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Abstract

Using numerical simulations of rapidly rotating Boussinesq convection in a Cartesian box,
we study the formation of long-lived, large-scale, depth-invariant coherent structures. These
structures, which consist of concentrated cyclones, grow to the horizontal scale of the box, with
velocities significantly larger than the convective motions. We vary the rotation rate, the thermal
driving and the aspect ratio in order to determine the domain of existence of these large-scale
vortices (LSV). We find that two conditions are required for their formation. First, the Rayleigh
number, a measure of the thermal driving, must be several times its value at the linear onset of
convection; this corresponds to Reynolds numbers, based on the convective velocity and the box
depth, & 100. Second, the rotational constraint on the convective structures must be strong.
This requires that the local Rossby number, based on the convective velocity and the horizontal
convective scale, . 0.15. Simulations in which certain wavenumbers are artificially suppressed
in spectral space suggest that the LSV are produced by the interactions of small-scale, depth-
dependent convective motions. The presence of LSV significantly reduces the efficiency of the
convective heat transport.

1 Introduction

The presence of large-scale coherent structures in turbulent flows attracts much interest, partic-
ularly because of their relevance in geophysics and astrophysics; understanding their formation is
thus an important problem in fluid dynamics. In two-dimensional (2D) turbulence, in which vertical
motions are assumed to be suppressed owing to strong stratification, fast rotation, or small vertical
to horizontal scale ratio, the kinetic energy and the enstrophy (mean-square vorticity) are conserved
quantities in the inviscid limit. This implies a downscale enstrophy cascade and an upscale energy
cascade (Kraichnan, 1967), which can lead to the formation of coherent vortices (e.g. McWilliams,
1984). By contrast, in three-dimensional (3D) isotropic turbulence, enstrophy is not a conserved
quantity, and the energy cascade is expected to be downscale. Nevertheless, the constraint imposed
by rapid rotation might lead to 2D-like dynamics in a 3D flow on timescales longer than the rotation
period. Notable examples of the formation of coherent vortices in a 3D system subject to rotation
have been observed in experiments on grid-generated turbulence (e.g. Hopfinger et al., 1982; Sta-
plehurst et al., 2008). Recently, the presence of large-scale vortices (LSV) has been reported in
numerical simulations of rotating convection in Cartesian geometry (Chan, 2007), where the fluid
is heated from below and confined between two horizontal planes. In this system, with buoyant
vertical motions, the flow is necessarily z-dependent. The formation of LSV in convective layers
still remains to be fully understood.

Using numerical models of rotating compressible thermal convection in a local f -plane model,
Chan (2007) and Chan & Mayr (2013) report the emergence of long-lived, large-scale (i.e. domain
size) vortices for sufficiently large rotation rates. For moderate Rossby number (Ro, the ratio of the
rotation period to the typical convective turnover time), of the order of 0.1, these LSV are cyclonic
and associated with regions of lower temperature relative to their surroundings. Note that a vortex
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is defined as cyclonic (anticyclonic) when its vorticity in the rotating reference frame has the same
(opposite) sign as the externally applied rotation. At lower Rossby numbers, Chan and Chan &
Mayr observe a large-scale warmer anticyclone accompanied by a smaller and weaker cyclone. Using
a similar numerical set-up, Käpylä et al. (2011) find that the LSV are excited provided that the
Reynolds number (Re, the ratio of the viscous diffusion time to the convective turnover time) is
sufficiently large. The vortices span the entire vertical extent of the box and are roughly aligned
with the rotation axis. Mantere et al. (2011) attribute the formation of these structures to a mean-
field hydrodynamical instability that requires a sufficient scale separation between the convective
eddies and the smallest horizontal wavenumber permitted in the computational domain. They find
that increasing the box size leads to an increase of the horizontal extent of the structures, so that
the LSV always fill roughly half of the horizontal domain.

Large-scale structures have also been described in the work of Julien et al. (2012), who employ
a set of reduced equations in a local Cartesian box describing Boussinesq convection in the limit
of small Rossby number. In their model, the flow is locally in geostrophic balance at leading order
1/Ro, but thermally driven vertical flows exist at sufficiently small horizontal scales. When the
thermal forcing is sufficiently large, Julien et al. observe the formation of a depth-invariant box-size
flow, which becomes organised into a cyclone and anticyclone of similar strength. Using the same
numerical model, Rubio et al. (2014) show that the generation of these depth-invariant LSV involves
the interactions of small-scale, depth-dependent convective eddies, which are made more coherent
by the action of depth-invariant vortices. Interestingly, Julien et al. (2012) find that the presence
of LSV tends to increase the efficiency of the heat transfer through the system.

Fully 3D Boussinesq convection in the presence of rotation has been extensively studied, partic-
ularly in cylindrical and spherical geometries with applications to the global dynamics of planetary
interiors (e.g. Busse, 1994; Christensen, 2002). In spherical geometry, the curved boundaries have
an important effect on large-scale structures; in flows with large Reynolds numbers and low Rossby
numbers they are, notably, responsible for the formation of zonal flows of amplitude large compared
with the typical convective velocity (e.g. Heimpel et al., 2005). In simulations of rotating convection
in spherical geometry, the formation of vortices at scales larger than the typical convective size has
not been observed. Julien et al. (2012) conjecture that, in a Cartesian domain, the size of the LSV
is limited only by the domain size, so that if the upscale energy transfer were allowed to continue,
the LSV would eventually feel the latitudinal variation of the Coriolis parameter. In this case, it
is argued that the large-scale dynamics would become organised into zonal flows. That said, it is
worth highlighting the occurrence of planetary polar vortices — most strikingly those of Saturn —
the dynamics of which may be related to the dynamics of LSV in plane layer models.

In numerical modelling, computational resources limit the values of parameters such as the
Reynolds and Rossby numbers; this is even more pronounced in global spherical models compared
with those in Cartesian geometry. Consequently, studies that aim to determine transitions be-
tween different convection regimes across a wide parameter range preferentially employ the rotating
Rayleigh-Bénard (RRB) configuration, in which a Boussinesq fluid contained between two horizon-
tal planes rotates uniformly about an axis aligned with the direction of gravity (e.g. Julien et al.,
1996; Vorobieff & Ecke, 2002). To our knowledge, among the previous studies of RRB convection
conducted in the low Rossby number regime (King et al., 2012; Schmitz & Tilgner, 2009; Stell-
mach & Hansen, 2004), the formation of box-size, vertically aligned vortices is addressed only in
the contemporaneous study of Favier et al. (2014). There are two possible explanations for the
absence of LSV in most of the previous studies. One stems from the choice of boundary conditions,
especially for the velocity. In the compressible convection models mentioned above, and also in
the reduced Boussinesq model of Julien et al. (2012), stress-free boundary conditions are employed;
often though, no-slip boundary conditions are adopted in RRB convection models (e.g. Schmitz &
Tilgner, 2010; King et al., 2012). Another plausible explanation for the lack of LSV stems from the
choice of aspect ratio of the computational domain. In RRB simulations, the aspect ratio is usually
taken equal to unity or smaller, whereas in the compressible convection studies, the aspect ratio is
usually about four.

Simulations of RRB convection are often carried out in order to assess the efficiency of heat
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transfer, thereby allowing the determination of the transition between rapidly rotating and non-
rotating convection. As observed by Julien et al. (2012), heat transfer can be affected by the
presence of LSV. It is therefore important to identify the conditions required for the formation of
the LSV in RRB convection, and to assess their impact on heat transfer.

In this paper, we investigate in detail the emergence of large-scale, depth-invariant vortices in
convective regions via a series of numerical simulations of RRB convection. Our objectives are
threefold: (i) to determine the parameters governing the presence of LSV; (ii) to understand the
mechanism by which they form; (iii) to assess how LSV affect the heat transfer in the system.

The layout of the paper is as follows. The mathematical and numerical formulation of the
problem is contained in § 2. The formation, maintenance and influence of the LSV are described in
§ 3. The spatial structure of the large-scale vortices, which always consist of a concentrated cyclone
and a more dilute anticyclone, is discussed in § 3.1, the domain of existence in parameter space in
§ 3.2, and the reasons for the cyclonic/anticyclonic asymmetry in § 3.3. In § 3.4, we establish how
energy is transferred to the large scales. Finally, in § 3.5, we discuss how the LSV affect the heat
transfer in the system. A concluding discussion is contained in § 4.

2 Mathematical Formulation

We study rotating Boussinesq convection in a three-dimensional Cartesian domain. The motions
are driven by an initially uniform temperature gradient, imposed by fixing the temperature on the
top and bottom boundaries. Acceleration due to gravity is constant, g = −gez. The rotation
vector Ωez is aligned with the vertical direction. The box depth is d. The horizontal dimensions
of the computational domain are equal in the x and y directions, with the ratio of horizontal
to vertical dimensions denoted by λ. The fluid has kinematic viscosity ν, thermal diffusivity κ
and thermal expansion coefficient α, all of which are constant. We solve the momentum and
temperature equations in dimensionless form, obtained by scaling lengths with d, times with 1/(2Ω),
and temperature with ∆T , the temperature difference across the layer. In standard notation, the
complete system of dimensionless governing equations can then be written as

∂u

∂t
+ u · ∇u+ ez × u = −∇p+

RaEk2

Pr
θez + Ek∇2

u, (1)

∇ · u = 0, (2)

∂θ

∂t
+ u · ∇θ − uz =

Ek

Pr
∇2θ, (3)

where u = (ux, uy, uz) is the velocity field, p the pressure and θ the temperature perturbation
relative to a linear background profile. The dimensionless parameters are the Rayleigh number,

Ra =
αg∆Td3

κν
, (4)

the Ekman number,

Ek =
ν

2Ωd2
, (5)

and the Prandtl number,

Pr =
ν

κ
. (6)

We assume that all variables are periodic in the horizontal directions. In the vertical direction,
the upper and lower boundaries are taken to be perfect thermal conductors, impermeable and
stress-free, i.e.

θ = 0 at z = 0, 1; (7)

∂ux
∂z

=
∂uy
∂z

= uz = 0 at z = 0, 1. (8)
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Series Ek λ min(R̃a) max(R̃a) min resolution max resolution
S1 10−4 1 10 186 64× 64× 65 256× 256× 257
S2 10−4 2 10 186 128× 128× 65 256× 256× 257
S3 10−4 4 10 186 256× 256× 65 512× 512× 257
S4 10−5 1 10 215 128× 128× 97 512× 512× 257
S5 5× 10−6 1 10 188 256× 256× 129 256× 256× 257

Table 1: Summary of parameter values and numerical resolution (Nx ×Ny ×Nz collocation points)

for each series of simulations; Pr = 1 and R̃a = RaEk4/3.

By choosing stress-free, rather than no-slip, boundary conditions, we provide the most advantageous
conditions for the development of horizontal flows of large amplitude.

Equations (1)–(3) are solved numerically using a parallel pseudospectral code developed by
Cattaneo et al. (2003). The temperature perturbation and each component of the velocity are
transformed from configuration space (containing Nx ×Ny ×Nz collocation points) to phase space
(containing nx × ny × ny modes) by a discrete Fourier transform of the form

f(x, y, z) =
∑

nx

∑

ny

∑

nz

f̂(nx, ny, nz) exp(2πikxx) exp(2πikyy)φ
q(πkzz) + c.c., (9)

where f and f̂ are the functions in configuration and phase spaces respectively, c.c. denotes complex
conjugate, q = ±1 depending on the boundary conditions for f , with φ+1(s) = cos(s) and φ−1(s) =
sin(s), and

kx =
nx

λ
, ky =

ny

λ
, kz = nz. (10)

Further details concerning the numerical methods can be found in Cattaneo et al. (2003).

3 Large-Scale Vortices

In this section, we present the results from our simulations of rotating Boussinesq convection,
discussing in detail the structure and possible formation mechanism for large-scale vortices. The
simulations are grouped together as series for which the Ekman number and aspect ratio are fixed;
in a given series, the Rayleigh number and numerical resolution are varied. The parameter values
of the different series are summarised in table 1. The Prandtl number is set to unity for all of the
numerical simulations. The minimum and maximum resolutions of each series (corresponding to
the smallest and largest Ra respectively) are also given in table 1. The horizontal grid resolution
is determined by the width of the convective structures. To ensure a true representation of the
flow, we always check that the tail of the kinetic energy spectrum at each depth is at least a factor
104 smaller than the peak (as can be observed, for instance, in figure 6) and that the Kolmogorov
microscale is larger than the minimum grid space. Since we are imposing stress-free boundary
conditions, the vertical grid resolution is essentially limited by the thickness of the top and bottom
thermal boundary layers; these always contain at least 10 collocation points in the vertical. Finally,
the timestep is mainly limited by the rotation period. For the smallest Ekman number considered
here (Ek = 5×10−6) at the largest Rayleigh number calculated (see table 1), the timestep is 2×10−3

(in units of 1/(2Ω)).

3.1 Structure

At the linear onset of convection, for Pr = 1, the flow takes the form of elongated cells with
velocity and temperature perturbations of vertical wavenumber kz = 1 and, for small Ek , horizontal
wavenumber scaling as Ek−1/3 (e.g. Chandrasekhar, 1961). The critical Rayleigh number scales as
Ek−4/3. Hereafter, in order to compare different sets of simulations, we use the Rayleigh number
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Figure 1: Time series of the rms velocity for R̃a = 17 and R̃a = 34 with Ek = 5 × 10−6 and λ = 1
(series S5). Since the velocity is scaled by 2Ωd then the rms velocity is comparable with a Rossby
number.

compensated by its Ekman number dependence at the onset of convection, R̃a = RaEk4/3. Note
that at the onset of convection, R̃a ≈ 8.7 as Ek → 0.

Figure 1 shows time series of the rms velocity (the square root of the kinetic energy per unit
volume) for the smallest value of the Ekman number we have considered, namely Ek = 5× 10−6

(series S5), for R̃a = 17 and R̃a = 34. In both cases, the kinetic energy first grows exponentially as

the convective instability is triggered. For R̃a = 17, the kinetic energy reaches a stationary state
for times t & 103 (in units of 1/(2Ω)). However, for R̃a = 34, after a short period of stagnation,
the kinetic energy displays a secondary phase of growth at a slower rate; it eventually saturates
on a much longer timescale than that of the initial convective instability, after a time t ≈ 2 × 104,
i.e. about one tenth of a global viscous timescale. It is this slow growth of the kinetic energy that
corresponds to the formation of a large-scale vortex.

Snapshots of the axial vorticity, ωz = (∇×u)·ez, in horizontal and vertical cross-sections during

the saturated phase are plotted in figures 2(a)-2(b) for R̃a = 68 of series S5. The flow is organised
principally in a cyclonic structure of large horizontal scale, surrounded by a multitude of smaller
vortices of either sign. The small-scale vortices are driven directly by buoyancy; we shall refer to
these as convective structures. As a consequence of the periodic boundary conditions, horizontal
averages of the axial vorticity vanish; thus, in a horizontal cross-section, within the multitude of small
vortices the anticyclonic vorticity must dominate, so as to balance the large-scale cyclonic vorticity.
Two movies showing the evolution of the axial vorticity in a horizontal cross-section are provided
in the online supplementary material available at http://dx.doi.org/10.1017/jfm.2014.542.
Movie 1 is taken during the slowly growing phase of the kinetic energy, movie 2 during the long-term
saturated phase. They demonstrate that the multitude of small vortices are advected by a relatively
slow anticyclonic circulation, which occupies a larger area than the faster cyclonic circulation. These
large-scale circulation cells create regions of intense shear, in which small vortices become stretched
horizontally. For the Rayleigh number of figure 2, the axial vorticity in the core of the large-scale
cyclone can locally attain an amplitude of the order of the planetary vorticity, 2Ω.

The vertical cross-section in figure 2(b) shows that the large-scale cyclone is predominantly
z-invariant. The degree of z-invariance of the axial vorticity can be quantified by the ratio

r(x, y) =

∫
ωz(x, y, z)dz∫

((ωz(x, y, z))2)1/2dz
. (11)

Figure 2(c) shows r(x, y) corresponding to the snapshot of figures 2(a)-2(b). Inside the core of
the large-scale cyclone, r is fairly close to unity, implying that the axial vorticity is predominantly
z-invariant. For instance, the isocontour r = 0.8 corresponds roughly to a circle of diameter 0.3–0.4.
For the anticyclonic region, on the other hand, |r| is smaller on average, and the regions for which
|r| ≥ 0.8 consist essentially of isolated vortex cores of small horizontal extent.
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Figure 2: (a) Horizontal and (b) vertical cross-sections of the axial vorticity (snapshot) given in
units of 2Ω. The horizontal section is taken at z = 0.25 and the vertical section at y = 0.50. (c)
Ratio r measuring the degree of z-invariance of the axial vorticity. The black lines correspond to
the isocontour ±0.8. Parameters: R̃a = 68 of series S5.

We were not able to detect any secondary circulation associated with the large-scale cyclone.
Any such circulation, if present, is significantly weaker than the convective motions.

It is important to note that horizontal shear flows (which project on vorticity modes (kx, ky) =
(0, 1) or (1, 0), while the LSV project on mode (1, 1)) are permitted in the numerical code; these
however were never observed in our simulations. The flow is isotropic in the horizontal directions,
and there appears to be no mechanism capable of driving shear flows consistently in a preferred
horizontal direction (as does the β effect in the presence of a gradient of planetary vorticity, for
instance). Indeed, even when a horizontal shear flow of sinusoidal profile is added to the convective
flow before the formation of LSV and the flow is then allowed to evolve freely, we observe that the
horizontal shear flow disappears while a large-scale vortex grows.

3.2 Domain of existence

In this subsection, we determine the domain of existence of large-scale vortices in terms of input and
output parameters based on the rms velocity (which includes all three components) and the rms
vertical velocity, which we use as an estimate of the typical convective velocity. As discussed above,
the LSV consist essentially of horizontal motions. Consequently, a comparison of the amplitudes of
horizontal and vertical flows is instructive in determining the domain of their existence. We define
the Rossby number, Ro, and the vertical Rossby number, Roz, by

Ro =
〈u2x + u2y + u2z〉1/2

2Ωd
and Roz =

〈u2z〉1/2
2Ωd

, (12)

where the angle brackets denote a spatial and temporal average. Note that these definitions use the
box depth, d, as the lengthscale.

Figures 3(a)–3(b) plot Roz and Ro versus R̃a for the series S1–S5. Roz is a monotonically

increasing function of R̃a, and is always smaller than 0.1 in our simulations. In the series S1–S3,
which have the same Ekman number (Ek = 10−4) but different aspect ratio, the curves of Roz lie
on top of each other; varying the aspect ratio in the range considered here therefore does not affect
the vertical rms velocity. In figure 3(b), the evolution of Ro with R̃a shows important differences

compared with that of Roz. First, Ro decreases noticeably when R̃a & 150 in the series S2–S3.
Second, the values of Ro are not identical for the series S1–S3 for R̃a & 20, thus demonstrating their
aspect ratio dependence, with the largest value of Ro occurring for λ = 4. Thus the amplitude of
the horizontal flows does not follow the evolution of the amplitude of the convective flows.

As a measure of the ratio of the total kinetic energy to the vertical kinetic energy we define

Γ =
〈u2x + u2y + u2z〉

3〈u2z〉
. (13)
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Figure 3: (a) Vertical Rossby number, Roz; (b) Rossby number, Ro, as a function of R̃a for the
series S1–S5 defined in table 1.
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Figure 4 shows Γ as a function of different input and output parameters for the series S1–S5.
Figure 4(a) plots Γ versus R̃a. While Γ is approximately unity close to the onset of convection, it

increases rapidly for R̃a & 20 in the series S2–S5. For the series S1, which corresponds to the largest
Ekman number considered (Ek = 10−4) and the smallest aspect ratio (λ = 1), the variations of Γ

appear small on the vertical scale used for the figure. In the series S2–S5, for large values of R̃a
(typically larger than 70 but depending on the Ekman number), Γ reaches a maximum, which is
greater than 10 in some cases, before eventually decaying. The maximum of Γ occurs at increasing
values of R̃a for decreasing Ek .

We now seek the parameters that control the evolution of Γ. We have already noted that all of
the Γ curves first increase just after R̃a ≈ 20. In order to quantify the level of turbulence of the
convective flow, we measure the vertical Reynolds number, defined by

Rez =
Roz

Ek
=

〈u2z〉1/2d
ν

. (14)

Figure 4(b) plots Γ as a function of Rez. The increase of Γ is sharp after some value of Rez, Re
∗

z

say, that is dependent on λ but not on Ek . For λ = 1, Re∗z ≈ 300 and becomes smaller for larger
aspect ratios; for instance, when λ = 4, Re∗z ≈ 100. The existence of a threshold vertical Reynolds
number for the appearance of the LSV implies that a certain level of convectively driven turbulence
is required. However, Re∗z takes rather modest values, achieved for Rayleigh numbers only about
three times its critical value at the onset of convection.

The maximum in Γ occurs at increasing values of Rez for decreasing Ek , indicating that the
decrease of Γ could be due to a transition from a convection regime that is strongly rotationally
constrained, to one that is only weakly constrained. Using a similar numerical model of rotating
Boussinesq convection, Schmitz & Tilgner (2009) find empirically, through measurements of the heat
flux, that the transition from rapidly rotating convection to weakly rotating convection occurs when
RePrEk1/2 ≈ 10, where Re is a Reynolds number based on the rms velocity and the box height.
Schmitz & Tilgner do not mention the presence of LSV in their simulations, so we take

√
3Rez as

being equivalent to their Reynolds number. Figure 4(c) shows Γ as a function of
√
3RezPrEk

1/2. It
can be seen that the maxima in the curves of Γ are not strictly aligned at the value 10, but instead
tend to occur at smaller values of

√
3RezPrEk

1/2 as Ek increases.
To measure the influence of rotation, we use a more traditional dimensionless quantity, the local

Rossby number, Rolz, defined by

Rolz =
〈u2z〉1/2
2Ωlh

=
Roz

lh/d
; (15)

the dimensionless horizontal lengthscale, l∗h = lh/d, is defined by

l∗h
−1 =

〈 ∑
kx, ky , kz

√
k2x + k2y (ûz(kx, ky, kz))

2

∑
kx, ky , kz

(ûz(kx, ky, kz))
2

〉
, (16)

where the vertical velocity is expressed in spectral form ûz. Figure 4(d) shows Γ as a function of
Rolz. The lengthscale l∗h depends on the Ekman number, and scales as Ek1/3 close to the onset of
convection. Since the definition of l∗h is based on the vertical velocity, which receives only a small
contribution from the LSV, l∗h is not significantly affected by the LSV. As Ra increases in a given
series, the convective structures tend to become wider, i.e. l∗h increases. However, Roz increases
more rapidly with Ra than l∗h; thus Rolz is a monotonically increasing function of Ra in a given
series. The maximum of Γ occurs for a similar value of Rolz, about 0.15, for the series S2–S5.

We now discuss the influence of the aspect ratio λ on the existence of LSV in series S1–S3.
Figures 3 and 4 show that outside the parameter window in which LSV occur (i.e. when R̃a < 20
and Rolz > 0.15), the amplitude of the horizontal and vertical flows is essentially independent of the
aspect ratio, because several convective structures can be accommodated horizontally even for the
series S1, which has the smallest aspect ratio. However, in the regime in which LSV are present,

8



x

y

 

 

0 0.5 1
0

0.5

1

−0.5

0

0.5

(a) λ = 1

x

y

 

 

0 1 2
0

1

2

−1

−0.5

0

0.5

1

(b) λ = 2

x

y

 

 

0 2 4
0

2

4

−1

−0.5

0

0.5

1

(c) λ = 4

Figure 5: Horizontal cross-sections (at z = 0.25) of the axial vorticity (snapshot) for different aspect

ratios; Ek = 10−4, R̃a = 37.

figure 4 shows clearly that the aspect ratio influences the amplitude of the horizontal flows. In
the series S1, values of Γ remain close to unity compared with the series S2–S3. Nonetheless, the
evolution of Γ with R̃a for the series S1 follows the same trend as the other series, reaching a
maximum of 1.2 for R̃a = 46. Figure 5 shows horizontal cross-sections of the axial vorticity for the
series S1–S3 at R̃a = 37. For λ = 2 and λ = 4, cyclonic circulation is visible at a large horizontal
scale. By contrast, visual inspection of the axial vorticity for λ = 1 does not reveal the presence of
a large-scale vortex since the scales of the convective structures are not much smaller than the box
size. A cross-section of the vorticity tends to emphasise smaller scales than that of the velocity, so we
examine instead the kinetic energy spectra. For a given horizontal wavenumber, kh = (k2x + k2y)

1/2,
we define the energy spectrum of the horizontal velocity, uh = (ux, uy, 0), by

Eh(kh) =
1

2

∑

kz

∑

kx,ky

ûh(kx, ky, kz) · û∗

h(kx, ky, kz), (17)

and the energy spectrum of the vertical velocity, (0, 0, uz), by

Ev(kh) =
1

2

∑

kz

∑

kx,ky

ûz(kx, ky, kz) · û∗z(kx, ky, kz), (18)

where ∗ denotes the complex conjugate. The kinetic energy spectra are obtained by binning into
rings of radius kh with ∆kh = 1/λ.

Figure 6 shows the time-averaged kinetic energy spectra Eh(kh) and Ev(kh) for R̃a = 37 of
series S1–S3. They show that the horizontal flow is dominated by the smallest permitted horizontal
wavenumber for λ = 1, 2 and 4, whereas the vertical flow is dominated by the horizontal wavenumber
of the convective structure, i.e. kh ≈ 4 for Ek = 10−4. As λ increases, the amplitude of the horizontal
flow at the smallest horizontal wavenumber becomes larger. As mentioned above, the saturation of
kinetic energy occurs on a long timescale, of the order of one tenth of a global viscous timescale.
This suggests that the saturation of the LSV occurs once a balance is established between the
viscous dissipation of the LSV and the nonlinear interactions feeding it. Here, the use of stress-free
boundary conditions ensures that viscous damping of the LSV occurs preferentially in the bulk of
the fluid rather than in the boundary layers, unlike what would be expected for no-slip boundaries.
Consequently, as the LSV increase in size with increasing λ, the horizontal flows can grow to larger
amplitudes before being dissipated viscously.

In summary, we find that there are two conditions for the presence of LSV. (i) The Reynolds
number of the vertical flows (Rez) must be larger than about 100 − 300, depending on the aspect
ratio; this value of the vertical Reynolds number is reached for Rayleigh numbers about three times
that at the onset of convection. (ii) The convection remains in a regime strongly dominated by
rotation, where the local vertical Rossby number (Rolz) is smaller than about 0.15. This value of
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Figure 6: Kinetic energy spectra (time averages) of the horizontal and vertical flows in the horizontal
directions, with kh = (k2x + k2y)

1/2. Same parameters as in figure 5.

Rolz seems robust to changes in the Ekman number and the aspect ratio. For all of the series,
this value of Rolz corresponds to a similar degree of anisotropy of the convective structures, which
we measure by l∗h/l

∗

z ; here l∗h is given by equation (16), and l∗z is defined in a similar manner with
kz/2 replacing kh in the numerator. When Rolz increases, l∗h/l

∗

z also increases, and we find that
Rolz = 0.15 corresponds to l∗h/l

∗

z ≈ 1/4, so the convective structures must retain a significant degree
of anisotropy. Moreover, if conditions (i) and (ii) are satisfied, then even in the case of a modest scale
separation between the horizontal extent of the convective structures (l∗h) and the horizontal box size
(λ) (λ/l∗h ≈ 4 is the smallest scale separation considered), energy transfer from the convective size
to the large scale still takes place. This can be identified in kinetic energy spectra of the horizontal
flow, which peak at the smallest wavenumber, even though in this case LSV are not readily apparent
in a visual inspection of the axial vorticity.

3.3 Asymmetry between cyclones and anticyclones

In all of our simulations that produce large-scale structures, visual inspection reveals a concentrated
patch of cyclonic vorticity situated in a sea of predominantly anticyclonic vorticity (e.g. figure 2(a)).
The large cyclonic vortex is stable in time, in the sense that its sign does not change and its axial
vorticity undergoes only small fluctuations of amplitude compared with its mean value. By contrast,
in the compressible convection simulations of Käpylä et al. (2011) and Chan & Mayr (2013), large-
scale concentrated anticyclones appear at small Rossby numbers, while cyclones are obtained for
larger Rossby numbers (although still smaller than unity). (Note that Rossby numbers are defined
differently in the compressible and Boussinesq cases, so the values are not directly comparable.)

In this section, we first establish systematically that the distribution of ωz is statistically skewed
towards cyclonic vorticity in the presence of LSV. We then examine what, in very broad terms,
may be regarded as the two possible causes of the cyclonic/anticyclonic asymmetry in our system.
One is that the nonlinear mechanism that transfers energy to the large scales works in favour of
cyclonic vorticity. The other is that the generation mechanism of large-scale structures favours
neither cyclones nor anticyclones, but that any anticyclones formed are subsequently unstable.

In a horizontally periodic domain, horizontal averages of ωz vanish identically at all depths; a
global measure of the asymmetry between cyclones and anticyclones is thus provided by the axial
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Figure 7: (a) Axial vorticity skewness versus R̃a for series S5. The shading of the symbol corresponds
to Roz, with the values indicated in the grey scale. The error bars indicate the minimum and
maximum values of the skewness during the time integration (in the saturated phase of the kinetic
energy). (b) Vertical profile of the z-dependent axial vorticity skewness S′ (solid line), and of the
z-invariant axial vorticity skewness S (dashed line), for three cases of series S5.

vorticity skewness (e.g. Bartello et al., 1994), defined by

S =
〈ω3

z〉
〈ω2

z〉3/2
. (19)

The angle brackets denote both spatial averages, taken over the domain, and temporal averages,
calculated during the saturated phase of the kinetic energy. If S 6= 0, the probability density
function (p.d.f.) of ωz is asymmetrical about its mean; a positive (negative) sign of S indicates that
the right (left) side of the tail of the p.d.f. is either longer or fatter.

Figure 7(a) shows S as a function of R̃a for the series S5. The error bars indicate the minimum
and maximum values of the skewness during the time integration. The shading of the symbols
indicates the value of the vertical Rossby number, Roz, allowing us to determine whether large-scale
anticyclones form in our simulations at low Roz but then disappear at higher Roz. For R̃a & 20,
S is always positive, implying that cyclonic vorticity is favoured. For R̃a . 20, the values of S are
close to zero, with the zero value within the error bar. In the cases 15 . R̃a . 20, S takes small
negative values. However, for these small Rayleigh numbers, LSV are not identifiable either in the
velocity field or the kinetic energy spectra.

Although the skewness S defined by expression (19) is a widely used single measure of asymmetry,
it is helpful here to look into its constituents in a little more detail. Thus to determine if the sign
of S is due mainly to contributions from the z-invariant axial vorticity, i.e. the LSV, or from the
z-dependent axial vorticity, i.e. the convective structures, it is instructive to calculate the skewness
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of the z-invariant axial vorticity,

S =
〈ωz(x, y)

3〉h
〈ωz(x, y)2〉3/2h

, (20)

and the vertical profile of the z-dependent axial vorticity skewness,

S′(z) =
〈ω′

z(x, y, z)
3〉h

〈ω′

z(x, y, z)
2〉3/2h

, (21)

where 〈(·)〉h denotes time and horizontal averages, and the z-dependent axial vorticity is

ω′

z(x, y, z) = ωz(x, y, z)− ωz(x, y), (22)

with (·) the vertical average. The profile of S′ compared with that of S is shown in figure 7(b) for

R̃a = 17, R̃a = 34 and R̃a = 85 of series S5. For R̃a = 17, S ≈ 0, but for R̃a = 34 and R̃a = 85, S
takes O(1) positive values, suggesting that positive values of S are due in large part to the presence
of the large-scale depth-invariant cyclone.

The values of S′ in figure 7(b) are strongly dependent on z for the three values of R̃a. For

R̃a = 17, S′ is approximately symmetric with respect to z = 1/2 and is positive above and below

the mid-plane and negative near the boundaries. The profile of S′ is strikingly different for R̃a = 34
and R̃a = 85; it is still symmetric with respect to z = 1/2, but with large positive values near the
top and bottom boundaries. Towards the mid-plane, S′ becomes close to zero and even slightly
negative for R̃a = 34. The change in the shape of S′(z) roughly coincides with the formation of the

LSV , which is around R̃a ≈ 20 in all the series.
Interestingly, this value of R̃a for Pr = 1 is identified by Julien et al. (2012) as a transition in the

organisation of the convective structures; for R̃a . 20, the flow consists of cells with a high degree
of horizontal and vertical coherence, which they denote as cellular convection, whereas for R̃a & 20,
thermal plumes develop from a buoyant instability of the thermal boundary layers. In the small
Rossby number regime, the instability mechanism in the thermal boundary layer permits plume
ejection and injection, whereas for the Rossby numbers considered here, the mechanism consists
solely of plume ejection (Vorobieff & Ecke, 2002; Sprague et al., 2006). An important property
of the thermal plumes in this latter case is that they break the mid-plane symmetry of the axial
vorticity (Chen et al., 1989; Julien et al., 1996). When a thermal plume develops either from the
top or bottom thermal boundary layer, it drives a convergent horizontal flow by mass conservation,
and so acquires cyclonic vorticity by angular momentum conservation; as the plume moves toward
the opposite boundary, the divergent horizontal flow causes it to spread horizontally and reduces
its vorticity. Consequently, in the plume regime, the vorticity distribution of the convective flow is
expected to be skewed toward positive values near the boundaries. This is indeed what is seen in
figure 7(b) for R̃a = 34 and R̃a = 85. The presence of narrow thermal cyclonic plumes near the top
and bottom boundaries can be directly observed in figure 8, which shows vertical cross-sections of
the axial vorticity in a yz-plane located in the surroundings of the large-scale cyclone, taken from
snapshots with R̃a = 34 and R̃a = 85. On average, the vorticity of the plumes changes sign before
they reach the mid-layer. The vertical profile of S′ indicates that the narrow concentrated cyclones
extend vertically from the boundaries to a depth of about 20% of the box height for R̃a = 34.
This vertical extension of the cyclonic plumes tends to decrease for larger R̃a. The net skewness
associated with the z-dependent flows (i.e. when the spatial averages in equation (21) are taken over
the whole domain) is positive, so the positive skewness associated with the cyclonic plumes near
the boundaries outweighs the negative skewness associated with the anticyclones in the bulk. Since
the vorticity distribution of the convective structures is already skewed towards positive values, it
seems plausible that a concentrated patch of cyclonic vorticity is more likely to form in the first
place.

In order to rule out any dependence of the cyclone/anticyclone asymmetry on initial conditions,
we restarted a simulation from the snapshot shown in figure 2(a) with the opposite sign for the

vorticity (same input parameters otherwise: series S5, R̃a = 68). To do so, we changed the sign of the
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Figure 8: Vertical cross-sections of the axial vorticity in a yz-plane located in the surroundings of
the large-scale cyclone for two cases of series S5.
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Figure 9: (a) Time evolution of the rms velocity after an inversion of the sign of the vorticity at
t = 0. (b) Horizontal cross-sections (at z = 0.25) of the axial vorticity at different times, indicated
by the grey lines in (a). The simulation was initialised at the time shown in figure 2(a), with the

same input parameters, but with vorticity of the opposite sign (series S5, R̃a = 68).
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three velocity components and the temperature field after first subtracting the horizontal averages.
For consistency, the horizontal averages of the velocity and temperature fields were kept the same
(note that the horizontal average of the vertical velocity is zero). Figure 9 shows the time evolution
of the rms velocity together with snapshots of the axial vorticity during the time integration. After
a few rotation periods, the concentrated patch of anticyclonic vorticity disintegrates into vortices
of smaller size. In the meantime, a large-scale cyclonic structure emerges through the clustering
of smaller size cyclones, increasing in amplitude until a state close to the progenitor simulation is
reached. The rms velocity decreases rapidly after the start of the simulation at t = 0, and reaches
a minimum at t ≈ 500. At this time, the large-scale cyclone already dominates the horizontal flow.
The asymmetry between large-scale cyclones and anticyclones is well established after t ≈ 100,
which is about 5− 10 convective turnover timescales (lh/〈u2z〉1/2). The conclusion to be drawn from
this numerical experiment is that the cyclone/anticyclone asymmetry is independent of the initial
conditions.

Studies of laboratory and numerical experiments on decaying or forced rotating 3D turbulence
report the emergence of columnar structures that are predominantly cyclonic (e.g. Hopfinger et al.,
1982; Bartello et al., 1994; Morize et al., 2005; Staplehurst et al., 2008). In this context, the
asymmetry between cyclonic and anticyclonic vortices is not yet fully understood (Staplehurst et al.,
2008). An argument often quoted in the literature is based on the instability of 2D anticyclonic
regions that have values of the relative axial vorticity close to −2Ω, i.e. when the absolute vorticity,
ωz + 2Ω, is close to zero. In this case, the Proudman-Taylor constraint is relaxed, and it is argued
that 3D motions can destabilise the 2D anticyclonic structure. Lesieur et al. (1991) showed that
for anticyclones having |ωz| . Ω, the background rotation again becomes stabilizing, once the
absolute vorticity is significantly larger than the relative vorticity (in absolute value); the 2D cyclonic
regions, for which the absolute vorticity is always larger than the relative vorticity, are stabilised by
the background rotation. In our simulations, the axial vorticity associated with the LSV can reach
values locally of 2Ω (or greater) for large R̃a, so this argument could explain the cyclone/anticyclone

asymmetry in these cases. However, for simulations with moderate R̃a (for instance for 25 ≤ R̃a ≤ 51
in series S5) and for which a large-scale cyclone is formed, the axial vorticity is usually smaller than
2Ω; thus this argument does not explain the axial vorticity asymmetry in all our cases.

Finally, one further related argument can be invoked to explain the predominance of the large-
scale cyclone. We noted in § 3.2 that the amplitude of the large-scale vortex decays if the local
Rossby number, Rolz, is greater than about 0.15. Clearly this implies that a strong effect of rotation
on convection is necessary for the formation of the large-scale vortex. In an anticyclonic region, the
effective rotation is weaker than in a cyclonic region; the convection is thus locally less influenced
by rotation, which, in turn, could diminish the degree of anisotropy of the convective structures.

The different arguments presented here to explain the cyclone/anticyclone asymmetry at large
scales may all act in conjunction or some may prevail for different thermal forcings. The preference
for cyclonic vorticity induced by the production of intense cyclonic thermal plumes from the thermal
boundary layers seems the most convincing argument at moderate Rayleigh numbers, where LSV
have a small vorticity compared with the planetary vorticity.

Note that in the reduced Boussinesq model of Julien et al. (2012) (valid in the small Rossby
number limit), the large-scale depth-invariant mode consists of a cyclone/anticyclone pair of similar
vorticity. In their model, the local vorticity is neglected compared with the planetary vorticity in
the leading-order equations, so if the vorticity distribution is not skewed initially, then the system
has no preference for cyclonic or anticyclonic flow.

The absence of large-scale concentrated anticyclones of the kind observed by Käpylä et al. (2011)
and Chan & Mayr (2013) is most likely due to the absence of compressibility or stratification in our
Boussinesq convection simulations.

3.4 Transfer of energy to large scales

In this subsection, we discuss how energy is transferred from the small scales, where it is injected (i.e.
the horizontal convective size), to the large scales (i.e. the box size). In particular, the large-scale
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Figure 10: Time series of the kinetic energy in each horizontal wavenumber 1 ≤ kh ≤ 12 for R̃a = 34
of series S5: (a) initial growth using a logarithmic scale for time; (b) long time integration using a
linear scale. The initial condition was a snapshot of a simulation with the same parameters except
that R̃a = 13.

flow may be the result of an inverse cascade of energy, similar to 2D turbulence (e.g. Boffetta &
Ecke, 2012), where the energy is transferred to the smallest wavenumber across the whole spectrum,
or of a direct transfer from the combination of two small-scale modes of comparable wavenumber
as, for instance, in a mean-field instability (e.g. Frisch et al., 1987).

The equation for the evolution of the axial vorticity is

∂ωz

∂t
+ (u · ∇)ωz = (2Ω + ωz)

∂uz
∂z

+ (ωh · ∇)uz + ν∇2ωz, (23)

where ωh = (ωx, ωy, 0). Equation (23) shows that z-invariant vortical flow can be produced only
by nonlinear interactions, since the z-average of the vortex stretching term 2Ω∂zuz is zero owing to
the impenetrable boundary conditions.

To gain some insight into the mechanism of formation of the LSV, we study the behaviour of
the kinetic energy of different horizontal modes, first as a function of time, and then as a function
of increasing Reynolds number.

Figure 10 shows time series of the kinetic energy contained in each horizontal wavenumber
kh ∈ [1, 12], summed over all vertical wavenumbers kz, for R̃a = 34 of series S5. The starting point

was a prior simulation performed just above the onset of convection for this series (R̃a = 13), where

kh = 12 is the dominant wavenumber; at time t = 0 the Rayleigh number was increased to R̃a = 34.
The modes kh ≤ 4 are linearly stable to convection for this Rayleigh number, so they grow only
once the nonlinear interactions of larger wavenumbers gain sufficient amplitude, after t ≈ 20. For
30 . t . 50, the modes kh = 1 – 3 have a roughly similar growth rate, which is larger than that of
modes close to the marginally stable mode at onset (kh = 10 – 12). As the modes kh > 4 saturate
for t & 50, the large-scale modes kh = 1 –3 carry on growing but with a diminished growth rate.
Eventually, for t & 200, the modes kh = 2 – 3 saturate at a greater amplitude than that of the larger
wavenumbers. However, the mode kh = 1 continues to grow at a yet smaller growth rate, about
0.0004. It eventually saturates for times t & 104. The final slowly growing phase of the kh = 1
mode is the process that we aim to understand in the remainder of this section.

The behaviour of the kinetic energy spectrum as the Reynolds number increases can be studied
in figure 11, where we plot the kinetic energy spectra of the horizontal and vertical velocities for
the series S5. For the horizontal flow, energy is transferred from the convective scale to larger
scales even when Γ ≈ 1, but the spectra steepen significantly at large scales when Γ > 1. For cases
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Figure 11: Kinetic energy spectra in the horizontal directions of the horizontal and vertical velocities
for different Rayleigh numbers for series S5. The solid lines correspond to R̃a = 10, 13, 20, for which
Γ ≈ 1, and the dashed lines R̃a = 34, 51, 86, 137, 154, for which Γ > 1. The spectra are calculated
from equations (17) and (18).

Case: A B C D E F G H I

kz = 0 1, 11− 13 1, 6− 8 1, 4− 6, 11− 13 1 1 1 1 1 1

kz 6= 0 1, 11− 13 1, 6− 8 1, 4− 6, 11− 13 all ≥ 2 ≥ 6 ≥ 12 ≥ 15 ≥ 21

E(kh=1)
E(kh≥1) 0.02 0.05 0.03 0.77 0.69 0.91 0.86 0.73 0.03

Table 2: Summary of the filtered simulations. The entries of lines 2–3 in the table refer to the
horizontal wavenumbers that are retained during the simulation. The entries of line 4 denote the
ratio of the kinetic energy in kh = 1 to the total kinetic energy calculated at the end of the simulation.
For comparison, in the full simulation the ratio is about 0.81.

with Γ > 1, the slope is larger for kh = 1 – 2 than for kh = 3 – 10, thereby indicating that the
kinetic energy accumulates at the smallest available wavenumber. The vertical kinetic energy also
undergoes a progressive transfer to larger scales for increasing R̃a. For R̃a ≤ 86, this transfer occurs
mainly to the benefit of the modes 2 ≤ kh ≤ 12, and for R̃a ≥ 137 the vertical velocity is eventually
dominated by the mode kh = 1. For large R̃a, the presence of large-scale vertical velocities could be
due to a secondary recirculation associated with the LSV. In this case, by continuity, the large-scale
vertical flows would be expected to be antisymmetric with respect to the horizontal mid-plane, since
the horizontal flows of the LSV are largely z-invariant, whereas buoyancy-driven vertical motions
are mostly symmetric with respect to the mid-plane. Figure 12 shows cross-sections of uz for
the case R̃a = 154 of figure 11. In the horizontal cross-section, the isocontours of uz are elongated
horizontally. In the vertical cross-section, which is taken through the large-scale cyclone, the vertical
velocity is mostly symmetric with respect to the mid-plane. This indicates that vertical motions
are essentially driven by the buoyancy force rather than by a recirculation of fluid associated with
LSV. The transfer to large scale in the vertical kinetic energy is therefore most likely due to the
reorganization of the convection by the LSV, which leads to horizontally elongated structures.

To determine the ranges of wavenumbers that contribute to the transfer of energy to the large
horizontal scale, we performed a series of numerical simulations in which a given range of horizontal
and vertical wavenumbers of the flow is filtered, i.e. set to zero throughout the time integration.
In all the filtered simulations, the input parameters are set to R̃a = 34 of series S5 and the initial
condition is the same as in figure 10. Table 2 summarises the different cases. First, to test whether
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Figure 12: Cross-sections of the vertical velocity in (a) a horizontal plane at z = 0.25 and (b) a

vertical plane at x = 0.6; R̃a = 154 of the series S5.

a narrow range of spectral modes can sustain a significant kh = 1 mode, we considered cases where
only the modes kh ∈ [11 – 13] (case A), kh ∈ [6 – 8] (B) and kh ∈ [4 – 6, 11 – 13] (C) are retained in

addition to kh = 1. (Recall that kh =
(
k2x + k2y

)1/2
; the kh = n bin includes all modes in the range

n−1/2 ≤ kh < n+1/2.) For these modes, all of the vertical wavenumbers are retained. Figure 13(a)
shows the kinetic energy for each kh in case A. The same two initial phases for the evolution of
kh = 1 can be observed as in the full simulation (figure 10): no growth at first (0 . t . 20), followed
by a rapid growth (30 . t . 50) when the small-scale modes are large enough to provide a significant
amplitude to the nonlinear terms fuelling kh = 1. However, the subsequent evolution of kh = 1 is
different from that of the full simulation; as the larger wavenumbers saturate, the kinetic energy
of kh = 1 also saturates at a much smaller value. Cases B and C exhibit a very similar evolution
for kh = 1. These three numerical experiments demonstrate that a narrow range of wavenumbers
in spectral space cannot directly produce a large-scale flow of significant amplitude, even when an
intermediate range of horizontal wavenumbers is retained (case C).

To determine if the energy transfer from small to large scales is due mostly to the interaction
of strictly z-invariant modes (as in 2D turbulence) or to the interaction of z-dependent modes, we
performed a series of filtered simulations in which the vertical wavenumber kz = 0 is suppressed
for all kh except kh = 1 (cases D–I). Figure 13(b) shows the kinetic energy in mode kh = 1 for the
different cases. We consider whether the kh = 1 mode reaches an amplitude significantly higher
than those of the other horizontal wavenumbers and has a temporal evolution similar to that of the
full simulation. Table 2 contains the ratio of the kinetic energy in kh = 1 to the total kinetic energy
at the end of the simulations. For case D, where all the kz 6= 0 horizontal modes are retained, a
kh = 1 mode of large amplitude is produced. For cases E–I, we further filter the flow by suppressing
all the intermediate modes 1 < kh < kfh , where k

f
h is a given mode. For kfh ≤ 15 (cases E–H), a mode

(kh, kz) = (1, 0) of large amplitude is still generated. However for kfh = 21 (case I), this large-scale
mode has only a very weak amplitude. These numerical experiments indicate that the generation of
the large-scale z-invariant mode does not necessarily require the interaction of z-invariant modes,
i.e. it is not the product of a purely 2D inverse cascade. They further suggest that the generation
of the large-scale mode does not require the intermediate wavenumbers; thus it is not produced by
an inverse energy cascade from interactions of z-dependent modes, but by a direct transfer from
interactions of z-dependent modes at horizontal scales close to the convective scale.

Using the reduced model of Boussinesq convection of Julien et al. (2012), Rubio et al. (2014)
calculate the transfer functions of the kinetic energy of the z-invariant modes when the LSV are
present. They find that the forcing produced by nonlinear interactions of z-dependent modes with
kh ≥ 8 transfers energy directly to the large-scale z-invariant mode. This observation is in agreement

17



10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

time

 

 

kh = 1

kh = 11

kh = 12

kh = 13

(a) Case A

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

time

 

 

full

case D

case E

case F

case G

case H

case I

(b) kinetic energy in kh = 1

Figure 13: (a) Time series of the kinetic energy for each kh in case A. (b) Time series of the kinetic
energy of the kh = 1 mode for several different filtered simulations, summarized in table 2.

with the result of our filtered simulations. However, Rubio et al. find that this process occurs only
during the slow growth of the mode kh = 1, when its energy is dominant. During earlier stages of
the time evolution, they argue that the action of z-invariant flows on the z-dependent eddies leads
to increased coherence of the z-dependent forcing. This result contradicts somewhat the results
from our filtered simulations, where we find that in the absence of z-invariant modes other than
kh = 1, a large-scale z-invariant mode still grows to become dominant. However, it is possible that
the increased coherence of the z-dependent forcing is due only to the action of the z-invariant kh = 1
mode.

3.5 Effect on the heat transfer

In simulations of compressible convection in Cartesian domains, Käpylä et al. (2011) and Chan &
Mayr (2013) observe that the LSV are associated with temperature anomalies; the central parts of
the cyclones (anticyclones) are colder (warmer) than their surroundings over most of the vertical
extent of the convective layer. The increase of the effective rotation in cyclones means that con-
vection is further inhibited by rotation, and it is suggested that this leads to further cooling of the
region. By contrast, in anticyclones, the Proudman-Taylor constraint is relaxed, and so convec-
tion can develop more efficiently, which is interpreted as the warming of the region. Note that in
these compressible models, the convective layer is not necessarily in direct contact with the top and
bottom boundaries; a convectively stable layer is added either above the convective layer (Chan &
Mayr, 2013) or above and below the layer (Käpylä et al., 2011). A further difference to our set-up
is that these models also employ mixed temperature boundary conditions, with fixed flux at the
bottom and fixed temperature at the top.

In a Boussinesq system, vertical temperature profiles are expected to be symmetric with respect
to the horizontal mid-plane on average. Instead of the temperature, we therefore examine the heat
flux at the upper surface (z = 1), defined as

q = − ∂θ

∂z

∣∣∣∣
z=1

+ 1. (24)

Note that the contribution from the linear temperature background, 1−z, is included in the definition
of q. Figure 14(a) shows the instantaneous heat flux at the upper surface for the case R̃a = 46 of the
series S3, where a cyclone of large amplitude is present. In the central region of the horizontal plane,
which is located just above the core of the cyclone, no patches of large heat flux are present, unlike
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Figure 14: (a) Snapshot of the heat flux at the upper boundary, z = 1. (b) Time-average of the
heat flux at z = 1. (c) Time- and vertically-averaged axial vorticity. The cyclone stays roughly at
the same location during the time average. (d) Vertical profile of the time-averaged temperature
added to the linear background profile, 1 − z, inside the core of the cyclone ((x, y) = (1.8, 2)) and

in the anticyclonic region ((x, y) = (3.9, 4)). Parameters: R̃a = 46 of series S3.
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Figure 15: Time series of the Nusselt number and the kinetic energy for R̃a = 37 of series S3.

in the surroundings. During this simulation, long time-averages of q (shown in figure 14(b)) and
of the z-averaged axial vorticity (figure 14(c)) are calculated. The time-average is taken during a
period when the cyclone remains roughly in the same location in a horizontal plane. The averaging
process reveals a distinct patch of weak heat flux above the cyclone, with the minimum in the heat
flux about three times smaller than the maximum.

Figure 14(d) shows vertical profiles of the time-averaged temperature (including the linear back-
ground profile) both inside the core of the cyclone, at (x, y) = (1.8, 2), and in its surroundings, in
the weaker large-scale anticyclonic circulation, at (x, y) = (3.9, 4). The vertical temperature profile
is less steep in the core of the cyclone in the bulk of the fluid compared with the profile in the
anticyclonic region. This implies that the vertical mixing of temperature is less efficient inside the
cyclone, possibly as a consequence of the local increase of the rotation, thus inhibiting convection.
The thermal boundary layers, where the vertical temperature gradient is larger than in the bulk,
are thinner in the anticyclonic region than in the core of the cyclone, which explains the heat flux
anomaly at the upper surface.

Since the large-scale cyclonic structure disturbs both the convective structures and the heat
flux, we might expect a reduction of the efficiency of vertical convective transport. The efficiency
of the heat transfer is usually quantified by the Nusselt number, Nu, which is a measure of the
total heat flux through the layer normalised by the heat flux in the absence of convective motions.
Figure 15 shows time series of the Nusselt number and the kinetic energy for the simulation shown
in figure 5(c) (R̃a = 37 in the series S3). When the convection is initially established for t . 5000,
the mean Nusselt number is about 12.3. Nu then decreases when the large-scale circulation grows
significantly for t & 5000. As the kinetic energy saturates, Nu eventually reaches a mean value of
11.3, roughly 8% smaller than the initial Nu.

A systematic evaluation of the decrease of the Nusselt number in the presence of LSV compared
with its value when the convection is first becoming established (for example at times t . 5000
in figure 15) is not possible for most of our simulations, since we generally use a snapshot of a
simulation at smaller Rayleigh number as the starting point for a new simulation. Instead, we
calculate RNu, the ratio of the Nusselt number measured in the saturated phase in the series S2
(λ = 2) or S3 (λ = 4) to the Nusselt number in the series S1 (λ = 1) for the same Ra, the three
series having the same Ekman number. The large-scale horizontal flows maintain an amplitude
close to the vertical flows in series S1 (Γ remains close to 1), so it is reasonable to assume that
the Nusselt number is unaffected by the presence of the large-scale horizontal flows in this series.
RNu is plotted in figure 16 as a function of R̃a. In the series S2 and S3, RNu is about unity when
R̃a . 20, as expected in the absence of LSV. For 20 . R̃a . 100, RNu is about 0.95 for the series S2
and 0.93–0.94 for the series S3. The value of RNu for R̃a = 37 of series S3 is consistent with the
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observation made in figure 15. Although Γ increases with R̃a within this range of R̃a, the decrease
of the Nusselt number is always about 5% for series S2 and 6–7% for series S3. For R̃a & 100, RNu

tends to 1, which is consistent with the decrease of Γ in series S2–S3.
With their reduced model, Julien et al. (2012) observe that the growth of a large-scale cyclone

and anticyclone pair is, on the contrary, accompanied by an increase in the Nusselt number. Since
their model does not possess the cyclone/anticyclone asymmetry, it is perhaps not surprising that
the effect of the LSV on the heat transfer is different in the reduced model and in our 3D model.
However, the explanation for the increase of the Nusselt number in the study of Julien et al. remains
unclear.

Finally, we assess if the reduction of the Nusselt number due to the presence of the LSV affects
the scaling law deduced for heat flux measurements in the numerical study of Schmitz & Tilgner
(2009). We use the results of Schmitz & Tilgner for comparison, since their rotating Rayleigh-Bénard
convection model is similar to ours, with fixed temperature and stress-free boundary conditions,
although they consider Prandtl numbers of Pr = 7 and Pr = 0.7. To obtain a scaling law for the
heat flux that is independent of the diffusivities κ and ν, they seek a scaling of the form

Nu∗ = αRaβ
f∗, (25)

with Nu∗ = NuEk/Pr and the flux Rayleigh number Raf∗ = RaEk3Nu/Pr2. Schmitz & Tilgner
(2009) find that the best fit to their data is obtained for α = 0.17 and β = 0.55. The prefactor
α given here takes into account the different definitions of Ek used in Schmitz & Tilgner and in
this paper. It should be noted that they obtained this scaling based on the data points for which
0.5 < RePrEk1/2 < 10. As shown previously in figure 4(c), most of our data points are indeed within
this interval (replacing Re in Schmitz & Tilgner by

√
3Rez in our simulations). In figure 17, we plot

Nu∗ as a function of Raf∗ in our simulations. As observed in Schmitz & Tilgner, no individual series
follows the scaling (25) particularly well, but the exponent β = 0.55 is a good fit to the envelope
defined by all of the data points.

The reduction of Nu∗ for λ = 4 (series S3) and λ = 2 (S2) compared with λ = 1 (S1) is barely
visible on the y-axis of figure 17 since it spans four decades. The inset shows a close-up of the data
of the series S1–S3 over less than a decade of the y-axis. Whereas the reduction of Nu∗ is visible on
the inset, it remains small compared with the variation of Nu∗ with Raf∗. In practice, this means
that the effect on the scaling laws for the heat flux of changing λ, i.e. changing the amplitude of the
LSV, is relatively small.
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4 Discussion

We have presented simulations of rotating Rayleigh-Bénard (RRB) convection that demonstrate the
emergence of long-lived, large-scale vortices (LSV). These LSV consist of a patch of strong cyclonic
vorticity surrounded by a region of weaker anticyclonic vorticity, both aligned with the rotation axis,
which appear at the box size and are nearly depth-independent. With stress-free top and bottom
boundaries, for the Ekman numbers considered here (Ek = 10−4 – 5× 10−6) and depending on the
aspect ratio, the kinetic energy of the horizontal flow can be as much as ten times greater than that
of the vertical flow, which is driven directly by buoyancy. LSV are observed when the Reynolds
number based on the rms vertical velocity exceeds 100 – 300, the threshold value being dependent on
the box aspect ratio but independent of the Ekman number. This corresponds to Rayleigh numbers
only about three times that at the onset of convection. The amplitude of the large-scale flow starts
to decline once the thermal input is strong enough to allow a relaxation of the rotational constraint.
Quantitatively, this decay of the LSV occurs for a local Rossby number based on the convective
velocity, Rolz, of approximately 0.15. Moreover, if the two conditions (i) Rez > 100 – 300 and (ii)
Rolz . 0.15 are met, we always observe a transfer of energy to the large horizontal scale, even for
modest scale separation between the horizontal convective eddies and the horizontal extent of the
domain (a factor four between the two is the smallest scale separation we considered). We tested
the cyclone/anticyclone asymmetry of the LSV by artificially inverting the sign of the vorticity
at a given time; the large-scale anticyclone subsequently disintegrates into smaller vortices, and
the cyclone/anticyclone asymmetry at large scales is established relatively rapidly, after about 100
rotation timescales.

To gain some insight into the mechanism of the formation of the LSV, we performed a series
of filtered simulations, in which spectral coefficients of given horizontal and vertical wavenumbers,
kx, ky and kz, are artificially suppressed during the time integration. The filtered simulations
suggest that the LSV (corresponding to (kx, ky, kz) = (1, 1, 0) in spectral space) are produced by
the nonlinear interactions of small-scale z-dependent convective motions. Moreover, the presence of
the spectral range between (kx, ky) = (1, 1) and the typical horizontal wavenumber of the convective
structures is not required to sustain the LSV. As mentioned above, the amplitude of the LSV declines
if the convection is not strongly influenced by rotation, in which case the convective structures are
less anisotropic. To interact coherently, the convective motions must therefore present a significant
anisotropy between their vertical and horizontal extents, i.e. they must be significantly affected by
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rotation.
In our study, the smallest compensated Rayleigh number, R̃a, at which LSV appear for different

Ekman numbers corresponds to the transition from cellular convection (R̃a . 20) to the thermal

plumes (R̃a & 20) measured in the study of Julien et al. (2012), which is based on a reduced model
of Boussinesq convection valid in the small Rossby number limit. Thermal plumes originate from a
buoyancy instability in the thermal boundary layers. Vortex stretching within the plumes ejected
from the boundaries yields an axial vorticity distribution that is skewed towards positive values near
the top and bottom boundaries (Chen et al., 1989; Julien et al., 1996). Since the axial vorticity
has no horizontal average, anticyclonic convective structures are necessarily also present, but they
are less compact and have weaker vorticity. The formation of intense cyclonic thermal plumes near
the boundaries could explain the predominance of the large-scale cyclonic circulation. Assuming
that two cyclonic plumes form from the thermal boundary layer at sufficiently small distance, they
would start to drift horizontally around one another (e.g. Boubnov & Golitsyn, 1986; Hopfinger &
van Heijst, 1993); the conditions for the merger of two like-signed vortices depend notably on their
separation distance, radius, and vorticity, and are the subject of an abundant literature on vortex
dynamics (e.g. Griffiths & Hopfinger, 1987; Melander et al., 1988; Cerretelli & Williamson, 2003;
Meunier et al., 2005). The patch of cyclonic vorticity they create will be deformed by the background
shear created by nearby individual vortices. In return, the deformed cyclonic patch tends to attract
nearby cyclones and repel anticyclones (Yasuda & Flierl, 1997). Merging of anticyclonic structures
can also occur, but would be less likely as vortices of intense strength are more likely to merge.
Since the horizontal boundaries are periodic, the repulsion of anticyclones by the large-scale cyclone
would tend to group the anticyclones in the surrounding area, and so establish the weak anticyclonic
circulation. In this scenario, the underlying asymmetry between large-scale cyclonic and anticyclonic
circulation arises therefore through the formation of thermal plumes, which builds up a population
of strong narrow cyclonic vortices, and the interactions between like-signed vortices then lead to
the formation of one large cyclonic vortex by absorbing this available population of strong narrow
cyclones. A potential weakness of this explanation for LSV formation is that the initial population
of narrow cyclones is mainly located near the horizontal boundaries, whereas the LSV span the
entire vertical extent of the domain. The clustering of cyclonic vorticity is described here as a two-
dimensional process, but the conditions for interaction and merger of three-dimensional vortices
have also been studied in detail in the literature (e.g. Özuğurlu et al., 2008). As observed during
the time evolution of the kinetic energy of the large horizontal scale, the process of formation is slow,
and occurs over thousands of rotation timescales; the large-scale flow eventually saturates when the
viscous dissipation can balance the clustering of the convective eddies.

In their reduced model, Julien et al. (2012) observe the thermal plume regime for R̃a & 20, but

they report the formation of LSV for larger Rayleigh number, namely R̃a = 100. In their study, the
large-scale depth-invariant mode consists of a cyclone/anticyclone pair of similar vorticity. Towards
the low Rossby number limit, the asymmetry between cyclonic and anticyclonic thermal plumes
tends to vanish (Vorobieff & Ecke, 2002; Sprague et al., 2006), and we indeed expect that the process
of clustering of like-sign vorticity plumes would produce both large-scale cyclonic and anticyclonic
circulation of equal strength.

The simple scenario we propose for the formation of the large-scale cyclone is in agreement with
the result of our filtered simulations, but remains to some degree speculative. This proposed picture
could work in conjunction with the instability of large-scale anticyclonic regions for which the total
vorticity (ωz + 2Ω) is small (Lesieur et al., 1991). The reduction of the rotational constraint on
the convection in large-scale anticyclonic regions yielding a possible local increase of Rolz above the
threshold value of 0.15 could also contribute to the preference for cyclonic LSV. To confirm the
proposed scenario of the formation of LSV, it would be interesting to study the interactions of a
small number of convective structures in isolation, together with the effect of artificially added large
patches of vorticity. Such studies are beyond the scope of the present paper, but could be addressed
in future work.

Despite a number of fully 3D models of rotating Boussinesq convection in Cartesian boxes, this
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work is one of the first to report the formation of box-size vortices in this system (see also Favier
et al., 2014). The independent work of Favier et al. (2014) has been carried out using a model
of RRB convection with the same boundary conditions as ours, and their results are in agreement
concerning the domain of existence of the LSV, the nature of the energy transfer to large scales,
and the asymmetry between cyclones and anticyclones. An interesting difference between the two
studies is that Favier et al. use a computational domain of larger aspect ratio for similar Ekman
numbers (for instance λ = 4 for Ek = 10−5), so they were able to achieve larger scale separation
between the box size and the convective scales. In this case, they observe that several coherent
cyclonic vortices coexist initially, and that these merge when two of these cyclones become close
together, with eventually only one box-size cyclone remaining.

Some of the earlier numerical studies of RRB convection have been carried out in the same
parameter regime for which we identified the existence of LSV. Most of these were interested in
measuring the heat flux in order to deduce scaling laws and thus identify transitions between the
various convection regimes. As shown in § 3.5, the presence of LSV markedly disturbs the convection
by inhibiting the mixing in the core of the cyclone, yielding a reduction of the Nusselt number
compared with its value when convection sets in, of about 5 to 8%, depending on the aspect ratio.
However, when viewed over several decades of the input parameters, this effect on the Nusselt
number is not particularly noticeable on the scaling laws calculated with different aspect ratios.
LSV could therefore be present in these earlier studies but not reported because of their minor
influence on the scaling laws of the heat flux.

The choice of boundary conditions is probably an important factor for the formation of LSV. No-
slip boundary conditions for the velocity would tend to increase the viscous damping in the boundary
layers compared with stress-free conditions, thereby reducing the amplitude of the horizontal flows.
The absence of LSV in a number of experimental studies conducted in the range of parameters
where LSV might be expected (e.g. Boubnov & Golitsyn, 1986; Zhong et al., 2009; King & Aurnou,
2012) possibly suggests a destructive effect of no-slip boundaries on these structures. However, the
comparison between simulations and experiments is not entirely straightforward because the main
difference lies not only in the top and bottom boundary conditions, but also in the presence of side
walls, which are known to influence convection in some cases (Liu & Ecke, 1999). Furthermore,
in order to observe LSV in fluids with low viscosity, it is necessary to run experiments for a long
time since the saturation depends on the viscous dissipation at large scales. Finally, changing the
boundary conditions for the temperature to fixed flux rather than fixed temperature may also affect
the presence of LSV, although the effect in this case is more difficult to predict. The effect of the
boundary conditions therefore remains an interesting open question, which we propose to investigate
in subsequent work.
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