defined P for a pure phase

The model as it stands suffers from being ill-defined at any vertex, θi = 1. This is due to a
feature of our construction that, at the vertices, P depends on the path. For example, with
N = 3, and θ1 = 1 we find P degenerates to two matrices for paths along the two adjoining
edges θ3 = 0 and θ2 = 0:

P|θ3=0 =





1 −1 0
−1 1 0

0 0 0



 P|θ2=0 =





1 0 −1
0 0 0

−1 0 1



 . (13)

Thus we require, in addition to the definition (11), to define unique matrices at each vertex.
Alternatives such as enforcing θi < 1 via the initial condition, the use of a small parameter in
local averaging, or modifying the potential are all problematic.

Many candidates for the value of P at the vertices fail, including: P = 0, which inhibits
growth; and P = I − U/N , which introduces spurious growth. However, we found

Pvertex = 2I − U, if 1 − θi < δ, for any i, (14)

where the small parameter, δ ≪ 1, did not significantly alter results3. To discuss this we write
this out for N = 3

Pvertex ≡





1 −1 −1
−1 1 −1
−1 −1 1





and assume that θ3 and its gradients vanish. Thus,

δF

δθ3
= 0

Consequently the third column plays no role and θ̇1 and θ̇2 reduce correctly to a two phase
formulation. On the other hand

τ θ̇3 =
δF

δθ1
+

δF

δθ2

3 For a range of 10−10 to 10−14 in δ we found the steady state growth rate was effectively unaltered in eutectic
or pure phase simulation
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Figure 2. Comparison of the growth of a pure phase, θ2 = 1 (red continuous line), for the
Lagrange multiplier model (left) and an alternative new model presented in section 3 (right).
A cross section of the growing seed, θ2 is superimposed with the cross section of phase θ3 (blue
dashed line). The liquid phase, θ1 = 1 − θ2 − θ3, is not shown. The Lagrange multiplier (left)
introduces spurious growth of phase θ3 at the growing boundary, which is completely absent
using the new model (right) presented in Section 3. This also effects the speed of growth: the
new model grows at a greater rate.

has a right hand side which is non-zero in general. In fact, from (7) we see that the contribution
from the potential is zero leaving, for θ1 = 1:

τ θ̇3 = 2(∇θ1 · ∇θ1) + ∇2θ1.

Now, since θ1 = 1 we must have ∇θ1 = 0 and ∇2θ1 ≤ 0 implying τ θ̇3 ≤ 0. Assuming negative
contributions are trapped numerically (if θi < 0 then θi = 0) this contribution is effectively
ignored.

Hence, we have shown that when θ3 and all its gradients are vanishing, then at one of the
other vertices, we find that

Pvertex ≡





1 −1 −1
−1 1 −1
−1 −1 1



 is indistinguishable from





1 −1 0
−1 1 0

0 0 0





The general case, (14), easily follows.
Using this model we obtained the result given in right of Fig. 2. The model also eliminates

spurious growth in eutectic solidification.
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