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ABSTRACT

Nonlinear dynamical systems which have a lifting to Clifford algebras are studied. The
resulting Clifford systems are shown to be solvable easily by Lie series methods. The main
application is to generalise to higher dimensional systems recent results in isochronous systems.
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1. Introduction

Clifford algebras have been used for many years in the general theory of Dirac operators [6],[7]
which are, of course, partial differential equations. Recently, however, a number of applications
for Clifford algebras to ordinary differential equations have also been found [1]. The main
advantage in dealing with these so-called Clifford systems is that vectors in R™ are given a
product structure and so algebraic methods resembling those used for one-dimensional systems
can be used. In the present paper we shall consider the characterisation of those systems of
equations which have a Clifford extension. We will then show that the algebraic structure
defined on R™ enables us to obtain the Lie series in a simple way and hence explicit solutions
of a given Clifford system. The main application here will be to generalise some of the recent
results of [4, 5] on the existence of two-dimensional isochronous centres to the case of Clifford
systems. This will lead to systems with isochronous tori in H, for example. We shall use the
same technique as in [5] consisting of finding a Darboux linearisation to reduce the system to
a standard linear one of the form
X=iX,Xe

where 2 is a given (real) Clifford algebra and i is embedded as an imaginary unit in 2. We
shall show that such systems define invariant tori in 2"-dimensional space.

In section 2 we shall briefly outline the definition and results from elementary Clifford
algebra theory which we shall need and in section 3 we shall characterise those systems in R"
which have a lifting to a Clifford system. Section 4 will consider the Lie series solution of a
Clifford system and we shall show that any function f : [0,00) — 2 which is analytic is the
solution of some Clifford system. In section 5 we shall consider local centres for systems of
the form X = {P(X) where P is a polynomial and in section 6 the Darboux theory will be
generalised to Clifford systems of the form X = iP(X, X) in order to find isochronous tori.

2. Clifford Algebras

In this section we give a brief account of the main aspects of Clifford algebras which we shall
need. All proofs can be found in [6].
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Throughout this section (V, Q) denotes a quadratic space, i.e. a vector space V with a
quadratic form @ : V — F.
(2.1) Definition A pair (2l,v) is a Clifford algebra if 2 is generated (as an algebra) by the
set {v(v) :v € VIU{A: A € F} and we have the Clifford relation

(v(v))? = —Q(v). O

If {e;}9"V is an orthonormal basis of V' then 2 is spanned by the products e, = €q, - - €q,
where a = {ay, -, o4} € {1,2,---,dimV'} £ Ny. The dimension of 2 (as a vector space over
F) is < 24V If dim2A=2%"V 2l is called a universal Clifford algebra.

The standard construction of a universal Clifford algebra is via the quotient of the tensor
algebra T(V) = 2,V ®---®V (where the k** term has k factors and the first two terms are
F and V) by the two-sided ideal I generated by {v® v+ Q(v)1: v € V}. Then

A=T(V)/Ig

is the universal Clifford algebra of dimension 24™V.
Three operations are defined on a Clifford algebra by linearly extending their definitions on
the basis elements e,:

i) e, =(-1"le,, a€ Ny (principle automorphism)
(i) e = (—1)zlllel-1) ¢ (principle anti-automorphism)
(ill) eq = (&) = (e,)* = (—1)zlellel+1) ¢, (conjugation)

where |a| is the cardinality of a. The norm on a Clifford algebra 2l is defined by the map
A — A where
Aln) =%z . o EIL.

The set
Fr=TrvV,Q)={w; - wr:w; e FV, Aw,;) # 0}

is the Clifford group; it is a group contained in 2 which is closed under the three operations
above.

In this paper we shall be mainly interested in the 'Euclidean’ Clifford algebras 2, (or
simply 2,,) with quadratic form Q,(u) = u? + --- + u2. The first three are given by

=R , 2,=C, A=H .

If we define the matrices

10 0 0 1 0 i
ee(o ) m=(02) (50 ) = (50)

then the embeddings vy : R = Ag =R,y :R—2A; =C, vy : R? — 2, = H are given by

1/0(0) =
ny) = yE
I/Q((Z]L‘l,SCQ)) = ..."'L']El +$2E2.




Of course, in U;, F; can be identified with ¢. The higher dimensional algebras %, n > 2 can
be obtained from
(2.2) Theorem 2, can be realised as the subalgebra

{[Z ! gi]: Z,§€Q[n1}

of the matrix algebra M(2,2,-1) of 2 x 2 matrices with values in 2,_;. Morever, the three
operators above are given by

z ¢ | e =g z g | |2 #
—c - ¢ 2 ’ — = —c 7
{ . / q’ ] N [ % _*C* .
=g § &
(2.3) Remark The basis of 2, is generated by the matrices
I 0 0 f; ; 0 I
<7<
[01}*& o |t=i=m 4‘@

where {f1,---, fu} is the image of a basis of R* ' in 2,,_;. O
In the cases of 2%, =C , 2A;=H we can evaluate the three principle operators as follows:

= z — 1y (standard complex conjugate)
# o= 3
g = E
for z € (C, and if h = CL@EU = a1E1 -+ UQ.EQ -+ CL3E3 =ag+ a11 + &Qj -+ agk & ngé]H[ then

= ag—ali*azj+a3k
h* = ag+aii+axj — azk

h = G,O—G.l?:—agj—agk
We can regard 2, as being obtained from by ,_; by adding an imaginary unit e, (such that
B
e; = —1). Then
an == Q’[‘TL—I S5 Engln—l-

Thus, for example,

C=R@iR,H=Ca ;C.

Returning to the Clifford norm A(z) = Zz, we note that 7 does not commute with z, in general,
although it does for z € T, the Clifford group, since there,

Afe) = Alz],
This will be important later when we look for invariant algebraic curves of the form

Tz =0.
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3. Lifting Scalar Analytic Differential Equations to Clifford Algebras
We are interested in scalar analytic differential equations of the form
g=flz); z2(0)=zmeR (3.1)
where f is analytic, i.e. ,
) =2 5007

and the characterisation of nonlinear n—dimerzsional systems of the form

= F(z), z(0) =z € V(CR") (3.2)
which can be written

X=f(X) =Y 2 /90" (3.3)

i=0
for X € 2 where 2 is a universal Clifford algebra over V(C R™) with quadratic form Q.
In the notation of section 2, let

ea:em---eak,a:{ﬂ’u"':ak}

be a basis of 2. Then any X € 2 can be written

X=Y Xaea (3.4)
aCNy
where Ny = {1,2,---,dim(V)}. It will be convenient to enumerate the basis; let

s PR oy . B, oo DEIEVIY
be a bijection from the power set of Ny, to the first 24™(V) natural numbers (excluding 0). Then
we can write (3.4) in the form
Qdim(‘.’)
X = Z Xy=1(k)€p=1(k)
k=1

9dim(V)
= Y XE
k=1
where
X;C = X'u_fl(k) : Ek = 6#71(;‘:) 3

we assume that £, = 1.
- (3.5) Lemma The product By, Ey, - - - Ey,, for any integers 1 < £; < K £ 24m() ig of the form

ol £) Epeo )

for some real number a = a(¢,---,£;) and some integer p with 1 < p(£y,---,4;) < K.
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Proof By the fundamental property of basis vectors of V' we have
€;€k + Ere; = —ZQ(Bj)CSjk, 7

if 2 :
ejer, = —exe; (j £ k), e = —Q(e;). (3.6)
Since each £y, is a product of e;’s the result follows from (3.6). O

Remark It is clear that a = %1, since Q(e;) = £1.
(3.7) Lemma If X = ¥ | X, Fy, in terms of the basis {Ej}1<r<x of 2, then

K
A == Z Z X£1 752"')(51'0'(51?”' ’Ei)EP'
p=1 £y, 5
pLr, i) =p ’

Proof We have

Xt = (Z XkEk)
k=1

K K

= Y Y X4 Eo Xy, By, - Xy, By,
£H=1 &=1
K K
— Z ZXthg"'X&Ecl .- By,
Hi=l £:=1
K
= Z Z Xfldeg T "nga(gla e :Ei)Ep
=1 &ty
p(Er L) =p

by lemma 3.5. O
This leads immediately to the classification of lifted systems of equations:
(3.7) Theorem A system _
X=f(X),Xed
of differential equations is a lifting of an analytic scalar differential equations if and only if
Xp =0l +> ¢ > ally, )Xo X, - Xy,
=1 £y, 44
Py, )=p

for some constants ¢,, 1 < i < co, where 1 is the unit of 2.
Proof We simply equate coeflicients of the basis {E,} in the expression

_ , . <]
X = X\Ei+-+XgEx=)_ ;,f(”(O)XT
=0 &
o o K
= ij(i)(o)z Q(Eh"'aé’i) f£1 r‘fQIUXEiEp
i=0 ¥ p=1 e
p(lr,li)=p
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d set
and se 1

¢i:ﬁf(i)(0)' s ’
(3.8) Example We shall find all the two-dimensional systems which are defined on the Clifford

algebra 2, o = { [ . g ] Lz, Y € R’.}. A basis of this algebra is

y
10 0 1
m-(o 1) m=(10)

Any product By, --- Ey, is of the form EJ for some power j. But

Ej { Eg 1fj is odd

271 B, ifjiseven
Hence
(b, 0) = 1 if £; = 2 for an even number of j’s
B = g g ¢; = 2 for an odd number of j’s
and

C\!(El,"',fi) =1 5 for all fl,"',gi.

It follows from theorem 3.7 that all systems of the required type are of the form:

m "
' _ 11 .12
Ty = Z Gixy T3
i=0

i]+ig=1i
i9 even

oC
o= ) ¢uyaf
1=0
i1 tig=i

19 odd

The simplest nonlinear example of this system is

. = :z:f + 13

.'.1.32 = 2$1I2
which can be written .

b
where
X = ( il ) .
Iz I
Another example is the system .
X =sin(X).
Now,if P=| > 71 ) then prixp= [ Z2to2 0 . 50 1
1 1 0 T — Tg 4

sin(X) = 1 [ sin(zy + z2) +sin(z; — 23)  sin(z; + 25) — sin(z; — 2,)
2 \ sin(z; + z3) — sin(z; — z2) sin(z; + 22) + sin(z; — o)
6




so we have the equivalent system

. 1 1.
iy, = & sin(zy + z3) + 5 sin(z; — 22)
. 1 . Lo
I = 5 5111(171 = fﬂg) — 5 Sln(Il - '1'2)

(3.9) Example Consider now the Clifford algebra 2o,. This is realised by the embedding

0 n 0 1
(z1,22) — 71 0 —i T2 1 0"

10 i 0 Jo 1 Jo
R e R b T R |

(Of course, g2 is isomorphic to H.) Note that

Let

B=Fi—Ei—-I

and
E; By, = By

if {7,k,{} is a cyclic permutation of {2,3,4}. Hence we see that

1 if ny, n3, nyg even or ng, ng, ng odd
if either ns odd or nz, ny odd
if either n3 odd or ny, ny odd
if either n4 odd or ng, n3 odd

2

plly, -+ ) =4 3

4

where n; is the number of £, -, ¥; equal to j, 1 < j < 4. Moreover, we have
a(ly, b)) =sgn Py, -, &) - N(ly,---, )

where P({y,--+,¥£;) is the permutation which puts E, - - - By, in the form

By By By e oo Bplig oo Byl - - - By

n9 n3 4

without transposing any E; with itself and N({y,---,{;) is given by
' i
if ng, n3, ng even
or ngy,n3 even ng odd
(—1)lr2/2+na/2+ma/2] Or ng, ng even ng odd
Ny, ,4) = Or Mg, N4 even ny odd
or Mo even ng, ng odd

or T4 even mno, Ny odd
—(—=1)ln2/2+Ina/2+na/2] - otherwise

.




For example, the system of equations

& = (3:513 L g — xi) Ty — 23,22 — 23,75 — 24125
By = 2xids+ (r? —z3— :Lg — xﬁ) Ty
i3 = 2xixs+ (m% — 5~ T3 — rci) T3
Ty = 2mf:c4 -+ (:cf —z5 - :cg = :cﬁ) T4
can be written in the form
=3

on g2, where

=g A 'iI4 I — 2:55'2

X=($1+'iiu‘“2 333+'£-.’L'4).

4. The General Solution of Analytic Clifford Systems

In this section we shall obtain general series solution for analytic Clifford systems. To do this
first consider a simple scalar equation

z=f(z),z(0)=z0€R (4.1)

defined on R, where f is analytic. The solution is given by the Lie series

Bt = ift(i—{)im (4.2)

=

for sufficiently small zg, where Ly is the Lie derivative with respect to f. (See [2].) To generalise
this to Clifford systems we note that we can derive (4.2) in the following way: define

¢ = =
- 0
G2 = ¢ = %f = (Lf)-'f

¢z = 9372: (Lf)2$

Then, with ® = (¢, @2, - -) we have
d(t) = AdD(t) , (0) = @y (4.3)

where A is the left-shift operator




and

s
~¥.
=g

(I)O = (:EG'- (Lf)Ilz:IU ? (Lf)QI

The solution of (4.2) is
d(t) = e*'®(0)

and ¢; = x is given by the first element of e*®(0), which is easily seen to be the same as (4.2).
Note, however, that the group property

A (eAt:z(I)(O)) = eAli+2)§(0) (4.4)

is only valid locally, near t;,%5 = 0. Hence, one may call the map

'gbt — eAI !

a local representation of the one-dimensional transformation group v, where
Ye(zo) = z(t; 70)

on a space of operators defined on the linear subspace of the linear space of all sequences
(81, 82, --) such that the power series ) %Si converges for some t > 0.

The problem that the group property (4.4) does not hold for all time is due to the fact that
the solution of (4.1) may have a singularity when ¢ is extended into the complex plane. For

example, suppose that
1

) =

) 1+¢t2
is the solution of (4.1). This has poles at ¢ = +i and so the Lie series (4.2) will not extend
beyond ¢ = 1, on the real time axis. We next prove that any analytic function h of ¢ such

as (4.5) (with A'(0) # 0) is the solution of an analytic differential equation. In fact if h(t) is
analytic for 0 < ¢ < 7, we have

(45)

o5} ] t'i
A(t) =3 A9(0)-
()= A0
and so if we choose the Lie derivatives of f so that

(Ly)'z

RO
sniey = 19O (4.6)

we may solve for the ordinary derivatives of f recursively, since

= Flan) oL (o) 0

T=1g dxt

(Lg)e

where a; depends on f and its derivatives up to order i — 1. Clearly, o; is given recursively by

and so

EX




provided f(zq) = 2(0) # 0. (See also [3].) We then define [ in terms of its Taylor series:

o £(i) (g |
f(l):Zf ( O)("L‘_IO)'L

!
=0 v

where g = h(0). We have therefore proved
(4.8) Lemma Given any scalar analytic function f, the Clifford system

X=f(X), X(0)=XoecA (4.9)

has a solution, given for sufficiently small ¢, by the Lie series

'a = T(L )i
X(t)=t T{X
=0 ’ X=Xy

Morever, this series is analytic in Xy. Conversely, given any locally analytic function £ : AxR —
2 (i.e. jointly analytic, so that

0 t'i

£(Xo,t) = ) hi(Xo)-

i=0 !
where each h; is analytic at Xp) then there exists a Clifford differential system of the form
(4.9) for which € represents the solution through X,. Moreover, we can find f by an inductive »
procedure. O :
(4.10) Example Cousider the simple scalar system

z=2%, 2(0) = 2o

which has the solution

Zo o i i+1
t) = = t
z(t) 1+ tag g Ig

and the series is valid for ¢ < 1/|zg|. Hence the solution of the Clifford system
X=X X(0)=X,e
is given by

Xt =3 £ X"
1=0

for t < 1/ || Xol|, where || Xo|| is the norm of Xy (i.e. the standard matrix norm in a given matrix
representation of 2(). As a specific example, the system

de1$27$11‘22 I |
d_t(mg ml)(mg T3 , X(0) = o |

© on 2, o has the solution

fort < 1/2.




5. Local Solutions and Centres

Consider a differential equation
X=Ff(X), X(0)=X,e (5.1)

defined on the universal Clifford algebra 2, where f : R — R is an analytic function. We shall
be particularly interested in the case where f is a polynomial:

f(y) =aqtay+--+any".

We shall first discuss the equilibrium points of (5.1). Let

m

Fw) =TTw-X)

=1
be the factorisation of f so that

m

fX)=TI[(xX-XxI)=0

1=1

implies that at least one X — X;I is noninvertible. Hence, using any matrix representation of
20 we have
(5.2) Lemma The equilibrium points of (5.1) are given by the set

E={X € A:det(X — \I) =0 for some 7, and then [[(X — \I)=0}. O
i=1

(5.3) Remark We shall see in the example below that the condition det(X — \,J) = 0 for some
¢ s necessary but not sufficient for the existence of equilibrium points. Hence, when we have
solved the equations

det(X —NI)=0,1<i<m

we must check which solutions satisfy

(5.4) Example Consider the system

Ty \ 10 T T Ty Ty :
()= 0)e(m ) (2 2) 69

The eigenvalues are given by the scalar equation 2+3A+ X2 =0, i.e. A = —2 or —1. Hence we
must have

dot 1 To 1 0 _ Iy Io 1 0 g
e((mz J31)4—2(01 0 or det i — 01 = f)

11




giving
(21422 —z2=00r (z;+1)?—23=0
so that
T =—2dxz0r s, =—-1% 29 (5.6)

Now the right hand side of (5.5) is

EREEEREH)

and substituting (5.6) gives

Ot Foy 2t 2q2 gy 25 Ey
9 F 3y 2iFay | O\ 2uitm, 2uita,

so that the right hand side of (5.5) is zero when 25 = 0 or £1/2. Hence the equilibrium points

e 31,3 1
—2.0),(=1,0), (==, %), (==, —=).
(2,0, (-1,0), (=5, 5): (3. —3)
Note that the solutions (—2,—3), (=3, 3) of (5.3) are not equilibrium points as pointed out in
the above remark. Of course, the right hand side of (5.2) has another factorisation:

gy #e | _ [ —8/2 1/2 T oz \ _ [ —3/2 —1/2
To T 1/2 -3/2 Ty T3 -1/2 -3/2 '
Next we consider the local solutions of Clifford systems of the form

X = ag+a1X-|—---+a.mX’”
= [[(X-AI), Xe (5.7)

=1
where )\; are the roots of the corresponding scalar polynomial. First consider the scalar equation
T=ay+ar+-+azz", z€R. (5.8)

The following result gives a simple representation for the solution of this equation in a neigh-
bourhood of each equilibrium point A;.
(5.9) Lemma Near );, we can write the solution of (5.8) in the form

~ et/ﬁi
&= /B
(Hj;sz'(/\z‘ - }‘j)ﬁj)
where -
2
Proof The proof is straightforward computation:
dx




i.e.

m Tl — Ay)

d o IS Y
i ; r — Ai
ie. .
> Bidlog(z — A;) = dt
i=1
and so -
[[(z—X)% =C'e.
=1
For z near A\; we have
(CE — )\i)ﬁi H(x\z — /\j)ﬁj = C"Et
>

and the result follows. O .
(5.10) Corollary The solution of the Clifford system (5.7) near the equilibrium point X; (as-
sociated with ;) is given by

m
X=X +C H()ﬁ _ X’j)*.@j/,@i et/Bi
2
for some C' €  where the powers are taken in the usual way as logs of matrices. O
(5.11) Remark From this result we expect that if 3; is pure imaginary, then the equation has
an isochronous centre near X;. This can be seen in the following example:
(5.12) Example (See also [1].) Consider the equation

X =iX+ X3 (5.13)
on Ay, =C, i.e.

d
E(iﬁ] = Z$2) = ’L(CEl + 2.332) + (CE1 + ’l:ﬂ.’.'g)g

where X = (z; + iz5). This equation is equivalent to the two equations

il = —Z-+ CC? — 3&5‘1&?%
.’i‘g = Zji+ 3&5‘?.’,62 = $g

The equilibrium points are given by

X(X +IeF)(X - Ie%) =0

iL.e.
z1 + 122 = 0, e or —e'F
. : 1 2 1 1
so that we get the points (0,0), (~—, ) and (s, -ﬁ). Here,
181 = _ez%ez% = —e'i%" ==
;8% ;3@ ;3T
B = e'1(e"t fe)= -2
g 37
Py = uei'f(—eiaT - estfr) = —2i

and we get three isochronous centres with periods 2, 47, 47:
13




System with three isochronous centres

6. Darboux Theory and Isochronous Tori

In this final section we shall consider the existence of isochronous orbits in systems of the form
X=pX,X), Xe

where p is a polynomial, and 2 is some Clifford algebra. In order to do this we shall generalise
some results from [4, 5] on the Darboux theory of differential equations. We shall first consider
the linear equation

X =iX,X0)=X,€, (6.1)
on the Euclidean Clifford algebra 2l,. Note that, here, ¢ refers to an imaginary unit in 2, (the
image of the usual complex 7 in 2,) and so does not commute with X in general. The solution
is

X (t) = EuXU
and so it clearly represents an isochronous centre with period 27. We seek to determine all
systems in R™ which can be lifted to an equation of this form. If E,-- -, Fon is a basis of 2,,
as in section 3, then we can write
211
k=1

and we can identify £y with 1 and E, with ¢, E5 with j (the quaternion) etc. Note that, from
lemma 3.1, for any two basis elements E;, E; we have E,E; = +Fyi,;) where Ek(z-,j) = iy (=
—Ey;i)) is another basis element. This gives

14




(6.2) Lemma The equation (6.1) is equivalent to the system

ﬂ-i'j = :tCL'T‘
where 7 = k(2,1), 1 <i,7 < 2™
Proof We can write (6.1) in the form
1By +290F+ -+ TonFBon = i(ﬁlEl + z9Fy + - - + .’EQnEgn)
(IlEgEl -+ $2E22 = ¥ s S‘JQnEzEQn)
z1Ei(2,1) — T2 = T3Bk2,3) & - &£ Ton Ego om)
= 218y — 29+ 23Fp03) £ - £ Ton By om)

and equating coeflicients gives (6.3), since if j = k(2,4) then EyF; = E; and so ExE; = —E;
and hence ¢ = (2, 7).0
(6.4) Remark The equation (6.1) has solutions on a 2”-dimensional torus. O
(6.5) Example On 2, = H we have
X =iX
is equivalent to
Ty + Zot + £3] + Tuk = i(z1 + 2ot + 23] + 24k)

which gives the equations

.’.i?l = —X9
Ty = I

.i?g = —dy
.’i‘4 = I3 . 0O

(6.6) Remark We can use multipliers other than i in 2, for the equation (6.1). For example,
if {e1,---,e,} is the standard basis of R, then if

F = ;eien_iﬂ (1<i< [;n])
we have
F!=—7, FF;= FF (i # j)
and so
exp(tF;) = cos % + 2F; sin %
Hence the system
X =FX (6.7)

has solution




which has period 47. The equation (6.7) is

. 1
T By +3oFs+ - -+ ZonBon = ieiera—i.-%l(-rlEl +29Fs + -+ - + mon Egn).
Now, e;e,_ii1Ey is = F; for some £ and so
Er = Feen—iv1 Ee

so that we get the equations

i‘g = i*ﬂﬁ'k
e :FEIE .
We now consider a system of the form
K
X=iX+ > a;X'X7, X(0)=Xo € (6.8)
i+j=2

where we assume X (t) and X (t) commute. (as seen in section 2, this will certainly be the case
if X(t) € I, the Clifford group of 2, although this is not necessary.)The definition 2.1 in [5]
can be generalised as follows:

(6.9) Definition (1) An invariant algebraic hypersurface for the equation (6.8) is a hy-
persurface in C*" given by an equation F(X, X) = 0, with F(X, X) € C[X, X] such that there
exists K (X, X) € C[X, X] satisfying

DF & FyX + Fg X= F(X, X)K (X, X).

(2) A Darboux factor is a polynomial F(X, X) such that F(X,X) = 0 is an invariant
algebraic hypersurface.

(3) A generalised Darboux factor is a Darboux factor or an analytic Darboux factor of
the form exp(G (X, X)) where G(X, X) € C[X, X].

In either case, K (X, X) is called the cofactor of F'.

(4) If DF(X, X) = 0 for a nonconstant function F, it is called a first integral of the system
(6.8).

(5) The system (6.8) is Darboux linearisable if there exists a Darboux function Z of
the form i

o = H .Ffj , O € C
=0

where F;(X,X) € C[X, X] is a (generalised) Darboux factor for all j, regular at the origin,
which transforms (6.8) into the system (6.1).

For Clifford systems we only get a sufficient condition for Darboux linearisability:
(6.10) Theorem The system (6.8) is Darboux linearisable if there exist invariant algebraic
hypersurfaces Fy(X,X) = X + o(X,X) = 0 and F;(X,X) =0, 1 < j < k such that F; and

DF} belong to the centre of 2 for 1 < j < k and for which

k
Ko+ > ajK;=i
Jj=1
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where K is the cofactor of F};, 0 < j < k. A linearising change of coordinates is given by

k
Z = Fg H Fﬁj.
j=1
. . 0
(Here, ¢ refers to the imaginary unit of 2, so that for H==2,, we have i = é L where

the 7 inside the matrix is the ordinary complex value. Note that powers of commuting elements
can be defined in the usual way by logs.)
Proof The proof is similar to that in [5], given the commutativity of the F;. O

To illustrate the theory we note that in [5] the Darboux linearisation method is used to find
cubic isochronous centres, i.e. systems of the form

Iz = —M’G—F (6.11)
Ay
oF

s = o

y 4 oz
where i

Flz,y) =5 (2% + %) (1 + =+ AY) (1 + = + By)*

and

M(z,y) = (1+z+ Ay)**(1 + 2 + By)% |

In order to generalise this to Clifford systems defined on 2y, = H, first note that (6.11) can be
written in the form

oF
: =2M
z 'L/a

3 i

(6.12)

We could also look for cubic isochronous tori, but the calculations are considerable, so we
illustrate the theory by finding quadratic systems in 2y, = H. Note, however, that higher-
order isochronous tori can be found in a similar manner. Thus, in comparison with (6.11) we
look for systems of the form

X =iX(I+AX + XA) + 20X X A), (6.13)

where we have used
1. - _
F(X) = §XX(I+ AX + XA)*

F 1 _ - _
g_)‘( = XU+ AX + XA +aXXA(I + AX + X A
and

M= (I+AX + XA)!"%,

Note that (I + AX 4+ X A) commutes with anything in Rop (i-e. it is in the centre). We have
(6.14) Theorem The system (6.13) is a quadratic isochronous torus if
iAX +iXA+2ia XA+ a(AiX — Xid) =0
17




with linearising change of coordinates
Z=X(I+AX + XA »

Proof We must find the cofactors of X and (I + AX + X A). For X, we have

1 _ _
X =2 (EX(I 4-A¥ + )+ aXXA)
so the cofactor of X is . o
i(I+AX + XA)+ 2iaX A.
For (I + AX + X A), we have

%(I+AX+}E’A) — AX+X A

_ . o 1 N _
— A% (%X(I + A + A+ a,XXA) —9 (5(1 +AX + XA)X + aAXX) v
= (AiX — XiA)(I+ AX + X A)

since XX A= AXX = AX X. The result follows since

Ko+aK) =i+ iAX +iXA+ 2iaXA+ a(4iX — XiA). O -

(6.15) Example As a simple example take @ = a = —1, A = I. Then, since

X = ZC1+T:£L‘2 $3+i$4

o —T3+ ’121134 Iy — @'232

we get the system

.’i?] = —Z9 — 2551332

$y = 3 — 225 — 22— D

$-3 = —Iy— 23313?4

jE4 = I3+ 255'1.’133

which has typical trajectories shown in the figures below:
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Isochronous torus in x1-x2 plane

-4.,5e-2 -3.6e-2 -2.7e-2 -1.8e-2 -9.e-3 0 9.e-3 1.8e-2 2.7e-2 3.6e-2 4.5e-2

Isochronous torus in x3-x4 plane
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-4.5e-2 -3.6e-2 -2.7e-2 -1.8e-2 -9.e-3 0 9.e-3 1.8e-2 2.7e-2 3J.6e-2 4.5e-2
1.e-1 _

ge2 [— ——
6e2 |
D —

282 =
_4_'3_2 ST S| S :
S
B.e-2 [
-1.e-1

Isochronous torus in x2-x3 plane

32 38 44 5, 56 62 68 74 81 87 9.3
-4 '
LU v-vv* *"v"v*vvf*v* TSI 7
ff****#t \ ¢
3.1e1 |—
1.1e-1 .

5.5e1 [—
9.8e-1 |
1.4
AF [
-2.2

J ﬁﬂ"‘

‘é&ﬁ“‘ \404& O 6‘,6‘0‘

Typical orbit for larger initial values
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7. Conclusions

In this paper we have studied the lifting of certain dynamical systems to Clifford algebras, where
their properties may be more easily studied. In particular, we have generalised the Lie series
to analytic Clifford systems and shown how to obtain local approximations to the solutions.
Lifting a system to a Clifford algebra enables one to use the product structure on the algebra
which is not present when R™ is simply regarded as a vector space. This has the effect of making
the system appear, in a sense, like a one-dimensional system. The only thing which is no longer
present, compared with the one-dimensional case, is commutativity. The last part of the paper
is concerned with generalising a number of results in the theory of ischronous centres to Clifford
systems and conditions for quadratic isochronous tori have been found. This depends heavily

on finding commutative Darboux factors and so classifying all isochronous tori may prove to
be difficult. :
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