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- Abstract

This paper considers the problem of the integration of posterior knowledge into condition monitoring
systems from both the theoretical and practical points of view. The problem is framed in the context of
elementary probability theory where the task of posterior knowledge representation is examined. A
methodology for updating posterior probabilities is proposed for cases where fault conditions are
rejected on the basis of external knowledge supplied by an end-user. Cases of exclusive, conditionally
independent and dependent condition-classes are considered. A possible condition-class ranking is
generated following the estimation of condition- class probability functions. It is shown that a simple
renormalisation of existing probabilities does not apply in the dependent condition-class case and can
lead to erroneous results; the condition-class ranking may change following the exclusion of condition-
classes known nor to have occurred. An artificial example is used to illustrate the theoretical
principles. Simulated fault data are then used to explore the posterior probability estimation problem
Through the use of radial basis function networks. A validated aircraft jet engine model is used which
allows for the injection of faults (conditions). A simple, model-based range-checking methodology is
applied to the data to provide a quick method of generating verified condition data for condition-class
prediction and probability estimation. It is shown that the maximum possible accuracy can be achieved
when the most probable fault is chosen in each case.

Key Words: Fault Diagnosis, Condition Monitoring, Posterior Knowledge Inclusion, Radial
Basis Function Networks, Regularisation, Jet Aircraft Engines.




1. Introduction

The main aim of this work is to devise a mechanism for the inclusion of knowledge into
predictive systems to allow the update of predicted probabilities generated without that
knowledge. Posterior knowledge inclusion has potential applications in the field of condition
monitoring or fault diagnosis and isolation as explored in this paper. Incorporation of
knowledge about a monitored plant, not available to the condition monitoring system, will
facilitate a more informed choice of maintenance strategy.

There is a growing interest in automated condition monitoring systems as the number and
complexity of monitored plants increases to keep pace with the demands of modern
technology. This interest is reflected in the number of fault detection and isolation methods
appearing in the literature (e.g. Rodd, 1997; Patton and Clark, 1989). Such methods usually
entail the monitoring of key system parameters—with or without a reference model—for pre-
defined anomalies.

The so-called “classical” methods are based upon limit checking (Isermann, 1997) and involve
the monitoring of measurable variables to detect pre-defined range violations. The monitoring
system may initiate appropriate control actions immediately and alert the operator. Other
systems may alert the operator only. Such systems are often simple and reliable

(Isermann, 1997) but may only be suitable for detecting relatively large changes. Furthermore,
the detection is not dynamic in that changes in operating profile over time may indicate
possible faults at a much earlier on prior to failure.

Condition monitoring systems may be model-based where a reference model is used in
comparison with the real plant behaviour (e.g. Trave-Massuyes and Milne, 1997; Karsai and
DeCaria, 1997; Milne et al, 1996; Gomm, 1994). Other systems may involve the use of rule-
bases and expert systems (e.g. Wang, Lu, and McGreavy, 1997, Bogunovic, and Mesic,1996;
Keravnou and Johnson,1986; Liu, Singonahalli, and Iyer, 1996; McDonald, Burt, and Moyes,
1996, Wang Xue and Yang Shuzi, 1996). Novelty detection provides another way of
detecting anomalous conditions by training an artificial neural network (or other adaptive
system) to recognise normal operating modes; anomalous conditions are those which deviate
from the learned regions of parameter space (Tarassenko, 1996;1997). Various types of
artificial neural network have been applied to condition monitoring (e.g. Dimla, Lister and
Leighton, 1997, Wilson, Irwin, and Lightbody, 1997; Boudoud and Masson, 1996; Li, Wong,
and Nee, 1996; Patel, ef al,1996; Perrott and Perryman, 1995; Zhang; Ganesan, and Sankar,
1995).

Other condition monitoring methods include chaos, (e.g. Logan and Matthew, 1996),
statistical methods (e.g. Weighell, Martin, and Morris, 1997, Korbicz, and Kus, 1996; Ma
Yizhong, 1996; Zhang, 1996), Fourier Transforms and Wavelets (e.g. Pan, Sas. and van
Brussel, 1996; MacIntyre and O'Brien, 1995), nonlinear observers (e.g. Preston, Shields, and
Daley, 1996, Yang and Saif,1996; Krishnaswami and Rizzoni 1994.), Hybrid Approaches (e.g.
Hines, Miller, and Hajek,1995; Eryurek, and Upadhyaya, (1995) Lianhui Chen and Ho 1994;
Ding, and Wach,1994; Isermann, 1994) analytical redundancy (e.g. Dorr, et al, 1997) and
evolutionary methods (e.g. Bilchev and Parmee, 1996, Korbicz, and Kus,1995)




In this paper, the classical range-checking detection method is used in the simulations for
simplicity because this paper is concerned with the stage affer condition-class data has been
processed by whatever detection method. The range checking method provides adequate data
for the demonstration of post-detection methods of the type explored here.

1.1 Posterior Knowledge

The emphasis of most condition monitoring systems is invariably confined to the actual tasks
of detecting and isolating faults and alerting an end-user to their possible existence. These
systems may or may not give probabilistic estimates of condition-class likelihoods to allow the
end-user to decide a course of action. It is clear that such a methodology is “open-loop” in
that the end-user is given a final analysis, upon which to base operational decisions, without
having the opportunity to feed his or her objective information back into the system.

A “closed-loop™ scenario is desirable because an end-user may have external information (not
available to the condition monitoring system) which would alter the fault diagnosis for specific
instances of the condition monitoring process. For example, the end-user may say, “The
condition monitoring system indicates the possibility of faults x,y and z. Thave just checked y
and can discount the possibility of a fault there. How does this affect the possibility of faults x
and z7”.

The checking of y is not included in the monitored plant parameters and occurs after the
condition monitoring system has made its predictions. This external knowledge is given the
name “posterior knowledge” to distinguish it from any other knowledge about the monitored
plant. Posterior knowledge is knowledge about the outcome supplied by an operator, or some
other source, and which is not available to the predictive system at the time of prediction. It is
new evidence about the posterior probabilities which have been predicted for the current
classification in the form of an updated output classification and differs from the new evidence
about the state of the system which is typically encountered in sequential decision theory (e.g.
Melsa and Cohn, 1978). Posterior knowledge is deterministic; it is about known outcomes.
The incorporation of this knowledge into the feedback loop of condition monitoring allows
fault analysis to be adjusted towards a more accurate picture of the current plant status (Figure

1).

Condition
Plant Monitoring
Posterior Knowledge

Figure 1. The condition monitoring feedback-loop. Posterior knowledge supplied by an end-user may be
integrated into the condition monitoring process to improve condition-class isolation,




Where more than a single fault can occur at any one time, a ranking of possible fault scenarios
can arise. This ranking is tentative because it is based upon the current values of the key plant
parameters alone. The inclusion of posterior knowledge supplied by the end user may alter the
fault probabilities sufficiently to alter the hierarchical structure. For example, fault x may be
far more likely to be the case compared to fault z until posterior knowledge about fault y
(perhaps highly correlated with x) alters the ranking by making fault z more probable. A
synthetic example of this was included in (Marriott and Harrison,1997;1998) to illustrate the
principle; this example is included in Section 5 for completeness.

1.2 Posterior Knowledge applied to Jet Aircra‘ft Engine Condition Monitoring.

Two questions naturally arise from the foregoing discussion: how is posterior knowledge to be
quantified and how is it to be integrated with the information contained within the condition
monitoring system based upon the key plant parameters? This paper explores these two
questions and considers the implicit problem of estimating and updating the probabilities
associated with possible fault conditions. The key objective is to develop a method of
automating the knowledge inclusion and updating process which follows logically from the
fault detection and isolation tasks. The work detailed here is an exploration of these issues
from first principles.

One particular application area for fault diagnosis and isolation methods is that of aircraft jet
engines (e.g. Patton and Chen, 1997; Tarassenko, 1996,1997). These are complex systems
comprised of distinct interacting sub-units which include electronic feedback control and
monitoring devices (Rolls-Royce, 1986). The posterior knowledge inclusion problem, as
considered in this paper, is discussed in the context of aircraft jet engine monitoring. The
inclusion of posterior knowledge into condition monitoring systems applied to jet engines is
motivated by a need to reduce costly no fault found (NFF) conditions . NFF conditions occur
when one or more faults are flagged and subsequent tests of sub-units fail to locate a problem.
The generation of fault rankings—capable of being updated by posterior knowledge—will
allow better-informed decisions about which sub-units and/or components to remove and test.

The present work is based upon the Trent 700 engine model developed by Patel (Patel et al,
1996). This SIMULINK™ model consists of the engine and accessories and is used to
generate fault data. The accessories include the electronic engine control (EEC) to monitor
engine performance and make necessary adjustments.




1.3 Paper Overview

Section 2 considers the theory underlying the representation of posterior knowledge. This
leads into Section 3 where the posterior probability update equation is introduced. This
equation governs the changes in posterior probabilities for a given fault determined by
posterior knowledge. Section 4 looks at the resulting fault rankings and the effects of
condition classes being excluded. Section 5 includes a discussion of probability estimation and
the use of radial basis function networks.

Section 6 introduces the turbo-jet engine. Simulation of fault conditions and the subsequent
fault detection method are both discussed in Section 7 along with some of the issues involved
in fault diagnosis. Simulation results are introduced and discussed in Section 8. Finally,
conclusions and further work are covered in Section 9.

1.4 Posterior Knowledge Inclusion From an Engineer’s Point of View

A condition monitoring system will typically provide an end-user with a set of predictions
indicating one or more possible condition-classes. Merely choosing a single condition-class,
on the basis of its associated probabilities, may be too simplistic. Furthermore, the end-user’s
knowledge may come to bear on the problem, as posterior knowledge, and be used to modify
the original condition monitoring system diagnosis. A simple example will illustrate this
(Marriott and Harrison, 1998):

A gas turbine vibration monitoring system has detected several features that correspond to
one of three conditions: “Bearing wear in IP shaft” with probability 0.65, “Out-of-balance
in LP compressor” with probability 0.20, and “Qut-of-balance in HP compressor” with
probability 0.15. However, the user knows from additional knowledge that a recent change
of bearing rules out condition “A”. Is the most likely diagnosis now “Qut of balance in LP
compressor”? !

If the above conclusions are based on dependent probability distributions then it may not be
sufficient simply to redistribute the probabilities between conditions “B” and “C”; this issue
will be discussed further in Section 4. Indeed it is possible that the suggestion “Out-of-
balance in LP compressor” is based on vibration phenomena attributed to bearing wear that
also produces the out-of-balance as a side-effect. Eliminating bearing wear as a possible
diagnosis could remove the possibility of the LP out-of-balance. The engineer may, therefore
conclude, that the correct diagnosis is “Out-of-balance in the HP compressor”. This example
illustrates some of the issues concerning the manner in which this posterior knowledge can be
incorporated by the system for re-evaluation and future reference.

! Suggested by Dr. Steven King of Rolls-Royce plc



2. Posterior Knowledge Representation: Condition-Class Exclusion

As mentioned in the introduction, the first thing to be considered is how to represent the
knowledge integration problem in such a way that posterior knowledge of possible system
states and associated fault conditions may be incorporated. A useful framework is provided by
elementary probability theory. (e.g. Durrett 1994; Grimmet and Stirzaker, 1992.). The set of
possible monitored parameter values may be divided into N, possibly overlapping, condition-
classes given by U =C, v G,,...,uC,, where C, i =1,..., N represents condition-class (fault)
i. This space is assumed to be exhaustive. A four condition-class example is represented by a
Venn diagram in Figure 2.

(a) (b)

Figure 2. (a) Abstract representation of a four class problem showing the maximum possible number of
overlapped regions. Note that some of the possible regions of overlap may contain no members and, thus,
would not exist. (b) The shaded circle represents the total probability of class 1 occurring.

Venn diagrams provide a useful way of representing the probabilities involved in updating
condition-class predictions. Figure 2 (b) represents schematically the probability of class 1
faults occurring in a four class problem. The representation of probabilities by Venn diagrams
can be justified by appealing to the frequentist interpretation of probability (e.g. Kneale, 1949).
On analysis it is observed that condition-classes may be: independent, dependent and
exclusive, (Appendix A1) dependent and non-exclusive These three distinct cases will be
examined within this paper. Condition classes of the latter type will be dealt with first, being
the most general—the former two are special cases. Independence in this context specifically
is taken to be conditional independence (Bernardo and Smith, 1994; Grimmet and Stirzaker,
1992) See Appendix A7.

There are many possible ways of representing posterior knowledge. In a probabilistic context,
it is useful to represent it as a set of revised condition-class probabilities, that is, a revised
probability for each condition-class influenced by observations of the current situation
consisting of external information; this information is then used to update the condition
ranking via the updated condition-class probabilities. For example, a set of condition-class
posterior probabilities will be predicted for a single input datum. Ifit is then possible to
exclude one or more condition-classes on the basis of knowledge or reasoning not available to
the predictive system, then the current list of condition-class probabilities must be revised to
give a more accurate estimate of new condition-class posterior probabilities in the form of a
ranking. Thus, the posterior knowledge is used to update the posterior probabilities of the
condition-class occurrence. ‘




Exclusion of condition-classes by posterior knowledge is the simplest case and will be dealt
with here. Formally, the revised posterior probabilities require that the inclusion of external
knowledge (evidence) be explicitly included in the notation e.g. P(C ), where the symbol ‘€’

denotes the external knowledge or evidence. Here, probabilities are required of the
form P(C,|C¢), P(C,IC; N C), and P(C,ICs N C; N CF) with the general form given by

P[C,.| ﬂ c;there A, denotes the set of indices of the excluded condition-classes; the
kel i
exclusion being based upon external evidence. The external evidence is of the general
form:g = ﬂ C: where the superscripted ¢ indicates the complement operation with respect to
kel

the universal set, (Grimmet and Stirzaker, 1992) thus C; and C} signify that condition-

classes two and four respectively have been excluded; this constitutes the new knowledge that
those condition-classes are now known not to have occurred.. Note that the inclusion of
posterior knowledge is given in terms of condition-classes which are known rof to have
occurred as indicated by the external knowledge. It is convenient to represent the updated
posterior probabilities in terms of probabilities estimated from previous observations of system
conditions, i.e. condition-classes which have occurred; these probabilities we call probabilities
of occurrence and they can be estimated from empirical data. A more general form of € is
possible, were posterior knowledge to be represented as revised subjective or objective
probabilities, but this paper is confined to the specific case of posterior knowledge as
condition-class exclusions.

For a three condition-class problem, the probability of condition-class 1 occurring given the

posterior information that condition-class 2 has not occurred is denoted by

P(ClmC;)_ P(CEUCI)—P(C;!)
Plcs) T P(C, UG, uGy)-P(C,)

(Appendix A2) for discrete events (e.g. Durrett, 1994, Grimmet and Stirzaker, 1992),. This

situation is shown schematically in Figure 3. For the general case, where a set of dependent
condition-classes is excluded, the following notation is introduced:, A, and A, denote the

p((;dq) = , using the definition of conditional probability

index sets of included and excluded sets respectively where A, ={5,.5,,....8y, }

andA, = {5 RPN FOPURI N} N, is the number of included condition-classes, N is the total

number of possible condition-classes. The delta notation is used to denote that the condition-
class indices are not necessarily selected on the basis of ordering e.g. it could be that for a five
condition-class problem, A, ={13,} and A, = {2,4} in which case §=1,8,=3,8,=5,

8, =2 and & =4 where condition-classes two and four have been excluded.




Figure 3. The diagrammatic representation of P(CJC;) for three dependent condition-classes. p(cdc;) is

the probability of the remainder of C, (without C,) divided by the probability of C, and C; combined
(without C,).

3. Posterior Probability Update Equation

Now that posterior knowledge has been quantified within a probabilistic framework, the
second main question raised in the introduction can be explored. How are the posterior
probabilities of the occurrence of condition-classes generated by a condition monitoring
system to be updated using posterior knowledge? A general method of converting knowledge
about excluded condition-classes in terms of estimable probabilities of occurrence is required.
This general method can then be automated to provide an end-user with revised posterior
probabilities given the posterior knowledge.

3.1 The General Update Equation for Excluded condition-Class Posterior Knowledge

In general, to calculate the updated probabilities, given posterior knowledge,

P(C, nC:,, NG, NG ) P@ G, J‘P@ G, J -
P(C;,, NG, G, P(Uc’s. )_P(UCM]
I k

where 8, is theithindex, §, e{12,....N},je {8, }uA,, kea,,and e uA,. This expression
does not yet include the conditional dependence of the condition-class probabilities upon the
monitored parameter vector. Introducing this definition, eqn (1) is replaced by

p[[u c, )H- 2 ([U . H @
AlyeJ)-{(ue})

P(Ca, IC; NG, NG, ) =

P(c& Iﬂ el x) =
k




This compact expression for the update of condition-class probabilities following the inclusion
of posterior knowledge is derived in Appendix A8. Equation (2) (Marriott and
Harrison,1997,1998) is a generalisation of the ideas illustrated in Figure 3. The union of the
posterior probabilities of excluded condition-classes is subtracted from the remaining (non-
excluded) condition-classes. Both the numerator and denominator of equation (2) represent
what remains when any possibility of the excluded condition-classes is removed. Thus, the

new probability of P(Ca‘ ‘x) given by Equation (2) is based upon the reduced set of possible

condition-classes. Note that LG =1 (the universal set) under the assumption of exaustivity.
1
1

Equation (2) represents and formalises the intuitive notion that the subsequent probabilities are
conditioned on the known non-occurrence of a given fault. For example, if condition-class 2
has definitely not occurred by observation then joint events involving condition-class 2 (for
example, the joint event condition-class] and condition-class 2 ) can not have occurred.

3.2 An Example

An example of the application of Equation 2 to a four condition-class problem is shown in
Figure 5.
P(C,nC; N CE Nx)
P(C; 1 C3)
_ P(C,uC,uC,|x)-P(C, VC,Ix)
" P(C,uC, UG, UC,Ix)-P(C, UC,|x)

P(CJCE mC; mx)=

P(C\|x)- P(C, N G,|x)
_—P(C,nC,Ix)+ P(C,nC, nCylx)

P(Cllx)+ P(C3|x)

-P(C, N C,|x)- P(C, nC;|x)= P(C, N C,|x)
—P(C, C,ylx)- P(C, A C,[x)

+P(C; nC, nC,|x)+ P(C, nC, NnC,|x)
+P(C,nC, nC,|x)+ P(C, nC, N C,|x)
-P(C,AC, nC,NC,x)




Figure 4. A representation of P(C1 |C; N C:) where condition-classes 2 and 4 have been excluded by

posterior knowledge. The probability of condition-class 1 occurring, either alone or in conjunction with
condition-class 3 is conditioned upon the remaining possible events with known probabilities.

3.3 A Taxonomy of Condition-Classes Excluded by Posterior Knowledge.

Three specific exclusion cases may be isolated from equation (2); these are, in ascending order
of difficulty: Exclusive Class, Conditionally Independent Class (Appendix, A7)., and
Dependent Class exclusions which reflect the previous division of condition-classes.

Three Theorems corresponding to the three cases are:

3.1 Theorem: Exclusive Class Renormalisation (ECR) Theorem

For a set of exclusive condition-classes, the updated posterior probabilities of the
remaining condition-classes, following the exclusion of the set, will be given by a
renormalisation of the remaining probabilities.

3.2 Theorem: Independent Class Renormalisation (ICR) Theorem

For a set of independent condition-classes, the updated posterior probabilities of the
remaining condition-classes, following the exclusion of this set, will be given by a
renormalisation of the remaining probabilities.

3.3 Theorem: The Dependent Class (DC) Theorem

For non-exclusive and dependent condition-classes, neither the ECR Theorem nor the ICR
Theorem applies. The full probability update equation (2) must be used.

All three cases have been dealt with separately by the theorems. Proofs can be found in
Appendix A (9-11) It can be shown (Marriott and Harrison, 1997) that if all three cases occur
in any one condition monitoring problem they can be decoupled and treated separately. Thus,
a simple renormalisation is only valid in two of the three cases. This accords with intuition in
that exclusion of condition-classes with dependent probability distributions will alter the
position of condition-classes in the ranking. This idea will be illustrated in the next section.
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The exclusive condition-class situation is shown schematically in Figure 5.

Figure 5. A set of exclusive condition-classes.

Because the condition-classes are exclusive, P(C,. nC j!x) =0 Vi, jie. all probabilities of joint

condition-classes are zero, only the single condition-class probabilities P(Ci [x) are required to

calculate the condition-class union probabilities in Equation (2). This fact leads to the ECR
theorem. The update equation gives rise to the following special form of Equation (2) under
the conditions of exclusivity:

P(C, Ix)

Y P(C Ix)

r

PG ING;, nx )= ©

for conditionally independent sets, the ICR Theorem ensures that a renormalisation of the
remaining probabilities, following exclusion, is a valid operation. Thus, the update equation is
of the special form

. ) PACuk)
P(C;,,[OCM m)_ P(L;Jcsr x)

where the denominator of Equation (3) has been replaced by the union which indicates that the
condition-classes are not exclusive, i.e. that joint probabilities occur.

11




4. Condition-Class Probabilities

We assume that a statistical model of the condition-class probability distributions is available
via some estimation process (e.g. neural networks, mixture models etc.). The resulting model
is fixed and does not give any information about how posterior knowledge is to be
incorporated. This can lead to problems in complex situations where posterior knowledge
may change the relative ranking of possible condition-classes. For example, the interrogation
of a fixed classifier will provide a ranking of possible condition-classes based upon the
computed posterior probabilities. If the indicated conditions are exclusive or conditionally
independent of all other possible conditions, then a simple renormalisation of the probabilities
of the remaining condition-classes—following the exclusion of one or more condition-class on
the basis of external information—is the obvious solution. Excluded dependent condition-
classes may, however, affect the condition-class ranking owing to interactions between
classes. This is illustrated in the following example (Marriott and Harrison, 1998):

4.1 The Condition-Class Ranking.

A Gaussian three class problem was specified with the posterior probabilities as shown in
Figure 6 (a). The classes in this synthetic problem might represent anomalous conditions such
as “QOut-of-balance in LP compressor”. Gaussian likelihoods are specified for the
occurrences of condition-classes 1,2, and 3 alone, that is where a condition-class does not
occur in conjunction with any other. Gaussian Likelihoods are also specified for the joint
events of classes 1 and 2 and classes 2 and 3. Priors are also specified for the classes. Using
Baye’s theorem gives the posterior probabilities shown in Figure 6.

[:X:1d c1

ez
0afF
Ci1&C2

8 10 12 = o 2 8 10 12

4 6 4 6
Input variable Input variable

Figure 6. (a) The posterior probabilities for the three class example before exclusion of class 3. (b) the
posterior probabilities following the exclusion of class 3 on the basis of posterior knowledge.
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At the point x =5 the posterior probabilities of fault occurrence prior to posterior knowledge
are given by column 2 of Table 1 which shows the effect of external knowledge on the ranking
of condition-classes. Given the posterior knowledge that class 3 is excluded, in this case, the
updated posterior probabilities are given in column 4 of Table 1 and shown in Figure 6 (b).
The exclusion of class 3 entails the removal of the likelihoods of class 3 alone and class 2 and
3. These revised probabilities have been calculated using Equation (2). Note that class 1 has
risen to the top of the condition -class ranking following the inclusion of posterior knowledge
into the probability adjustment process. A simple renormalisation would have placed class 2 at
the top of the ranking which would have been incorrect.

The reason for the change in classification ranking following posterior knowledge is that faults
C2 and C3 are very highly coupled as shown by the posterior probability of 0.5343 for the two
classes occurring together. At the point x =5 the exclusion of C3 reduces the probability of
C2 occurring by an amount significant enough to alter the class ranking. The joint probability
distribution of C2&C3 accounts for a significant proportion of class C2 occurring at x =5.

Prior to External Probability Following External § Probability
Evidence Evidence

C; 0.6444 2 0.8518

. 0.6210 C, 0.2907

C; il 0.5343 c.nG 0.2014

C. 0.3229 e

Gtk 0.0540 -

Table 1. The fault class ranking before and after the inclusion of external evidence.

4.2 Probability Update Procedure

A theoretical analysis of condition-class types leads naturally to a practical methodology for
updating the posterior probabilities. The probability update procedure may be broken down
into a series of discrete steps. From the theorems of Section 3, the following procedure for
updating the posterior probabilities, may be specified.

i) Using the estimated priors, determine the exclusive condition-classes to be excluded on the
basis of external knowledge and renormalise the remaining condition-class probabilities,

ii) From the estimated posterior probabilities, determine the independent condition-classes to
be excluded and renormalise the remaining class probabilities,

iii) finally, use the probability update equation (equation (2)) to exclude the non-independent
condition-classes.

13




Step 1) is fairly straightforward because exclusive condition-classes will not occur in
conjunction with any other classes. Exclusivity will be apparent from a pre-processing of the
data. For example, if condition-class 1 does not occur in conjunction with any other
condition-class, then it is assumed to be exclusive. Step ii) may be difficult in practice because
some measure of independence across regions of input space will have to be developed.

Finding exclusive condition-classes means that the joint probabilities involving a given
exclusive condition-class do not have to be estimated. At worst, there are no exclusive
condition-classes and it is difficult to discern any independent classes. This means that the
maximum number of probability functions have to be estimated, including all those of
overlapping class regions.

Forming the set of all condition-classes U = {C’1 ot Cy }, denoting the number of elements in a

set by [ ; ! and denoting the power set of U by
pow(U)={tb,{C]},...,{CN},{Cl,Cz},...,{CN_l,CN },...,{C,,...,CN}}, the number

of terms involved in calculating P(U':’=1 C,) is now given by ‘ pow(U )} =2" —1. This follows,

because each member of the power set of U determines uniquely a corresponding probability
term in equation 2.

In the worst case, 2" — 1 probability distributions must be calculated where N is the number
of condition-classes giving complete coverage of all class combinations. This is discussed
further in Section 5.

It will be shown in Section 5.3 that it is the condition-class ranking which is important when
the estimation problem is transformed into an exclusive condition-class problem. Accurate
probability estimation is desirable to quantify the likelihood of one or more faults occurring
but it is the ordering of condition-classes which is maintained following posterior knowledge.
The correct ordering which reflects the actual circumstances must be preserved by estimation.
This is only true in the case of the exclusive representation of condition-classes. For the
overlapping representation, the ordering may change when equation 2 is applied.
Furthermore, certain probabilistic constraints must not be violated if the outcomes of applying
equation 2 is not to be meaningless.

5. The Estimation Problem

The unprocessed condition monitoring data will consist monitored parameter vectors with
attached fault labels derived from a fault detection method. The inclusion of posterior
information requires posterior probabilities to be estimated either directly, or indirectly from
this data.

14




A common method of estimating posterior probabilities is to use an artificial neural network

(e.g. Bishop, 1995; Richard and Lippmann, 1991). Where the condition-classes are exclusive, -
given N classes, there arises the 1 from N estimation problem, that is, for each input, one

condition-class will be chosen on the basis of the posterior probabilities. Where the classes are
non-exclusive, more than one condition can occur simultaneously giving rise to an m from n

estimation problem. It has been shown (e.g. Bishop, 1995; Richard and Lippmann, 1991) that

for both the mean squared error (MSE) and cross entropy (CE) measures, the neural networks

will estimate the total Bayesian posterior probabilities of the form P(C,|x) only. Thus,

although joint class information (m from n) is available in the training vectors, a neural
network will not be able to estimate the joint probability function unless the output space is
expanded to give an equivalent 1 from n problem. To capture class combination information
in general, an augmented output vector consisting of 2" —1 outputs is required. It is shown
in Marriott and Harrison (1997) that the expansion is valid by treating the output space as a
collection of disjoint sets.

5.1 Expanding the Output Space

The motivation for seeking a partition of the output space is that we need to expand the space
to estimate all of the probabilities required for the update equation. In other words, the
condition-class dependencies indicated by more than one ‘on bit” in the output vector.

A partition of classified input space may be achieved by specifying that the class intersections
are pairwise disjoint, for example C; only contains data points that belong to C, and not

’

C, nC, etc. Similarly, (C,. NC j) only contains data points that belong to C, " C, and

notC, N C, N, etc. This will ensure a partition of the space with disjoint sets as required

’

(eg. C'n (C,. NC j) =¢ ). The ‘dash’ notation is used throughout to indicate partition

members which compose the entire sample space.

Now, the original formula for the union of sets in terms of set intersections can be specified in
purely additive terms:
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+ P[(Ci nC,NC,) |x]
e

+ }D((C1 YOGy )’|x)

That this partitioned representation is formally equivalent to the overlapping representation
can be proved by representing the partitioning sets in terms of their overlapped counterparts.
This way, expressions involving the condition-classes can be shown to be equivalent (Marriott
and Harrison, 1997).

5.2. Using Radial Basis Function Networks to Estimate the Posterior Probabilities

One way of estimating posterior probabilities is to use a radial basis function network (RBFN)
(e.g. Powell, 1987; Broomhead and Lowe, 1988; Moody and Darken, 1989; Bishop,1993
1995; Haykin, 1994, Wasserman, 1993).

This paper deals with classification problems which necessitates the use of the softmax
function (e.g Bishop, 1995) to ensure that the total probability is equal to one. To preves
over-learning of the training data, regularisation (Bishop, 1991, 1993,1995) may be used.
The total cost function for any error-driven neural network using regularisation will be given
by

C=E+vQ

where E is the original error function, v is the regularisation constant and €2 is the
regularisation function. For the simulations of this sub-section and those of the jet engine fault
data, the second-order differential regularisation function is given by

Details of the implementation of an RBFN network with second-order differential with a
cross-entropy cost function regularisation applied to a standard network configuration with a
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softmax layer will be found in Appendix B. Second-order differential regularisation penalises
large changes in the curvature of the output function thus smoothing the resultant function.

The following dependent condition-classes were generated using Gaussian distributions for the
likelihoods of: C,,C,,C,, C,C,, and C, nC,. The RBFN is expected to approximate the

posterior probabilities P(C[x), P(C,]x), P(C,[x), P(C, nC,[x), and P(C, N C,Jx). The
RBFN used had an expanded output set consisting of 5 outputs, each output signifying that
case alone e.g. P(C, lx) gives the posterior probability of condition-class 1 occurring alone.

To be consistent with earlier notation: P(C,. |x) = P(C,’lx) and

Figure 7 shows the estimated posterior probabilities without regularisation.

P(C,nC)Jx)= P[(C,. nC,)
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Figure 7. A graph showing the estimation of posterior probabilities by a radial basis function network.

The data density outside of the range [— 3,+12] is low giving inaccurate predictions of the

posterior probability functions as expected. The lack of regularisation allows over-learning of
the data and is indicated by the considerable curvature of the estimated probability functions.

Figure 8 shows the estimated posterior probabilities with second-order differential
regularisation.
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Figure 8. A graph showing the estimation of posterior probabilities by a radial basis function network using
second-order differential regularisation as explained in the text.

Note that the approximated functions are considerably smoother in the region of higher data
density.

5.3 Exclusive Set Probability Estimation and the Ranking

Reformulating the overlapping set representation in terms of exclusive sets increases the
number of neural network outputs but renders the update problem easier by virtue of the ECR
theorem. That is, the update problem is always an exclusive set problem which merely
requires that the remaining sets are renormalised after the exclusion of sets using posterior
knowledge. This being the case, it is easy to see that rank ordering is preserved following
posterior knowledge; it follows that the rank order may only be important and that accurate
probability estimation is not necessary providing the estimated probabilities have the same rank
order as the actual probabilities.

This relaxed condition of rank ordering is not the case with the overlapping sets; it does not
follow that the rank ordering will be preserved when posterior knowledge is included because
the ranked probabilities are combinations of the exclusive probabilities. Furthermore, where
the overlapping sets are reconstructed from the exclusive sets, differences in probability,
although not disrupting the exclusive class rank ordering, may combine to change the
overlapping class rank ordering. So, accurate probability estimation is still required in the
overlapping class case.
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6. Jet Engines: a Brief Tutorial

The turbo-jet engine is divided into two parts: the engine proper and the engine accessories.
The accessories provide power for various aircraft systems and also include the engine control
system. The basic mechanism of jet engine operation is the intake of air which is then burnt
with fuel to produce exhaust gases (Rolls-Royce, 1986). The exhaust gases provide direct
thrust and turn a turbine which compresses the air prior to combustion. The engine working
cycle consists of four main phases: air intake, air compression, combustion and exhaust. A
schematic block-diagram of the engine is shown in Figure 9.

v

Air Flow

Combustion Turbi
urbine | S—
— 4| Compressor Chamber

Figure 9. A schematic diagram of the main jet engine components. The compressor compresses air prior to
being mixed with fuel in the combustion chamber. The hot air is used to drive a turbine which powers the
COMPpressor.

6.1  The Engine

A triple-spool axial flow compressor is shown in Figure 10. Each spool is driven by its own
turbine and consists of multiple stages, each of which increases the air pressure by a small
amount prior to combustion. Each spool is connected to its respective turbine by a shaft. The
shaft speeds are monitored by the control system. Unusual vibrations may occur in one or
more of the shafts indicating a problem (Tarassenko, 1996, 1997). Bearing faults can show up
as shaft vibrations. Various safety features are built-in to detect and deal with overspeed or
shaft breakage.

The electronic engine control (EEC) has two main functions: the monitoring of engine shaft
speeds and the monitoring of the exhaust gas temperature (EGT) (Rolls-Royce, 1986). The
EEC attempts to control the engine and maintain the set operating points requested by the
operator. Fault diagnosis is complicated by the corrective action taken by the EEC. A fault
may occur which is then compensated for by automatic adjustment of specific control
parameters.

LP IP HE
N1 ™
Air Flow N2
) N3
Low Intermediate High
Pressure Pressure Pressure
Spool Spool Spool

Figure 10. A triple spool compressor. N1,N2,N3 indicate low, intermediate and high pressure shaft speeds
respectively
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More details about the engine structure and operation will be introduced as required in later
sections.

7. Simulation Methodology

This section refers to the Rolls-Royce Trent 700 engine model. Further details will be given
which build upon the those of Section 6. To reiterate the point of the introduction, the
methods of fault detection used here are simple classical range-check methods. This is to
provide data for post-detection and feedback processing. The posterior knowledge integration
methods are general and can be applied to any fault detection system which provides posterior
probability (or density) estimates for each condition-class or conjunction of condition-classes
where condition-classes overlap.

Here, fault detection is based upon model reference where faults are detected by checking
parameter ranges with their computed values. The Trent 700 model is run at a different
nominal operating point (NOP) for each run. Each NOP is determined by the Mach number
and altitude (MA) settings. The NOP at a given MA determines the key parameters used by
the condition monitoring system. Faults may or may not be induced at each run depending
upon pre-determined probabilities. This provides a set of raw fault data for the fault detection
methods used here, as a precursor to the posterior knowledge inclusion method.

7.1 Dependent Parameters and Induced Faults

The Mach and altitude settings are chosen at random from a uniform distribution in the ranges
[0.3,0.8] and [20000,80000] ft respectively. This method is used for simplicity. A more
realistic flight envelope could be chosen and is a possible extension.

The MA settings give rise to a series of dependent parameters which include the sub-set:
1. WF: Fuel flow, |
2. TGT: Turbine gas temperature sensed by thermocouple, at entry to the LP turbine
3. N3: HP shaft speed,
4. P30: HP compressor delivery pressure (total),
5. T30: HP compressor delivery temperature (total).

This sub-set has been chosen specifically as a first approximation. This the minimal set of
useful parameters chosen in conjunction with engineers from Rolls-Royce plc. An extended,
richer set of parameters is a subject for further investigation.
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Induced fault cases are chosen to be:

Fuel decay

TGT increase

N3 decay

Normal (N) Fault not induced ie running at NOP

o b

No fault found (NFF): fault not induced but flagged in parameters

This set has been chosen as a first approximation to the problem. The fault severities are
fixed but may be varied in an extended model. Fuel decay is realistic in that partial blockages
may occur in fuel pipes or filters. TGT increase and N3 decay may reflect a decrease in engine
efficiency. No fault found reflects the condition in which one or more faults are flagged by the
system but no apparent cause can be found. Faults 1, 2 and 3 may also occur in binary
combination giving eight fault conditions in total. These are fl, f2, {3, f1&f2, f1&13, f2&13,
N, and NFF. The condition f1&f2&f3 has been omitted for simplicity.

Priors are chosen for each of the eight cases to reflect the mix of actual faults, no fault found
and normal conditions. For case 5, no fault found, a single fault is chosen at random from
faults 1 to 3 depending upon the priors.

7.2 Fault Diagnosis Issues

The engine and accessories comprise a dynamical system and fault detection / diagnosis is not
a straightforward task. Fault diagnosis is a research area in itself to determine both what
constitutes a fault and how to detect faults. When faults occur, the EEC attempts to
compensate for the problem and maintain the desired set-point further complicating the
problem. Many design choices have had to be made to allow the generation of data of
sufficient complexity and realism to investigate methods of posterior knowledge inclusion
which is the primary remit of this work.

Even seemingly straightforward fault diagnosis methods such as range checking pose several
problems. How are the ranges to be determined across the operating envelope? What
constitutes a fault? How are fault labels to be associated with sets of parameters? Will fault
conditions in steady-state mode following EEC intervention be mistaken for NOPs? In the
latter case, will range checking be of any use? How are static faults to be detected and
represented? How are dynamical faults to be detected and represented?

The steady-state reached following the injection of a fault may give a parameter vector
commensurate with normal operation in a different region of the operating envelope. The
labelling of the final parameter vector as indicating a fault may provide misinformation to a FD
system. It may be possible to prevent this by including the Mach number and altitude
information in the parameter vector.
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The N3 decay fault is a case in point. Whilst operating at a NOP during an experiment, (fixed
Mach number and altitude) a decay was introduced into the HP shaft (which may indicate
bearing faults for example). An expected increase in fuel flow (WF) occurred as the EEC
attempted to compensate for the problem. There was an initial surge in fuel followed by
reversion to a steady-state value of fuel flow not significantly above the original. The final
parameter vector may be indicative of a normal (N) state. In this case, the FD problem is one
of detecting a fuel surge not accounted for by normal operation or allowed transients. This
involves the detection of dynamical anomalies—research topic in itself Such considerations
belong to the domain of fault diagnosis proper. Here, the concern is with post-processing of
fault occurrence probabilities, hence our crude simulation and detection methods.

7.3 Fault Protocol

The protocol used for generating the fault data used in exploring the probability estimation and
update problems is:

for each choice of Mach-Altitude co-ordinates,
i) run the model at the NOP without any faults,
ii) run the model with faults induced based upon the priors
iii) compare NOP run with the possible fault run, then

iv) find the maximum absolute percentage deviation across the time-trace of the
variable for each indicator; if this exceeds the limit set for that particular variable, flag a
fault.

For the experiments detailed here a data set of 800 training patterns and 300 test patterns was
used. The faults actually induced were:

1) Fuel decay (increase), C1

i1) TGT increase, C2

1ii) N3 decay, C3

iv) Fuel decay (increase) and TGT increase, C1 & C2
v) Fuel decay (increase) and N3 decay, C1 & C3

vi) TGT increase and N3 decay, C2 & C3

Faults are not induced for a number of cases which are thus considered normal. From these
normal cases, a fraction is assigned a false alarm or no fault found. The faults are induced
according to the prior probabilities. The followin g list of priors was used in the preliminary

experiments featured in this paper. These could be adjusted to give a more realistic spread of
fault/normal conditions.
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]

Condition-Class Prior Probabilities

€1 0.15
C2 0.15
C3 0.15

Cl1&C2 0.05 -
Cl1&C3 0.05
C2&C3 0.05
No fault / normal(N): 0.3
No fault found (NFF) 0.1

Table 2. The induced condition-class priors

As mentioned in step iv) of the protocol, faults are assigned on the basis of range checking
compared with the fault-free model for the five parameters detailed above. The fault ranges of
all five variables are all set at (£10%) for simplicity; they can all be set at separate limits if

required.
7.4 The fault vector coding scheme

H The fault vectors are coded using a 5 bit input string which indicates the occurrence or non-
occurrence of a limit-trip on each of the monitored variables. A seven bit output is used to
indicate the following fault conditions: C1, C2, C3, C1&C2, C1&C3, C2&C3, N. The case
C1&C2&C3 is prevented from happening by not allowing all three faults to be induced at any
one time, i.e the condition is ignored. This is using one from many coding. Thus, the three
condition-classes can be indicated separately or in pairs or the plant can be operating normally.
The output vector represents verified fault / no fault occurrences. This form of input/output
data indicates a binary heteroassociative problem.

An example data vector is (10111, 0000100). The first set of five bits is the alarm indicator
set which signifies that there are trip deviations in fuel flow,N3, P30, and T30 but TGT 18
within range. It forms the input pattern to the neural network The second set of seven bits

- indicates the verified status. It represents the training input and represents a verified fault in C1
& C3, i.e, there is a verified fuel problem and a problem with the HP turbine (N3). The
network has to develop a mapping between input alarms and verified faults.
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7.5 The RBFN Network

A Radial Basis Function network of the sort discussed in sub-section 5.2 was used in the
simulations of this paper. The network had a cross-entropy cost-function and incorporated a
softmax layer to reflect the output probabilities. Second-order differential regularisation was
used to reduce the rate of curvature of the output to prevent over-fitting to the data. Details
are given in Appendix B,

8. Results

The empirical training set and test set probabilities were computed from the data files. These
were found by computing the relative frequencies for each input vector.

8.1 The Theoretical Maximum Accuracy

A linear network, incorporating a softmax output layer to allow for the representation of
probabilities, was trained and tested with the 800/300 set using a variety of initial weights.
The network was used to predict the most likely fault(s). The best performance was a
prediction accuracy of 64% and this varied very little for different choices of the initial weight
set; this indicated that the minimum mean-squared error for such a system had been achieved.
Thus, comparing with the theoretical maximum prediction accuracy of 87.7% (calculated
directly), it is clear that this is not a trivial problem solvable using a simple network. As the
complexity of the fault data increases, it is likely that the linear system will have an even
poorer performance. Measurement noise and quantisation of inputs possibly will reduce the
accuracy further.

A single run of the regularised RBFN was carried out with the 800/300 data set to assess the
network’s accuracy in probability estimation. The prediction accuracy for the test set for the
most likely fault scenario was 87.7%, the maximum possible; that is, if faults were chosen on
the basis of probability magnitudes. How can this be? This is because the RBFN models the
probability distribution and only the maximum probability for each of the binary input vectors
is required. There may be a large error in the estimates of the probabilities which does not
affect the MAP decision as long as the probability of the most probable prediction exceeds the
others by a small margin. In other words, the winning probability only has to be largest.
Thus, the probability density function may not be very accurate or representative of the
underlying distribution of fault vectors but still allow the maximum achievable accuracy.

The test set results are shown in Table 3. Only 11 out of a possible 32 states occurred with
this run; NB this would change for different values of the fault detection thresholds. For each
input, the actual probabilities (relative frequencies) of occurrence are shown together with
those predicted by the network. The column labelled p(x) shows the data distribution (relative
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frequency) of the patterns. This is included to illustrate the variation of accuracy with data

density.

The RBFN network was then trained and tested with an 800/300 data set based upon the
11/32 binary input vectors encountered in the above fault-induction experiments. This set
was devised for use as a calibration check. This time, a single unambiguous input was
assigned to each input on the basis of the maximum probabilities encountered in the previous
experiments. The input vectors were distributed approximately according to the frequency of

occurrence encountered above. Thus, the max theoretical accuracy of correct diagnoses was
100% The RBFN achieved this 100% target.

Cl C2 C3 Cl1&C2 C1&C3 C2&C3 N p(x)
input actual 0 0 0 0 0 0 1 0.3100
00000 predicted | 0.005029 | 0.012104 | O 0 0 0 0.982867
input actual 0 0 0 0 0 0 1 0.0433
00100 predicted | 0.164490 | 0.202020 | 0.008506 | 0.007712 | 0.006416 | 0.006438 | 0.604418
input actual 0 0.7910 0 0 0 0 0.2090 0.2233
01000 predicted | 0.000097 | 0.883493 | 0.000068 | 0.000187 | 0.000001 | 0.000009 | 0.116146
input actual 0 0 0.6667 0.3333 0 0 0 0.0100
01011 | predicted | 0.010755 | 0.014644 | 0.850851 | 0.008370 | 0.011507 | 0.092996 | 0.010877
input actual 0 0 0.8750 0 0.1250 0 0 0.0267
01111 predicted | 0.000516 | 0.000375 | 0.922690 | 0.000667 | 0.001522 | 0.073864 | 0.000366
input actual 0.8750 0 0 0 0 0 0.1250 0.1333
10000 | predicted | 0.941444 | 0.000090 | 0.000002 | 0.000078 | 0.000001 | 0.000001 0.058384
input actual 1 0 0 0 0 0 0 0.0133
10010 predicted | 0.558011 | 0.053072 | 0.025421 | 0.051029 | 0.029564 | 0.015743 | 0.267161
input actual 0 0 0 0 1 0 | 0 0.0500
10111 | predicted | 0.000875 | 0.000359 | 0.005837 | 0.000367 | 0.991319 | 0.000811 | 0.000432
input actual 0 0 0 1 0 0 0 0.0533
11000 predicted | 0.000629 | 0.000737 | 0.000058 | 0.998410 | 0.000010 | 0.000011 | 0.000144
input actual 0 0 0 1 0 0 0 0.0033
11010 predicted | 0.087575 | 0.085436 | 0.094690 | 0.576361 | 0.042954 | 0.054367 | 0.058617
input actual 0 0 0.6000 0 0.0500 0.3500 0 0.1333
11111 | predicted | 0.000094 | 0.000036 | 0.719065 | 0.000333 | 0.021754 | 0.258647 | 0.000070

Table 3. Test set results. The actual probabilities are the relative frequencies of the classes in the data set.

The predicted results are those of the RBFN run. P(x) indicates the relative data frequency.
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Note that not all of the condition-class rankings are correct; where they are incorrect (e.g.
alarm condition 01111) the relative data frequency is low. Some type of error measure will
have to be developed which allows comparison of rankings between experiments.

8.2 Discussion

As expected, the underlying statistics of the training set population are estimated by the RBFN
system; where the estimated probabilities become inaccurate, the relative data frequency is
low. For both training and test sets, the same decision as predicted by the actual probabilities
will be taken in all cases using the predicted probabilities. Some states may not occur in the
fault diagnosis procedure, e.g. 00001 which signifies that T30 has changed without any
concomitant changes in other monitored variables.

The eleven observed states were as follows:
State 00000 indicates that no fault has occurred.

State 00100 indicates that a fault has occurred in N3 only. -The probability estimations point
to the fact that a NFF condition is actually the case because an actual N3 decay fault usually
has an effect on other parameters such as fuel flow and TGT. Note the low data density.

State 01000 indicates that a fault has occurred with TGT only. It is highly likely that the fault
lies with the TGT thermocouple because no other parameter changes have been noted. There
is also the possibility that no fault has occurred.

State 01011 indicates that, as well as the thermocouple changes, there are concomitant
changes in P30 and T30 indicating that the N3 shaft may be involved (N3 or N3&TGT). In
both cases, the N3 activity does not show up as a fault. Note that the data density is low in
this case.

State 01111 indicates that all faults are triggered except for the fuel flow. This is highly
indicative of an N3 fault but the data density is low indicating that a fuel flow problem usually
occurs as well. This is supported by the higher data density associated with state 11111.

State 10000 indicates that there is a fuel flow problem: When this occurs alone it is rarely a

consequence of any other actual fault. However, there is a possibility that a NFF condition
has occurred.

State 10010 indicates both a fuel flow and P30 pi’oblern. According to the test set statistics, it
is always a fuel flow problem.

State 10111 indicates that all faults are triggered except for TGT. A low data density
indicates that TGT is usually associated with N3 (alarm pattern 11111). Where TGT is
omitted, WF and N3 together are expected according to the training or test data.

State 11000 indicates that WF and TGT have occurred together. The actual faults are WF and
TGT because the occurrence of N3 usually has a ‘knock-on’ effect.

State 11010 indicates that it is again a COIIJUI'ICUOI‘I of WF and TGT but the P30 fault is
anomalous as shown by the data density.

State 11111 is either indicative of N3 alone or N3 and TGT. Note the ratio of occurrences of
approximately 3:1 is commensurate with the ratio of prior probabilities of 0.15:0.05 or 3:1.
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This preliminary empirical investigation indicates that fault induction and detection using the
aircraft engine model will provide data suitable for testing and extending the posterior
knowledge inclusion model. The fault induction and detection process is to be refined so that
meaningful posterior probability hierarchies will be generated.

9. Conclusions

It has been stated that, in general, condition monitoring involves the detection of anomalous
conditions which arise during the operation of some plant or process. The indication of the
most likely fault and its estimated probability by a fixed pattern recognition system is not
necessarily the end-point. Condition monitoring is a continuous, closed-loop process
involving an end-user. The end-user ultimately decides how to use the information generated
by the condition monitoring system. The end-user may, in turn, require a mechanism of
incorporating his or her observations into the condition monitoring system for a more accurate
diagnosis. The incorporation and utilisation of posterior knowledge presents a difficult
problem. This paper has attempted both to articulate the problem and to provide a framework
for its solution. It is clear that more work is required in this area. The contrived example
illustrates some of the issues involved in the integration of posterior knowledge within the
human / machine diagnostic cycle as fault evidence is accumulated. Three phases of the fault
diagnosis cycle have been identified:

(i) fault diagnosis and isolation to provide fault data,
(ii) probability estimation to provide the fault hierarchy, and

(iii) posterior knowledge inclusion to provide a revised fault hierarchy.

Phases (i) and (ii) are covered by many condition monitoring schemes. Phase (iii) has been
explored in this paper.

The problem of posterior knowledge representation is a difficult one and further work is
needed to increase the scope beyond just excluding classes on the basis of external
observations; work is being done to investigate this. Both the method of knowledge
representation and the posterior probability update problem are independent of the method
used for probability estimation; this is because of the general framework based upon set
theory.

Using the specified probabilistic framework, the posterior knowledge inclusion problem has
been reduced to an m from » estimation problem. Furthermore, The m from » estimation
problem has been reduced to a 1 from » problem by expansion of the output space. Pre-
processing may be required to reduce the combinatorial explosion. It is clear that probability
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distribution estimation methods must give sufficiently accurate estimates to maintain condition
class hierarchies; the estimation problem has been explored further using an established neural
network technology. The radial basis function network has the combined features of cross-
entropy, a softmax layer and second order regularisation. On-going work using the simulated
aircraft engine model is being carried out to explore these issues further. Now that it is
feasible to generate fault data using the aircraft engine model and process this fault data using
a RBF network, the use of the model will be refined and extended.

The authors would like to acknowledge the support of both the Engineering and Physical
Sciences Research Council of the UK and Rolls-Royce PLC in the production of this work.

References

Applebaum, D (1996) Probability and Information: An Integrated Approach CUP Cambridge

Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory John Wiley and Sons Ltd,
Chichester.

Bilchev, G.; Parmee, 1.(1996) Constraint handling for the fault coverage code generation
problem: an inductive evolutionary approach, Proc. International Conference on Evolutionary
Computation -The 4th International Conference on Parallel Problem Solving from Nature. p.
880-9

Bishop, C. M. (1991) Improving the Generalisation Properties of Radial Basis Function
Neural Networks, Neural Computation 3, 4, 579-588

Bishop, C. M. (1993) Curvature-Driven Smoothing: A Learning Algorithm For Feedforward
Networks JEEE Transactions on Neural Networks 4(5) 882-884

Bishop, C. M.(1995) Neural networks for Pattern Recognition Oxford University Press
Oxford.

Bogunovic, N. Mesic, T. (1996) Adaptive uncertainty management for a class of diagnostic
expert systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing
10,5, 421-9

28




Boudoud, A. N. and Masson, M. H. (1996) The diagnosis of a technological system: on-line
fuzzy clustering using a gradual confirmation of prototypes. Proc. CESA 96 IMACS
Multiconference. Computational Engineering in Systems Applications.Vol. 1. 110-115

Broomhead, D. S. and Lowe, D. (1988) Multivariable Function Interpolation and Adaptive
Networks, Complex Systems 2 321-355

Dimla, D.E, Lister, P. M. and Leighton, N. J. (1997) Tool condition monitoring in metal
cutting through application of MLP neural networks IEE Colloquium on Fault Diagnosis in
Process Systems (Digest No. 1997/174) 9/1-3

Ding, Y.; Wach, D. (1994) A rule- and case-based hybrid system for rotating machinery
diagnosis, IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes - SAFEPROCESS '94. Preprints vol.2. 475-8

Dorr, R.; Kratz, F.; Ragot, J.; Loisy, F.; Germain, J.-L. (1997) IEEE Transactions on Control
Systems Technology Vol: 5 Iss: 1 p. 42-60

Duda and Hart (1973) Pattern Classification and Scene Analysis

Durrett, R. (1994). The Essentials of Probability The Duxbury Press. Belmont California.

Eryurek, E.; Upadhyaya, B.R. (1995) An integrated fault-tolerant control and diagnostics
system for nuclear power plants, Proceedings of the Topical Meeting on Computer-Based
Human Support Systems: Technology, Methods, and Future. 267-74

Haykin, S. (1994) Neural networks a Comprehensive Fi oundation Macmillan

Hines, ] W.; Miller, D.W_; Hajek, B.K.(1995) Fault detection and isolation: a hybrid approach
Proceedings of the Topical Meeting on Computer-Based Human Support Systems:
Technology, Methods, and Future, 363-70 '

Gomm, J.B. (1994) Fault detection in a multivariable chemical pfocess by monitoring process
dynamics, IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes - SAFEPROCESS '94. Preprints. Vol. 1, 177-82

Grimmet, G. R. and Stirzaker, D. R. (1992) Probability and Random Processes, Oxford
Science Publications, Oxford.

29




Isermann, R. (1997). Supevision, Fault-Detection and Fault-Diagnosis Methods-an
Introduction, Control Engineering Practice: 5 (5) 639-651

Isermann, R. (1994) Integration of fault detection and diagnosis methods. Proc. IFAC
Symposium on Fault Detection, Supervision and Safety for Technical Processes -
SAFEPROCESS '94. Preprints . 597-612 vol.2

Karsai, G.; DeCaria, F. (1997) Model-integrated on-line problem-solving in chemical
engineering, Control Engineering Practice, Vol: 5 Iss: 1 1-9

Keravnou, E. T. and Johnson, L. (1986) Competent Expert Systems: A Case Study in Fault
Diagnosis McGraw Hill NY

Krause, P. and Clarke, P. (1993) Representing Uncertain Knowledge: An Artificial
Intelligence Approach. Intellect Books Oxford

Kneale, W. (1949) Probability and Induction Oxford at the Clarendon Press, Oxford

Korbicz, J and Kus, J (1996) Structural-parametrical identification method in fault detection
and diagnosis systems. Proc. CESA '96 IMACS Multiconference. Computational
Engineering in Systems Applications.Vol. 1. 696-700

Korbicz, J.; Kus, J. (1995) Knowledge-based fault detection system using genetic observer
approach, Proceedings of the 12th International Conference on Systems Science 262-70
vol.3

Krishnaswami, V.; Rizzoni, G. (1994) A survey of observer based residual generation for FDI,
IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes -
SAFEPROCESS '94. Preprints. 34-9 vol.1 '

Li, X.Q.; Wong, Y.S; Nee, A.Y.C. (1996) Tool condition monitoring using acoustic emission
sensing and an integrated multi-ART 2 neural network. Proc. Advanced Manufacturing
Processes, Systems, and Technologies (AMPST 96) 193-200

Lianhui Chen; Ho, E. (1994) Improving fault diagnosis performance with contextual
knowledge, Proc. The Third International Conference on Automation, Robotics and
Computer Vision. vol.2,1338-42

Liu, T.I; Singonahalli, J.H.; Iyer, N.R. (1996) Detection of roller bearing defects using expert
system and fuzzy logic Mechanical Systems and Signal Processing Vol: 10 Iss: 5 p. 595-614

30



Logan, D.; Mathew, J. (1996) Using the correlation dimension for vibration fault diagnosis of
rolling element bearings .1. Basic concepts. Mechanical Systems and Signal Processing Vol.
10 Iss: 3 p.241-30

Ma Yizhong (1996), Diagnosis for signals in multiple correlated processes Computers &
Industrial Engineering Vol: 31 Iss: 3-4 p. 817-20

McDonald, J. R., Burt, G. and Moyes, A. (1996) Knowledge based systems for condition
monitoring, Proc. UKACC International Conference on Control '96, vol.2, 1424-9

Maclntyre, J.; O'Brien, J.C. (1995) Investigations into the use of wavelet transformations as
input into neural networks for condition monitoring, Artificial Neural Nets and Genetic
Algorithms. Proceedings of the International Conference. 116-19

Marriott, S, and Harrison, R. F. (1997). The use of posterior knowledge in statistical pattern
recognition with particular application to fault diagnosis. Research Report No. 676 May
1997 The University of Sheffield, UK.

Marriott, S. and Harrison, R. F. (1998) The integration of posterior knowledge into
statistical pattern recognition systems with particular application to fault diagnosis,
Proceedings of EIS’98, In Press

Melsa, J. L. and Cohn, D. L. (1978) Decision and Estimation Theory. McGraw-Hill

Milne, R ; Nicol, C.; Trave-Massuyes, L., Quevedo, J. (1996) TIGER: knowledge based gas
turbine condition monitoring, A/ Communications Vol: 9 Iss: 3 p. 92-108

Moody, J. and Darken, C. J. (1989) Fast Learning in Networks of Locally-Tuned Processing
Units, Neural computation 1 (2) 281-294 '

Pan, M. C., Sas, P. and van Brussel, H. (1996) Non-stationary time-frequency analysis for
machine condition monioring. Proc. IEEE-SP International Symposium on Time-Frequency
and Time-Scale Analysis. 477-480.

Patel, V.C.; Kadirkamanathan, V.; Kulikov, G.G.; Arkov,V.Y; Breikin, T.V. (1996) Gas
turbine engine condition monitoring using statistical and neural network methods, Proc. IEE
Colloguium on Modelling and Signal Processing for Fault Diagnosis (Ref. No.1996/260),
1/1-6

31




e e

Patel, V. C., Kadirkamanathan, V., Thompson, H. A. and Flemming, P. J.(1996) Development
of a gas turbine engine model for fault diagnosis. Proc. IASTED International Conference.
Artificial Intelligence, Expert Systems and Neural Networks. 379-382. ‘

Patton, R. J. and Chen, J. (1997) Observer-Based Fault Detection and Isolation: Robustness
and Applications, Control Engineering Practice, 5 (5) 671-682

Patton, R., J., Frank, P. M. and Clark, R. N, (eds.) (1989) Fault Diagnosis in Dynamic
Systems, Theory and Application Control Engineering Series. Prentice hall, London

Perrott, S.N.; Perryman, R.(1995) Adaptive resonance theory applied to condition monitoring
of combined heat and power systems, UPEC '95. 30th Universities Power Engineering
Conference 1995. Conference Proceedings. Vol.l 45-8

Preston, G. J. Shields, D. N. and Daley, S. (1996) Application of a robust nonlinear fault
detection observer to an hydraulic system. Proc. UKACC International Conference on
Control '96. vol. 2 1484-9.

Richard, M. D. and Lippmann, R. P. (1991) Neural Network Classifiers Estimate Bayesian a
posteriori Probabilities. Neural Computation, 3 461-483

Rodd, M. G. (ed. in chief) (1997) Control Engineering Practice: Special section on fault
detection and diagnosis. 5 (5)

Rolls-Royce, (1986) The Jet Engine, Rolls-Royce plc.

Tarassenko, L (1996) Novelty Detection Neural Computing Applications Forum digest
supplement Edinburgh

Tarassenko, L (1997) Novelty Detection: Key questions, Neural Computing Applications
Forum digest supplement, Bath

Trave-Massuyes, L and Milne, R (1997) Gas-turbine condition monitoring using qualitative
. model-based diagnosis /EEE Expert 12,3 22-31

Walpole, R. E. and Myers, R. H. (1989) Probability and Statistics for Engineers and
Scientists Macmillan Publishing Company New York

Wang Xue; Yang Shuzi (1996) A parallel distributed knowledge-based system for turbine
generator fault diagnosis, Artificial Intelligence in Engineering Vol: 10 Iss: 4 p. 335-41

32




Wang, X.Z.; Lu, M.L.; McGreavy, C. (1997) Learning dynamic fault models based on a fuzzy
set covering method, Computers & Chemical Engineering Vol: 21 Iss: 6 p. 621-30

Wasserman, P. D. (1993) Advanced Methods in Neural Computing VNR New York

Weighell, M. Martin, E. B. and Morris, A. J. (1997) Fault diagnosis in industrial process
manafacturing using MSPC. IEE Colloguium on Fault Diagnosis in Process Systems (Digest
No. 1997/174) 4/1-3

Wilson, D.J.H, Irwin, G. W. and Lightbody, G. (1997) Neural networks and multivariate SPC
IEE Colloquium on Fault Diagnosis in Process Systems (Digest No. 1997/174) 5/1-5

Yang, H.; Saif, M. (1996) Monitoring and diagnostics of a class of nonlinear systems using a
nonlinear unknown input observer. Proceedings of the 1996 IEEE International Conference
on Control Applications. 1006-11

Siyu Zhang; Ganesan, R.; Sankar, T.S. (1995) Self-organizing neural networks for automated
machinery monitoring systems Computers in Engineering, p. 1001-9

Zhang, Q (1996) Using non-linear black-box models in fault detection. Proc. 35th IEEE
conference on Decision and Control. Vol. 1 636-7

33




Appendix A
Al. Exclusive sets:

Two classes A and B are mutually exclusive or disjoint if AN B = ¢, that is, if A and B have
no elements in common.

A2. Conditional Probability

P(ANB)

s ¢ P(4)> 0

The conditional probability of B, given A, denoted by P(B|A) =

A3. Identity

Proof of the result
P(AnB°)= P(4U B)- P(B)

used in the proof of equation (2).

P(AnB*)= P(4)- P(ANB)

= P(4)+ P(B)- P(B)- P(ANB)
= P(4)+ P(B)- P(An B)- P(B)
= P(AUB)- P(B)

Ad. Set Union

This can be proved by induction on » (e.g. Grimmet and Stirzaker, 1992).

AULe)= 27
—ip(c, nC,)
+ iP(Cf G, ka)

i<j<k

+=D"'P(C, nC.NC)
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A5 Total Probability
Lemma (Grimmet and Stirzaker, 1992):

For any events A and B
P(4) = P(4|B)P(B)+ P(4|B°)P(B°)

More generally, let B,,B,,....B, bea partitioﬁ of U. Then,

P(A) = gP(AlB,- )P(B,)

A6 The Use of Bayes Theorem.

Posterior probabilities can be estimated directly if certain techniques are used. In some cases,
however, it may be more appropriate to use Bayesian decision theory, and compute the
posterior probabilities indirectly rather than estimating them directly. Bayesian decision theory
is a framework for calculating the required conditional probabilities from other empirically
derivable probabilities (e.g. Duda and Hart, 1973; Gelman et al, 1995). Bayes’ theorem for
real valued data variables is of the form

P(C,.lx) _ p(xl(;f&};(cx) (A1)

where P(C,. lx), is the posterior probability, p(xle ) is the likelihood , P(C,. ), is the prior
probability of class i occurring and p(x) is the unconditional density function. These
probabilities are estimated from the data.

For a set of exclusive classes, the form of p(x) is given by

N

P0)=2pEnC)= pRCIC) (A2

i

as x belongs to a single class only. Equation (A3) ensures that the posterior probabilities sum
to unity, i.e., :
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EN:P(C, x)=1 (A4)

Equation (A3) is a special case of the more general case involving non-exclusive classes given
by

p()=p(xnU)=

p(xm( LC,.))-—' izj;‘p(xm C,.)

-ip(xﬁciﬁcj)
i<j

+ ip(xmc,.m(]jmck)
i<j<k

+D" p(xNC A CN..NCy)

N

=2 p(xIC,)P(C)
_ i p(xIC, nC,)P(C,nC,)

N
+ 2. 0(xC, nC,nC)P(C N C NG (A5)
i<j<k
+(=1D"" p(x|C, " C,n..nCy )P(C, A Cy...nCy)

where equation (AS) ensures that the probability of the union of the classes conditional upon x
is unity, 1.e every input is classified.

P(U|x)=

P((Uc)x)= gp(c,. x)

1

—iP(C,. nC,x)

i<j
4 i P(C,nC,nC,Ix) (A6)

i<j<k

+ ()" P(C, nC,A..AC[x)
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p(xic, n¢C,)P(c,nC,)
p(x)

where P(Q N lex) = etc.

Equation (A6) reduces to Equation (A4) when C, nC ; =0, ie. the classes are exclusive
giving rise to the usual definition of Bayes’ theorem (e.g. Walpole and Myers, 1989):

Given a partition of the event space, {BI yeens By }that is BB, =¢, Vi#j,andaset4

N
such that 4 < [ J B, , the conditional probability, P(B,|4) can be written as
k=1

_P(Bl4)__P(B)P(4B)
P(B,|A) P(A) ip(Bj)p(AlBj)

Note that the condition that B, "B, =¢, Vi# j is required.

A7. Conditional Independence

(Bernardo and Smith, 1994; Grimmet and Stirzaker, 1992)
Definition:

Two events A and B are called conditionally independent given C if

P(ANB|C) = P(AC)P(B|C).

In general, a family of events {C,}, i=1--N is conditionally independent if

k)t

AS8. The Posterior Probability Update Equation

Equation (2) can be proved formally as follows:
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J by definition of conditional probability

E =
e
- C
ST P
C~| &
c | C~
NP
L Ay

5
A,
—
sl
| =
P N
1l R
m G
c -
ft.A\ &
A =
=
™
= | = B
L Y »
[y . [~ Lal
C«| 5 < g
=
C
- | N T |
) Ry ) A
p TSR j EEREE.
< a

- J] by (4°) =Aand Un A= 4

e
X

xJ

) P[ccﬁl mKOC}f} J x

P[U N HO G

: P{c& U(O 4 ] x} - P[(O ct J
AN}

) P[Cai U[';J s, Jx - P([Lj 39 ]x

by P(AnB°)= P(4u B)- P(B)

’ J} by de Morgan’s law (e.g. Applebaum, 1996)

ol e
s Al

P(Uk)- p{[u G, ]'x]
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A Absh
R

where the fact that the union of the classes is exhaustive has been used.

After including the dependency upon x, equation (2) is now written in terms of probabilities
conditional upon the input

K

P(Uf= G, ]x) -, P(cyx)

K
- P(CBJ_ NG,

i<j

J

+ zK: P(CSJ N Csf_ M Ca, ‘x) (A7)

i<j<k
+ () P(G, N GG fx)

to include the conditional probabilities of equation (2). Equation (A7) can be proved easily by
using the distributivity of set relations and substituting C; M x for Cy in the general form

of P(Uf=1 Ca,) (e.g Durrett, 1994,Grimmet and Stirzaker, 1992) where K is the number of sets

involved in the union;

P(U; Ca,) = gp(ca,)
= i P(Cs, NG, )

+ i P(Caj NG, mCBA)

i<j<k

+ (_ 1)K+1 P(CB, ) C52 Pl .mcax )

in terms of probabilities of occurrence.
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A9. Theorem: Exclusive Class Renormalisation (ECR) Theorem

For a set of exclusive classes, the updated posterior probabilities, following the exclusion of
the set, will be given by a renormalisation of the remaining probabilities.

Proof:

From equation (2)

ey
P(u G, |xj - P[ij G IXJ

P(C‘6 NG mxmejz
i &

where je{SI}UAE, keA,,and le A, UA,.

For the set of exclusive classes, the following equations hold:

P[LJJ G, |xJ = ;P(Caj x)= P(G Ix)+ > P(G, Ix) (A8)

PU;J G, |xj = ; P(G,,Ix) (A9)

and

P(u o |xJ = Z P(C, 1x)+ ;P(Ca* x) (A10)
where re A,

Substituting (A8), (A9) and (A10) into (2) gives

Hang, ne)- ) am

Y. P(C Ix)

r

Equation (A11) ensures that
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PG, Ix) i

ZP[C& NG, ﬁxj =ZZP(C‘5’|x)= ZP(C& |X)ZP(C5,|X):1

i i i

where i€ A, E

A10. Theorem: Independent Class Renormalisation (ICR) Theorem

For a set of independent classes, the updated posterior probabilities, following the exclusion of
this set, will be given by a renormalisation of the remaining probabilities.

Proof.

From equation (2)

P[CS NGy mxma]:
L k
P

P{LJJ &, |xj— P(ij Gy, |x)
Qe )y

where jE{a,}UAE, keA ,and le A, UA,.

Now,

|

P(L}J 4 [x] = P[[ij G, JUCBJ

Further expansion gives

x] (A12)

(N

P[LJJ G, Ix P(cB )+ P(LEJ G,

S

and
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ey o

- P[L,J c, xJ + P(ij % xj - P[(U 5, J N {LkJ G, J

(A13)
|

where r € A,

For independent sets,

P((ij G, JU G, xJ = P, |x)P[%J G, x) (Al4)
and
P((u G, ] N (L‘{Jc& H = P[U G xJP(LkJ Gy, x) (A15)

substituting (A14) and (A15) into (A12) and (A13) respectively gives

P(ij G, ;xJ = P(C, [x)+ P[ij G, xJ (o4 \X)P(ij G, x] (A16)
and
P[L}J & |x} = P[L;J G, x] + P[L}_{J G, ] - P[LYJC& x]P[LkJ 4 x} (A17)

Finally, substituting (A16), and (A17) into (2) gives
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P(c, Jx)+ P(L;J G,
L;l -1 x) + P(L;J &

)

xJP(Lk) &

x} (e \;)P[Lﬁj &,
xJ - P[Lrj %

P[CB‘ lﬂcg; X me) =
‘ P(

!

giving

P[Caj h’;] CE me] =——E'iL(JC5‘—Hj (A18)
PUC [x

Where the fact that P(U Cs; xJ =0 has been used to indicate that these classes have been
k

excluded in this particular case.

Equation (A18) ensures that the union of adjusted posterior probabilities is equal to 1.

For the specific case were the remaining sets are exclusive

OC};ﬁxme]-:ZP[C‘s,IOC;ﬂxﬁej:z P(Cs“x) 1 Zp(cﬁiu):l

P[L;JC&_ ; ZP(C5,|X): ZP (€, 1x)"

where 71 € A, B

Where excluded classes are independent, the remaining probabilities are renormalised as the
excluded classes have no effect on the outcomes.

Theorem: The Dependent Class (DC) Theorem

For non-exclusive and dependent classes, neither the ECR Theorem nor the ICR Theorem
applies.

Proof;

From (2)
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P(L_}J G, xJ - P[L}J G,

y
]

where j € {Bj }u A, keA_ ,and Ie A, UA,. This expression may be expanded to give

- P(Csj’ﬂci;t mxmeJ=
k

P(L} ) x] - P(L}‘J 4

P[C& lﬂ Ci NxNe
k

ol
&
>
e B ——
w
%
0
D)
CEanp-
C
H

ek

There are intersecting terms in both the numerator and denominator which are non-zero. This
precludes using a simple renormalisation to give the revised probabilities. These are only zero
for exclusive and independent classes.

Now, for exclusive and independent classes

{arlya)

and
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which gives

P(CS‘ |x)

as stated by the ECR and ICR formulae

P(C& NG, n xj =
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Appendix B.

Radial-Basis Function Network (RBFN) with a Softmax layer
using Cross-Entropy and Second-Order Regularisation

The following analysis is similar to the one carried out for the Multilayer Perceptron in
Bishop, 1993.

1. The Error Functiion

For a training set of P patterns classified into N classes of fault conditions, the
combined error term consisting of cross-entropy and regularisation components is
given by

P

E=Y{E" +vEr} B1)
p=1

where the cross-entropy term per pattern is defined as

N tp
EE =Y 0 1;{})—"},) (B2)

n=1 n

and the regularisation term per pattern is given by

3
| A7
ER =— e B3
& 2n=]!z=l“(a(xip)_} ( )

The RBFN consists of a layer of L input nodes feeding into a layer of J basis function
nodes. The layer of J basis function nodes feeds forward into a layer of N output
nodes; the N outputs are then fed to a softmax function which provides the final
outputs.

The final outputs are given by
X} = f (ai) (B4)
where
e’ (BS)
5e
is the softmax function,

J
a = wz, (B6)
J=1 g

is the net output feeding into the ith output node, and

f(a,):
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z; =¢,(x) B7) .

is the output from the j th basis function. .

; " E
Gradient descent methods require the calculation of the gradient,%}—

¥

The gradient can be decomposed to give

=28l

E|0ES® OER
— 2 B —
=1 awu awl;r‘
OE." OER
Now, the gradients auf and 8wp defined per pattern are required.

i i
To reduce notational complexity, the superscript p is be dropped.
2. The Cross-Entropy Gradient Component

Applying the chain rule of differentiation gives

IET  IE 3q
ow, _ oa, ow,

u

(B8)

where

BEE X IEE 3y,
da, _Z{ dy, da, | ®9)

1

by applying the chain rule once again.

From Equation (B

OET _ 0 |5 jpf Lo
v, {th"ln[ynj}
f., : -2
=t.,| = -1 4 1.
1(%]( )t

1

giving
CE
e | (B10)
%, Vi
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(B11)

Where 6 ; 18 the Kronecker delta function and,

(B12)

Substitute equations (B10), (B11) and (B12) into equation (B8)

aECE Z(N aEC'E %J%

awij i'=1 a_}’,-. aal W,
Z( - ]( AN
B = |0 = ViV
r=1\ M J
N
=2 (-8 + 0¥,
i'=1

-—

N i e

i'=1]

N
because ZII.. =1

i'=1
giving,

aECE
a” - = (}’,— _tr')zj
ij

i.e. the Widrow-Hoff rule.

(B13)
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3. The Regularisation Gradient Component

oER aER .
= 14

S 2 ~ (B14)

{STEP}

s¥nla(a(m,
=~ oy ax o, | da,
:iazy” i .ay_”_a_zi_i.zi _a&
~ ox] | ox,(da oy, ’ox,\0da,
=i82y,, %i?ﬁr_ 9z, 9 (9, ¥ 92, 9 (y, )
~ ox; || da, ox, | ox, B‘x ox, | 0a, ax ox,(9a, ) ' ox? g,
2 2
Y. [y, )9z, dy, 0 (9, |9 dy, 9° [y
i n| 2n AN Z N | N T | 2
2 o [aa )ax, T ;axf %\ 94, 8x,+zj§,,:’axf o\ 9a

Following Bishop (1993), this expression may be rewritten in the form

& 9’z 0z,
3& =0, ™ L+26,— 116,z (B15)

i<y
3 ox,

where the following quantities have been defined (Bishop, 1993)

-3 5(%) ®16)
% =$aal? aix(%ﬁ’) (B17)
°=2%y‘aa [?J B18)
g};': = (8, -» (B19)

Now the component derivatives are required in order to evaluate (B15).
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The first derivative is

d (dy, __B_
ax}[aaj]"axi 8myn yiyn)

2 3
=% (8.7.)- > (n.)

giving
a ay n ay n ay n ay i

—| = |=0,==yT"-y, = 20
ox, (aa,.] " ox, S ox, In ox, .
which forms a component of (B17). Equation (B20) is differentiated again

ERCANENAE T
ox7\ da, ) ox, | "ox, 4 ox, In ox,
0%y, 9% Wy, 0%
:5r'n 2 _yr' 2 _yn 2 - A, A
ox; dx;  ox, ox, ox;  ox, ox,

giving
3% [y, °y, 9%, _dy, 9%
ox; (Ba,)_a” ox; — ox; _2ax, ox, ~ ox; (B2l

which is substituted into (B18).

d 0’
To evaluate (B20) and (B21) the derivatives f and Bx; are required.
1 1

Now,
P, _ $ D, 32
dx,  4={da, ox,

N A oz

=28, )yn(Zw” a—’J

n'=1 J'=1 1
giving
7R ) ST ) (B22)
axI i n'j'\¥n'n yn’ yn ax;
and
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%y, x=x dy, 0z, dy, 9z, d°z,
axf = Zzwn'j'{-_gx-f—yna_;_ +(8n'n —yn')g;l—ng?*- (Bn'n _yn')yn ax[; } (B23)

9%, X Oy, Oy, |9z, 9z,
ax2 - Zzwn'j'{{(an'n _.yn'}axl = axl ¥, axjj +(6n‘n —yn’)yn axlzJ1

. 0z, 9%z,
The evaluation of (B22) and (B23) require the derivatives a—; and ax; .
1 1
For a specific radial basis function used in this work:
12 2
x—x.z ;(x,—x,}.)
ks e R
L 2
oz. (x,—xb.) : Z(x‘ _xb)
e gy el (B24)

<

3 e
9’z a[azj] 0 (xf—xb.) Z(xr—xg)z -

o ox\dx) x| o 26°

giving

L 2
0’z (xI -x, )2 1 ;2—:' (xr —X )
ox} =T er o [T 257

The learning rule used to update the network weights was chosen to be a simple
gradient descent rule of the form

oE
Wyt ) = w, () =N~

where 1 is the learning rate. This rule was found to be sufficient to learn the desired
probability distributions.
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