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Abstract 

The techno-economic performance of a small wind turbine is very sensitive to the available wind 

resource. However, due to financial and practical constraints installers rely on low resolution wind 

speed databases to assess a potential site. This study investigates whether the two site assessment 

tools currently used in the UK, NOABL or the Energy Saving Trust wind speed estimator, are 

accurate enough to estimate the techno-economic performance of a small wind turbine. Both the tools 

tend to overestimate the wind speed, with a mean error of 23% and 18% for the NOABL and Energy 

Saving Trust tool respectively. A techno-economic assessment of 33 small wind turbines at each site 

has shown that these errors can have a significant impact on the estimated load factor of an 

installation. Consequently, site/turbine combinations which are not economically viable can be 

predicted to be viable. Furthermore, both models tend to underestimate the wind resource at relatively 

high wind speed sites, this can lead to missed opportunities as economically viable turbine/site 

combinations are predicted to be non-viable. These results show that a better understanding of the 

local wind resource is a required to make small wind turbines a viable technology in the UK. 

Keywords: micro-generation; wind; resource 

1.0 Introduction 

In recent years there has been considerable interest in the potential of microgeneration to contribute to 

a future of distributed electricity generation (DECC, 2011). The UK government has promoted the 

growth of such technologies through a number of incentives, including the Low Carbon Buildings 

Programme, the Code for Sustainable Homes and the Feed-in tariffs Order (Allen et al., 2008; Walker, 

2011). As a result there has been an increase in the number of small-wind turbines (typically defined 

as < 50 kW) installed across the UK (Bergman and Jardine, 2009; RenewableUK, 2012). The primary 

benefit of small scale wind energy systems is the potential to generate low carbon electricity close to 

the point of use, therefore significantly reducing the energy losses in generation, transmission and 

distribution, as well as the carbon intensity of the generated electricity. In addition, from the 

perspective of the owner, a small wind turbine can produce an economic return either as a result of 

displacing electricity imported from the grid and/or payment for the generated electricity.  
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To ensure turbines are located at sites at which they are economically viable, an understanding of the 

energy resource is required. This is not typically a problem for large-scale wind turbine installations 

as extensive wind monitoring can be conducted to identify potential sites. However, due to financial 

constraints this is rarely possible for small scale installations; hence there is a reliance on standard 

assessment tools. If these tools are too optimistic, people who install small-scale turbines run the risk 

of disappointment and financial loss. This could lead to reluctance to support future low-carbon 

technologies on the basis that they too might be oversold. If however, the tools are too pessimistic, 

there could be a significant reduction in the investment in small wind turbines. 

 

Globally, there has been significant research assessing the wind resource in rural locations (Islam et 

al., 2011; Fyrippis et al., 2010; Jowder, 2009) and in recent years, due to increased interest in 

microgeneration, a number of studies have developed techniques for urban areas (Heath et al., 2007; 

Drew et al., 2013; Millward-Hopkins et al., 2013; Weekes and Tomlin, 2013). Despite this, local 

authorities currently rely on the predictions of low resolution wind speed databases. In the UK, the 

DECC wind speed database has been widely used by installers and planners for a number of years to 

evaluate the wind resource at potential sites for a micro-wind turbine (James et al., 2010; Walker, 

2011). It provides estimates of the mean wind speed at a 1 km resolution at 10, 25 and 45 m above 

ground level. The database was produced by a mass consistent flow model, NOABL (Numerical 

Objective Analysis of the Boundary Layer), which interpolated wind speed data from 56 weather 

stations across the UK (Burch and Ravenscroft, 1992).  

 

UK field trials carried out by Energy Saving Trust and Encraft demonstrated that the DECC database 

(hereafter NOABL) tends to overestimate the wind speed, particularly at locations at close proximity 

to buildings (Encraft, 2009; Energy Saving Trust, 2009). Consequently, this has led to a number of 

problems where consumers have been given an unrealistic expectation of the energy production and 

therefore the potential economic benefits of their installation. The Energy Saving Trust field trial 

showed that during a one year observation period, all 38 building mounted turbines monitored 

achieved a load factor of less than 8%. In comparison, the 17 free-standing turbines monitored 

performed considerably better but still only achieved an average load factor of 19%. In the Warwick 

wind trials showed a mean capacity factor of only 4.2% across 26 rooftop turbines. 

 

In 2009, recognising the need to develop a tool to help local authorities and individual consumers 

improve the placement of small wind turbines, the Carbon Trust in collaboration with the UK 

Meteorological Office launched an online wind speed estimator. This provided an estimate of the 

mean wind speed at a site based on the postcode and a brief description of its characteristics. The 

model was based on the National Climate Information Centre (NCIC) dataset, which comprises of 

data from 220 sites over 30 years, (in comparison to a 56 site, 10 year dataset for the NOABL). The 
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NCIC was used to generate a large-scale wind climatology at a height away from the surface, which 

was then scaled down through the boundary layer taking into account the impact of the underlying 

surface using a blending height method (Best et al., 2008). Energy Saving Trust (2009) and Drew 

(2011) showed that the Carbon Trust tool provided more accurate predictions of the mean wind speed 

than the NOABL. However, this tool is no longer available and consumers are now recommended to 

use the Energy Saving Trust Wind Speed Prediction Tool (EST tool). The EST tool is freely available 

online and provides an estimate of the annual mean wind speed at a height of 10 m based on the site’s 

postcode and land use type (either urban, suburban or rural). However, little information of the 

calculation process is provided. 

 

The aim of this paper is to investigate whether the tools currently available to estimate a site’s wind 

resource are accurate enough to ensure small wind turbines are only installed at locations at which 

they are economically beneficial. The first section highlights the importance of an accurate 

assessment of a site’s wind resource when estimating the techno-economic performance of a turbine. 

The second section considers the accuracy of the current site assessment tools by comparing the 

predictions with wind data collected at 91 Met Office weather stations across the UK. The final 

section considers the implications of any errors in a site’s wind resource for the predicted energy 

production and economic performance of 33 small wind turbines for a range of economic scenarios. 

2.0 Assessing the techno-economics of small wind turbines 

One metric frequently used to assess the techno-economic performance of energy production 

technologies is the levelised production cost, LPC (Heptonstall et al., 2012; Allan et al., 2011; 

Cockerill et al., 2001). This is defined as the cost of the electricity at the point of connection to a load, 

including the initial capital, discount rate and operational costs, and can be calculated from                                                                               ܥܲܮ ൌ ܧܥܽ  ܧܯܱܶ                                                                   ሺͳሻ 

Where C is the total investment cost associated with the installation of the turbine, E is the annual 

energy production, TOM is the total annualised operation and maintenance (O&M) cost and the 

annuity factor, a, is calculated from                                                                             ܽ ൌ ͳ െ ൫ͳȀሺͳ  ݎሻ൯ݎ                                                              ሺʹሻ 

where r is the discount rate and n is the economic lifetime of the turbine (in years). For all calculations 

described in this paper an economic lifetime of 20 years was assumed with a discount rate of 5% 

(IEA, 2005).  

 

The capital cost of a wind energy project can be broadly broken down into equipment and installation 

costs. A number of the equipment costs, such as the turbine and the inverter, generally scale with the 
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size of the installation (Simic et al., 2013). However, for other components such as the wiring, meters 

and isolation switches, the price is generally fixed (Bergman and Jardine, 2009). Consequently, there 

is currently a large range in the specific investment cost, I, of small wind turbine installations, 

typically between £2,000 – 6,000 per kW (Bortolini et al., 2014). In comparison, the on-going costs of 

an installation are relatively low, as maintenance checks are necessary every few year and are likely to 

cost approximately £100 (Energy Saving Trust, 2013). 

The annual energy production may be represented as                                                                           ܧ ൌ ͺͲ ݂ௗ ܲ௫                                                                     ሺ͵ሻ 

where fload is the load factor of the turbine and Pmax is its maximum power output. A turbine is 

considered to be financially beneficial to the owner if the load factor (energy production) is 

sufficiently high that                                                                                   ܥܲܮ ൏ ݁                                                                                 ሺͶሻ 

where e is the sale price of the generated electricity. In the UK, electricity produced by a small wind 

turbine is eligible for the Feed-in Tariffs, which as of March 2013 are set at between £0.23-0.326 per 

kWh for a period of 20 years, depending on the size of the installation (Ofgem, 2013). 

 

Figure 1 shows the minimum load factor, fload, required for a turbine to be economically viable for a 

range of values of I and e. At present in the UK, the best case economic scenario, (i.e. the cheapest 

available turbine and the highest feed in tariff rate, I=£2,000 per kW and e=£0.326 per kWh) requires 

a turbine to be installed at a location at which it will attain a load factor of 10%. However, none of the 

38 building mounted turbines monitored in the Energy Saving Trust field trials achieved this level of 

performance. The figure also shows that based on the current average performance of small free 

standing wind turbines (i.e. a load factor of 19%), if the cost of a turbine reduced to £1,000 per kW, it 

could be economically viable with an electricity sale price of only £0.11 per kWh. In contrast, based 

on current performance (i.e. a load factor of 5%), building mounted turbines are not economically 

viable even when I=£1,000 per kW and e=£0.4 per kWh. 
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Figure 1 The minimum load factor required for a turbine to be economically viable for a range of turbine capital 
costs, I and sale prices of the generated electricity, e. 

2.1 Estimating the load factor of a small wind turbine 

Figure 1 shows that the techno-economic performance of a small wind turbine is very sensitive to its 

load factor. Estimating the load factor of a turbine at a given site, requires an understanding of both 

the available wind resource and the turbine’s power output over a range of wind speeds. In general, 

when estimating the potential yield of a small wind turbine, the site’s wind resource is represented by 

an estimate of the annual mean wind speed, U. A Rayleigh distribution is then assumed to represent 

the temporal variability of the hourly mean wind speed (Safari and Gasore, 2010; Seguro and 

Lambert, 2000). The Rayleigh distribution is a special case of the Weibull distribution, which has a 

probability density function given by                                                                ݂ሺݒሻ ൌ ൬݇ߣ൰ ቀߣݒቁିଵ ݔ݁ ቈെ ቀߣݒቁ                                                   ሺͷሻ   
where ߣ is the scale parameter, v is the hourly mean wind speed and k is the shape parameter (equal to 

2 for the Rayleigh distribution).  The annual energy production of a turbine can then be estimated 

from                                                                    ܧ ൌ οݐ න ݂ሺݒሻሺݒሻ݀ݒ௩̴௨௧̴௨௧
௩̴௨௧̴                                                         ሺሻ 

where οݐ is the number of hours in a year and ሺݒሻ is the power output of the turbine at wind speed ݒ. 

The power output of a turbine over a range of wind speeds is given by a power curve produced by the 

manufacturer. Figure 2 shows the normalised power curves of 33 small wind turbines using data 

obtained from the urban wind turbine catalogue (Wineur Consortium, 2006).  
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Figure 2The normalised power curves of 33 small wind turbine designs divided by the turbine’s rated power (a) <1 
kW (b) <5 kW (c) >5 kW (data obtained from Wineur Consortium (2006).)  

Due to the non-linearity of a turbine’s power curve, a small error in the prediction of a site’s annual 

mean wind speed, U, can lead to a large error in the estimated annual energy production, E, and 

therefore load factor of a turbine. For example, for a site with an annual mean wind speed of 5 ms-1, 

the median load factor across the 33 turbines is calculated to be 15%, however an uncertainty in the 

wind speed prediction of േ0.5ms-1 results in a range of the median load factor of 11-19%. This shows 

that in order to determine whether a turbine is economically viable at a site, an accurate prediction of 

the annual mean wind speed is required.  

 

3. Methodology 

There are two main tools used in the UK to estimate a site’s mean wind speed; NOABL and Energy 

Saving Trust Wind Speed Prediction Tool. This study investigates the impact of their accuracy on the 

estimated economic viability of a small wind turbine. The wind speed predictions of each of the tools 

have been compared with the long term mean wind speed, U, measured at a number of sites across the 

UK. Hourly wind speed data recorded at a number of UK Meteorological Office weather stations 

were obtained from the British Atmospheric Data Centre (UK Meteorological Office, 2012). The data 

is collected at standard exposure, which is defined as level, open terrain at a height of 10 m above the 

ground, where open terrain is defined as an area where the distance between the anemometer and any 

obstruction is at least ten times the height of the obstruction. Sites were only selected if data were 

available between 2000 and 2011 for a minimum of 90% of the time. Figure 3 shows that the 91 sites 

which met this criterion, are evenly distributed across the UK, with a mixture of coastal and inland 

locations. 
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Figure 3 The location of the 91 Met Office weather stations from which hourly wind speed data has been obtained 

At each of the 91 sites, the annual energy production of the 33 turbines (introduced in section 2) has 

been estimated using the measured wind speed data in conjunction with the manufacturer’s power 

curve. The turbines have been selected to represent the full range of systems currently available, both 

in terms of the size and the design. Figure 4 shows that 24 horizontal axis wind turbines (HAWTs) 

and 9 vertical axis wind turbines (VAWTs), with a rated power ranging from 0.056 to 30 kW have 

been considered. 

 
Figure 4 Details of the swept area, rated power and design of the 33 turbines considered in this study. 
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The economic viability of each turbine/site combination has then been calculated, following the 

method outlined in section 2. The analysis has then been repeated using the modelled wind data to 

investigate whether the same economic viability is predicted. Due to the current variability and future 

uncertainty in the specific investment cost of a small wind turbine and the sale price of the generated 

electricity, this study considers the techno-economic performance of the 33 small wind turbines at 

each site for a range of economic scenarios, detailed in Table 1.  

 

Table 1 Details of the 12 economic scenarios considered  

Scenario Specific 

investment cost 

of the turbine (£ 

per kW) 

Sale price of 

generated 

electricity (£ per 

kWh) 

Minimum load 

factor (%) 

1 a 1,000 0.1 22 

1 b 1,000 0.2 12 

1 c 1,000 0.3 9 

1 d 1,000 0.4 6 

2 a 2,500 0.1 41 

2 b 2,500 0.2 22 

2 c 2,500 0.3 16 

2 d 2,500 0.4 9 

3 a 5,000 0.1 72 

3 b 5,000 0.2 39 

3 c 5,000 0.3 27 

3 d 5,000 0.4 15 

 

4. Results 

For the 12 economic scenarios, the minimum load factor required for a turbine to be economically 

viable has been estimated (shown in table 1). This has been calculated by finding the magnitude of the 

annual energy production (in equation 1) required to fulfil the criteria given in equation 4. The annual 

mean wind speed, Umin, required for each turbine to achieve this value has then been determined by 

assuming a Rayleigh distribution (equations 5 and 6). Figure 5 shows that for each scenario there is a 

wide range in Umin across the different turbine designs. For example, for scenario 1a, one turbine can 

achieve the required load factor of 22% at a site with a mean wind speed of only 4.4 ms-1, while 

another turbine requires a mean wind speed of 7.6 ms-1. It is also interesting to note that some of the 

turbines can be economically viable at relatively low mean wind speed sites. For 4 of the scenarios, 
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there is a median value of Umin of below 5 ms-1, and at least one turbine viable at sites with a mean 

wind speed below 4 ms-1. In contrast, for scenarios 2a and 3b, a mean wind speed in excess of 8.0 ms-1 

is generally required. For scenario 3a only 12 of the turbines are able to achieve the required load 

factor, all of which need a site to have a mean wind speed in excess of 11 ms-1. 

 
Figure 5 The minimum annual mean wind speed, Umin, required for each of the 33 turbines to be economically viable 
for each of the 12 economic scenarios, as given in Table 1. The red point indicates the median value across all turbine 
designs. 

4.1 Performance of small wind turbines at 91 sites 

At the 91 sites the load factor of each turbine has been calculated by combining its power curve with 

each of the measured hourly mean wind speeds. Figure 6 shows the median load factor across all of 

the turbines at each site. As expected, the load factor generally increases with the mean wind speed. 

However, for two sites with a similar value of U, there can be large variation in the derived load factor 

of a turbine. This occurs as a result of differences in the wind speed distribution and is particularly 

evident at a number of relatively low wind speed sites (U<4 ms-1), where a small change in the wind 

speed distribution can lead to many more hours where the wind speed exceeds the turbine cut-in 

speed. 

 

Figure 6 also shows that at a given site there is a large range in the load factor across the different 

turbine designs. The magnitude of this variation is such that at a given site some turbine designs are 

economically viable, while others are not. For example, for 7 of the economic scenarios considered, a 

load factor of 16% or more is required for a turbine to be economically viable (as stated in table 1). 

Figure 6 shows that averaged across all turbines a mean wind speed in excess of 5.3 ms-1 is required to 

achieve this threshold. However, with careful turbine selection, the required load factor can also be 

achieved at sites with a mean wind speed as low as 3.8 ms-1. 
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Figure 6 The median load factor across the 33 turbines at each of the 91 sites. The errorbars indicate the minimum 
and maximum values. 

The number of turbine/site combinations which are economically vaible for each scenario, based on 

the measured wind data is shown in figure 7. For 7 of the scenarios, less than 50% of the turbine/site 

combinations are economically viable, which includes all 4 of the scenarios when the capital cost of 

the turbine is high, (I=£5,000 per kW). As expected, as the capital cost decreases or the sale price of 

electricity increases, more projects become viable. However, for all capital costs, when e=£0.1 per 

kWh (secnarios 1a, 2a and 3a), very few economically viable turbine/site combinations are shown; 

25% when I=£1,000 per kW (scenario 1a), 4% when I=£2,500 per kW (scenario 2a) and 0% when 

I=£5,000 per kW (scenario 3a). 

 
Figure 7 The percentage of turbine/site combinations which are economically viable for each of the economic 

scenarios listed in table 1. 
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4.2 Accuracy of Site Assessment Tools 

Figure 8 shows that the NOABL database tends to overestimate the wind speed (73 out of the 91 

sites). The magnitude of the underestimate can be quite large; the mean error is 23% and it is in 

excess of 20% of the measured mean wind speed at 35 sites. In comparison, for the 18 sites at which 

the resource is underestimated there is a mean error of 10%. The majority of the underestimates tend 

to occur at higher wind speed sites (15 occur at sites with a mean wind speed in excess of 5 ms-1). The 

results shown here confirm the findings of the Energy Saving Trust (2009) and Encraft (2008), which 

performed a similar analysis but for a smaller sample of sites and a shorter period of time. 

 
Figure 8 Comparison of the NOABL wind speed prediction and the measured annual mean wind speed at each of the 

91 sites. 

 
Figure 9 Comparison of the Energy Saving Trust tool wind speed prediction and the measured annual mean wind 

speed at each of the 91 sites. 
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Figure 9 shows a very similar relationship for the predictions of the Energy Saving Trust tool. 

However, the EST tool estimates lower wind speeds than the NOABL at 85 sites and therefore there is 

a reduction in the number of overestimates. The Energy Saving Trust tool overestimates the wind 

speed at 64 sites with an error in excess of 20% at 18 sites and a mean value of 18%. For the 27 sites 

at which the wind resource is underestimated, there is a mean error of 12%. 

4.3 Implications of errors in the estimated wind resource on the economic viability of small wind 

turbines 

The percentage of turbine/site combinations for which assessing the wind resource using the NOABL 

database yields the correct economic viability for each scenario is shown in figure 10. For 11 of the 12 

economic scenarios, errors in the wind speed estimation tool can lead to the incorrect evaluation of the 

economic viability of turbine/site combinations. For the other scenario (3a), all turbine/site 

combinations were correctly shown to be not economically viable. The majority of the incorrect 

assessments occur due to an overestimate of a site’s wind speed. This results in turbines which are not 

economically viable being predicted to be viable (grey bars). This occurs at up to 41% of turbine/site 

combinations depending on the economic scenario. However, there is also a number of economically 

viable projects being assessed as not viable (i.e. missed opportunities) as a result of an underestimate 

of the wind resource at relatively high wind speed sites (white bars). This occurs at up to 4% of 

turbine/site combinations for 8 of the economic scenarios.  

 

Figure 11 shows similar results for the Energy Saving Trust tool. However, for all scenarios the 

Energy Saving Trust tool provides an accurate assessment for a greater proportion of turbine/site 

combinations than the NOABL database. A correct assessment was provided by the Energy Saving 

Trust tool for between 69-97% of turbine/site combinations across the scenarios (excluding 3a), in 

comparison to 58-94% for NOABL. 
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Figure 10 A breakdown of the economic assessment of the various turbine/site combinations made using the NOABL 
database for each scenario, listed in Table 1. Black indicates a correct assessment of a turbine/site combination. Grey 
denotes turbine/site combinations which the model incorrectly predicts to be economically viable. White shows the 
economically viable turbine/site combinations which are incorrectly shown to be not viable. 

 
Figure 11 A breakdown of the economic assessment of the various turbine/site combinations made using the Energy 
Saving Trust tool for each scenario, listed in Table 1. Black indicates a correct assessment of a turbine/site 
combination. Grey denotes turbine/site combinations which the model incorrectly predicts to be economically viable. 
White shows the economically viable turbine/site combinations which are incorrectly shown to be not viable. 

 

To investigate these results further the number of turbines for which the models incorrectly assess the 

economic viability at each of the 91 sites has been determined. Figure 12 shows the difference 

between the number of turbines estimated to be economically viable based on the model wind 
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resource from corresponding value derived using the measured wind data. A positive number 

therefore indicates turbines which are not economically viable being shown to be economically viable 

by the models. In contrast, a negative number indicates economically viable turbines which have been 

calculated to be not viable (i.e. missed opportunities).  

 

The analysis has been completed for each site and each scenario. When I=£1,000 per kW (scenarios 

1a-1d), the overestimate of the wind resource by the models at the lower wind speed sites results in a 

number of turbines, which are not economically viable (according to the measured wind data), being 

shown to be viable. This problem occurs for all values of e, but occurs less frequently at higher values 

of e (scenarios 1c and 1d), as at these values the vast majority of turbines are economically viable, 

therefore the overestimate does not have an impact. For scenarios 1a-1d, the figures also show a 

number of sites at which the measured wind data suggests that a turbine would be economically viable 

but the tools underestimate the wind resource and consequently predicts that the turbine is not 

economically viable (i.e. missed opportunities). This occurs in two types of cases: (1) at relatively low 

wind speed sites, where a small underestimate in the wind speed can have a large impact, as it 

increases the frequency of time at which the turbine is not operating (the wind speed is below the 

turbine’s cut-in speed). (2) At sites with a moderate mean wind speed (5.5 < U < 6.5 ms-1), where a 

large underestimate in wind speed reduces the predicted energy production of the poorer performing 

turbines by a significant proportion. This second case only occurs at the lower values of e (scenarios 

1a and 1b), at larger values (scenarios 1c and 1d) the magnitude of the underestimate is not sufficient 

to alter to the calculated economic viability. A similar relationship is shown as the capital cost 

increases (I=£2,500 (scenarios 2a to 2d) and £5,000 per kW (scenarios 3a to 3d)). However, due to the 

additional cost, the turbines are less likely to be viable at the lower wind speed sites and therefore an 

underestimate of the wind resource does not alter the economic viability. This is particularly evident 

at low values of e. 
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Figure 12 The difference between the number of turbines shown to be economically viable using the modelled wind 
data (NOABL (blue) and Energy Saving Trust tool (green)) from the number derived from the observed wind, at 
each of the 91 sites. Results are shown for each of the 12 economic scenarios given in Table 1. 

 

5. Conclusions 

The techno-economic performance of a small wind turbine is very sensitive to the site’s wind 

resource. However, unlike large scale wind energy projects, due to financial and practical constraints 

it is not feasible to fit wind monitoring equipment at each potential installation site and therefore local 

authorities rely on low resolution wind speed databases to identify the best sites. In the UK, this is 

frequently either the DECC wind speed database (NOABL) or the Energy Saving Trust wind speed 

estimator. 
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The wind speed predictions of the two tools have been compared with data measured at 91 weather 

stations across the UK. In general, NOABL tends to overestimate the wind resource (73 out 91 sites). 

The magnitude of the overestimate can be quite large; there is a mean error of 23% over the 73 sites 

and it is in excess of 20% at 35 sites. In comparison, for the 18 sites at which the resource is 

underestimated there is a mean error of 10%. The majority of the underestimates tend to occur at 

higher wind speed sites (15 occur at sites with a mean wind speed in excess of 5 ms-1). These results 

are in agreement with the findings of previous research. The predictions of the Energy Saving Trust 

tool showed similar results however the magnitude of the error was generally lower. The model 

underestimates the wind speed at 64 sites, with a mean error of 18%. 

 

A discounted cash flow analysis of a range of turbine designs at each site has shown that the errors in 

the wind speed predictions using either the NOABL or EST tool can lead to the incorrect assessment 

of a turbine’s economic viability. The majority of the incorrect assessments occur due to 

overestimates by the tools. This results in turbines being predicted to be economically viable when 

they are not. This occurs for up to 41% of turbine/site combinations (depending on the economic 

scenario) for NOABL and 30% for the Energy Saving Trust tool. This goes some way to explaining 

the poor performance of small wind turbines to date. A new insight from this work is that there are a 

number of missed opportunities. Whereby, due to an underestimate of the wind speed by the tools at 

relatively high wind speed sites, a financially beneficial turbine is shown to be not economically 

viable. However this only occurs for up to 4% of turbine/site combinations over all of the economic 

scenarios for both tools. 

 

These results illustrate one of the big difficulties in the roll out of small-scale wind, specifically that 

the resource is highly localised and local authorities are making decisions using tools with an 

insufficient level of complexity and resolution. Consequently, there is a danger of supporting the 

installation of turbines at sites at which they are not economically viable. As it is not viable to collect 

very comprehensive local measurements, there is a need to develop a more accurate site assessment 

tool which can be used by both local planners and potential consumers.   

  

Furthermore, planners and local policy makers should be aware of the high spatial variability of the 

production potential of small wind turbines, and should avoid blanket support or regulations that 

could result in turbines being installed in locations with a poor wind resource. In this respect, revenue 

based mechanisms, like the feed-in tariff, are preferable to capital grant schemes as they ensure the 

funding available is directed to the better performing turbines.  
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