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Polynomial Systems

S.P.Banks
Department of Automatic Control and Systems Engineering,
University of Sheffield,Mappin Street,
Sheffield S1 3JD.
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ABSTRACT

In this paper we shall extend a number of results concerning the boundedness and nonlocal
continuation of differential equations with sublinear bounds to ones with polynomial vector
fields. We shall also show that the solution of many kinds of equations can be obtained as the
limit of a sequence of time-varying linear approximations and use this to derive boundedness
and stability results. These results directly generalise those of [1].
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1. Introduction

Nonlocal continuation and boundedness of solutions of nonlinear differential equations

d.I'i
dt

=fi(t;.’£1,"',$n),tER+,$i€R,IS?:SR (11)

has recently been studied in [1] by Yang in the case where f has a sublinear bound in terms of
z. In fact, the following has been proved:
Theorem A Suppose that the functions f; belong to C(R, x R™,R) satisfy the condition

[filtsun, - un)| < ma(t) + zn:?fij(fﬂuﬂa teRyi=1,---,n (1.2)
j=1

where u; € R, n; and &; belong to C(Ry,R.). Then every solution of (1.4) is continuable on
R, and satisfies the inequality

)] < 2:(0)] + [ ms)as + [ Q(s)

L
e:{p/ P(T)d?‘} ds,teRy,i=1,---,n (1.3)
s

where
P(t) L= Zma*x[glj (t)) e 1§T!-j(f‘)]a (14)
7=1
n ; t
QD)+ = {maxte (0, (e (o0 + [ mis)as) )
j=1
Using similar methods, n'* order equations of the form

v =F(ty,y, -,y ), teR,yeR (15)
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are considered and the following result is obtained:
Theorem B Suppose that the function F' € C(R; x R™, R) satisfies the condition

|F(tuy, - un)| < glt +Zh Nyjl, t € Ry (1.6)

where u; € R, g and h; belong to C(R.,R,;). Then every solution of (1.4) is continuable on
R, and satisfies the inequalities

pI@) < |y“f-”<0)!+<1>(> b1 0~ B,

" h @) < )(0)] +] s)ds + ®(¢), t € R,
where
f ij {exp -/St {ri pi(T {k 1) (0)] + pu(T) <|y(n—l)(0)| 0 /OTg(v)dvﬂ d'r} ds
(1.7)
and
pi(t) :=max[1,h;(t)], teERy, 1< j<n (1.8)

The main restriction in these theorems is the global sublinear bound on the vector field, a
condition which is never met for polynomial systems. In this paper we shall generalise the above
results to the case of polynomial vector fields. Such vector fields are important in dynamical
systems theory, including chaotic motion, isochronous systems etc. (see, for example, [2], [3]).

Another approach to nonlinear differential equations, stability and boundedness is via sys-
tems of the form

= A(z)z+ f(t), 2(0) = 2o (1.9)
which have been considered extensively in [4], [5]. The main technical approaches have been to

consider the Lie algebra generated by the matrices A(z) as z varies in R™, or to think of these
systems as perturbations of the system

g=Alz)r , #(0) =4 (1.10)
which is studied by introducing a sequence of linear, time-varying approximations
20(t) = A @)z @) , 2(0) = 24 (1.11)

In this paper we shall take the latter approach to obtain boundedness conditions on the so-
lutions of (1.3) by showing that the sequence of functions z!"(t) defined by (1.5) converges in
C([0,00); R™) and have uniform bounds in i.

A brief note on our notation is in order here. We shall use the following form for the Taylor
series of a function f(z) : R® — R™ about some point Z:

where i = (i1, --,4n), [i| = i1+ +in, (2 —F) = (1 — F1)7 (22 — 22) - - (2 — Z,)"" and




X

2. Polynomial Systems

Consider the nonlinear ordinary differential equation

dCC-i
' dt

=f1(t,I1,,$n),tER+,.T2€R, ].S?'Sﬂ (21)

where f; is a polynomial function of z, which satisfies a global bound of the form
Ifi(t;:cl,..., + Z Cz |x |P1_.,|xnlpn (2_2)
|p|>0

for all z € R™ and some K > 0. Denote the function on the right hand side (without the
constant term n;(t)) by I;(¢; 21, -+, z,) ie.

(¢ 2y, - - Z Cp ()|z1[P* - - - |zal® . (2.3)
[pI>0
Given such a function and n positive real numbers a;,---,a, € R,, we can form a linear
function of |z,],---,|z,| by fixing all but one of the factors |z4| at ar. For example, we can
form the linear function
n K ) "
LBy, - - i, v ¢ ,0n) = Z Z C;(t)a‘"‘fl " "1?] T aﬁ“lzﬂ (2.4)
J=1|p|>0
p;>0

where &;;(t,a) = K i (t)ar - a,pj_l --abr. Let S, ...q,) be the set of all possible vectors
J [P|> 1 n { 1, 71)

(by,---,£,) of lmear functmns of |z1],+ -+, |z,| associated with Ti(t;z1,---,2,),1 < i < n, in

this way. Moreover, let f; represent any of the corresponding functions assomated with f; in
this way, i.e.

O LIRS 3) S AV (25)
i=1Ipl>0
p;>0
We can now state the main result of this section:
Theorem 2.1 Suppose that the functions f; belong to C(R, x R™, R) and satisfy the condition

Ifl(t;'rl:" » T + Z C 'Illp1 |In|pn .
[p|>0
Moreover, suppose that the numbers q;, - - - , @n and the initial vector z(0) satisfy the inequality
L
|z:(0)| -i—/ ni(t)ds +V(ar,---,anit) <a,, 1<i<n (2.6)
0
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for all t € R, where
V(ag, -+ ,an;t) = _max /Qsa {e‘cpf T(Id’f']
S(ay,am)

and

a) 2 Z max|[£y;(t, a), - - -, &nj(t, a)]

i{max[aj (t0) - ults )] (1250001 + [ mi()ds) }

then the solutions of the system (2.1) satisfy the inequality
|z:(t)] < as, (2.7)
forallt € R,, 1 < i < n, for any initial condition z(0) which satisfies (2.6).
Proof From (2.6) we clearly have |z;(0)| < a;,1 <7 < n. If (2.7) does not hold for all ¢t > 0,
then let 7" be the smallest time at which |z;(¢)| = a; for some j € {1,---,n}. For t € [0,T] we
have |z,(t)| < a; for each ¢, so we have :
|filts 21, -+ 2n)| < | filti1soe -, 2a)]

for any choice of f; on this interval and so by theorem 1 of [1], we have

1:(2)] < |2:(0)| +f0t m(t)ds—i—fotQ(s,a) [exp f:P(T, a)dr] ds (2.8)

for all t € [0,T], where we have used any fixed functions 4;,1 < < n in S,,...,). However,
by (2.6) each right hand side of (2.8) is strictly less than a;, which gives a contradiction.O #
Example 2.2 Consider the quadratic system of equations !
T1 o= m(t) + p1o(t)zr + por(t) 22 + pap(t)a] + p1, (8)z12s + 1y ()3
T = 1a(t) + kip(t)zr + ugy (t)z2 + pao()a] + pd, (8) 2122 + p, ()23

i.e.
2 2
T = m(t)+ ZUL(t)fﬁjz
=0 j=0
2y = mat)+ DY w(t)zied
=0 j=0

Given (ai,az), the set S(a, 4,) contains four pairs of linear functions; i.e.

(Into(®)]z1 + [uor (B)|z2 + a1|uze(t) 21 + an|pgs (B) |72 + azlugy(t) |22,

|luto ()21 + |5y ()22 + a1 |pdo()|z1 + a1|p) (2) |22 + aa|uds(t)]22)
(lto (@) |y + |pgy (B)] 22 + a1|,u20(t)|3:1 + ag|y (B)|21 + aaugy(t)]2

o)z + |ugy (B) |22 + ar|pdo(B) 1 + an |, (2)|2 + aalpd, (f)|$2

(|H1o(t |z + | (t) |22 + G«l]#zo(t)]ﬁfl + a1|pg (B)|22 + azlugy (t) |22,

|1 + l#o (t)|z2 + all#z ()1 + a2|#1 (t)|z1 + azwﬁ t)|z2)

|1+ 1 (8) 22 + a1 |u30(t) |21 + a2|li1 (t)|z1 + az|ugy(t) |22,

)
21+ |y (£)|z2 + a3 Z(ll‘)l:'rl + aslui; (1) |21 + as|uy(t) z2)

f'_\/—\

g
o
—
[ S
S— s —~
/—\
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l.e.
(€ (k)zy + &1a(k)xa, Eor (k)zy + Ena(k)zy) , 1< k< 4
where
En(l) = |u10(®)] + arluge(8)], €12(1) = |udy (8)] + ar|pl; (8)] + aoluds (2))]
E1(1) = [p10(®)] + arludo(®)], E22(1) = |udy (t)] + a1|udy (8)] + aolpy(t)]

with similar expressions for &;;(k),2 < k < 4. Let
P(t,a;k) = Zmax[&j ),625(k)], 1< k<4

Qt,a k) = Z{max[&lj (k) &25(k (|93; +/ n;(t )}

j=1
Then, if
t t
Via,t) = ma@{q/ Q(s,a; k) [exp Plrym k)d,—] ds
0
and z(0) satisfies
t
|z:(0)] +f ni(t)ds + V(a,t) <a;, i=1,2
0

we have
el < mi=12

In particular, consider the equation

. a4 3

3 = ae™t (1420 — 4z, + 32})

In this case the set S(a;,as) has only one element and the corresponding linear equation is

: o
T, = 1+t2 (14 1 + 225 + 679a,)
Ty = (1+2:c1—4m2+3$1a1)
Hence,
3 ¢ 2 (2 + 6az)
—_ y & a
§n = 2+ 3a1) , op = dae™!
and so
o
L, 2 2+ 3 4 :
(ta) < 5@ +3m) + 7—5(4+6ar)
o
= 1+t2(6+3a1 + 6as)

)




Also,

Qa) < pose+im) (InO)+ [ )
P4+ 60y (I$2(0)| + [ t esds)
= - ftz [(2+ 3a1) (j21(0)| + arctant) + (4 + 6a2) (jz2(0)] +1 - e7")]
< [(z +3ay) (|x1(0)1 + g) + (44 6az) (|22(0)] + 1)}

Finally,
V(a,t) = fOtQ(s,a) {exp ftP(T,-.a)del ds

o (g) exp {(6 + 3a; + 6ag) (gﬂ X

[(2 + 3a) (|J:1(O)! + g) + (4 + 6as) (|z2(0)] + 1)}

[

Hence, to satisfy (2.6), we must have

|z1(0)| + & (g) +a (g) exp [(6 + 3a; + 6a)a (g)} %
k2+mn0mmn+g)+m+&m0mmn+n}<m

|z2(0)| + @ + & (%) exp [(6 + 3a; + 6ay)a (g)] X
2+ 30) (172(0)) + 5 ) + (4-+ 62) (2(0)| + 1) < 2

This will hold, for example, if @ < 0.005,a; = ao = 1 and |z,(0)| < 1/2,]z2(0)] < 1/2. Hence,
under these conditions, the solutions z;(t), zo(t) are bounded by 1.
3. Pseudo-Linear Systems
In this section we shall consider a system of equations of the form
=n(t)+ Alz)z , =(0) = 2o (3.1)
and introduce a sequence of (linear) approximations of the form
#0(2) = n(t) + AV (@) (t) , 2M(0) =20, i > 2 (3
with
#(t) = n(t) + A@w)z"(t) , 2"1(0) = 20 (33)
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for any fixed y € R™. We first consider the convergence of the system (3.2),(3.3) in C([0, T]; R™),
for some T > 0. First, let ‘i)li_l'(t, to) denote the transition matrix generated by A(:c[iﬁ”(t)). It
is known (see [6]) that

H@[Fll (t, tg)“ < exp {ft: i (A (zii_l](”r))) d’f']

where u(A) is the logarithmic norm of A. The next result gives an estimate for oli-1 _ pli-2,
We shall assume, initially, that A(z) satisfies a global Lipschitz condition of the form

|A(z) = AWl < allz—yll , Yo,y €R” (3.4)

for some a > 0 and relax this later to a local condition.
Lemma 3.1 Suppose that p(A(z)) < p for some constant p and all z and suppose also that A
satisfies the global Lipschitz condition (3.4). Then,

@632, t0) — @A (t, 1) || < ae (¢ — to) sup |

SE[fu‘t]

zl-(s) — x[i"Ql(s)H

Proof &1, -2 are solutions of the respective equations

3 = AUz, 2(te) =1
w = A@EFA))w, w(ty) =1
Hence,
2o - w) = AR (e —w) + [AGFIE0) - AEA)] w
and so
- w= [ @8(t,s) [Alal(s)) - A(aHH(s))] wls)ds
ie.

=l < [ e ([ A ) e ([ uaE3m)r)

to
X i gl (s) — mﬁ_z}(s)H ds

< exp(u(t —to))a(t —tg) sup |

:c“’l](s) - :c[i_ﬂ(s)H .0
s€(to,t]

Now, from (3.2), we have
. . t -
x[“](t) = ¢li-1 (t,to)zo + A Q)["fll(t, s)n(s)ds.
Let

5[1-] (i‘) = sup “I[‘i](s) — $[i—1](s)H 8

s€(0,t]




Then,
() — 20-1(2) = (@F-1(2,0) — @2t 0)) 2o+
/ (@5t 5) = 2E-3(t, 5)) n(s)ds
8]

and so

§1) < cexp(utte(e) ool + a [ exp(ult ~ ))(t — s)gt(s) n(s)]| ds |
< aexp(ut)tet () [Izol + [ exp(—ps) ln(s)lds] N

Suppose that exp(—pt) ||7(t)|| € L![0,T) for some 0 < T < oo, and let

K = [ exp(—is) lln(s)|d (3.5)
0
Then we have _
ef(t) < a(||zoll + K)t exp(ut)eli~Y(t) (3.6)
for t € [0,T7; i.e.
() < vel-I(T) (3.7)
where
= a(|lzol| + K)texp(ut) . (3.8)
Thus, ’
il(T) < v 2T (3.9)

We can now state
Theorem 3.2 If A(z) satisfies

plA(z)) < pvzeR™
|A(z) = AWl £ allz-y| , Yz,y €eR"

and
v 2 sup allzel] + K)texp(ut) <1
s€(0,t]

then the equation (3.1) has a unique solution on [0, 7| which is the limit of the sequence z! ()
in C([0, T]; R™).
Proof This follows from the fact that zl/(¢) is a Cauchy sequence in C( [0, T]; R™), since for

bl

1> 7,
i j : ' - . B
sup ‘J:H(t) _ :C[J](If)H < Z sup “dq;[k}(t) — zlk Il(t)”
te(0,T) k=j+1 tel0,T)
< > R
k=j+1
o (1=t
—  grd @
o7 (L2 e
8




by (3.9). O
Corollary 3.3 If 4 < 0 and

e (ol + ) exp(ps) (o) ds) (7 ) e < 1

then the sequence converges for all ¢ > 0 to the unique solution of (3.1). O
We can find a bound on ||z(-)|| = lim;_ zl1(:) (where the limit is taken in C([0, T];R")) in
the following way:

L

sup [2f()]| = sup [[«F)(t) — 2lU(t) + 2FU(E) — - — 2U(E) + 2 (2)|
t€(0,T te[0,T]

< J;Em(t) + s (Gl

T i—1
= = _VV P(2) + sup me(t)” (3.10)
and so, letting i — oo,
sup H:J:WL‘)H < Lgm(t) + sup “mm(t)‘l (3.11)
t€[0,T) ]~ t€[0,T]

We can bound z!!(¢) and ¢/ (¢) in a similar way to that used in lemma 3.1 In fact, we have
Lemma 3.4 Bounds on z!"(¢) and ¢1%(¢) are given by

5 oo T =

sup [[«(t)| < sup e (HIGH + [ e n(s)l ds)
t€[0,T] te(0,T] 0

where i = p(A(y)) and

0 < g 01 s
te[0,7) K (tefo,T)

<l =l + ¢ [T e (o) ds + 4G -l £ (e - |}

Proof The first estimate is trivial. For the second, note that

20t - a8(t) = A@EP@)2P() - Aly)zl (1)
= A() (%) - 2 (®) + (AP() - Aw)) 2

and so

VAN

e —a] < [ o ][ - ] [ o

t
< a sup |l:.c[1](t)H] ehlt=s)
te[0,T) 0

zl(s) — y“ ds .

9




. |

Now, zll() — y satisfies the equation

j;!l](t) —y=(t) + A(y) (:Em (t) — ZJ) + A(y)y

and so . '
2P(t) =y = A0z — y) + [ A0 (5(5) 1 A(y)y) ds

from which the result follows. O
Remark 3.5 We have shown that, under the above assumptions, z(¢) satisfies a bound of the
form (3.11) on the interval [0, T, say

sup [|=(t)]| < B = B(v, u, i, 1(.), 70, ).

te[0,T]

Hence by (3.10) and (3.11) we only require the Lipschitz condition (3.4) for z € {z : ||z <
B} =A, ie.

lA(z) = AWl < el - yll , Vz,y € A.
If p<0and K = [ exp(—ps) In(s)|l ds < o0,

Voo = sup o (|lzof + K)texp(ut) < 1
te(0,00)

then the solutions exist for all ¢ > 0 provided the Lipschitz condition on A(z ) holds for all
z,y € {2: ||z|| € Bs} where

Boo = BDO(VDCJ Ky Ly 77(')7 Zo, C)f) = sup ”T(t)” 0

t€[0,00)
Remark 3.6 The above results show that if A(z) satisfies a local Lipschitz condition, then for
T" small enough, the sequence of approximations (3.2) and (3.3) converges on [0,7]. O
4. Sublinear Approximations
We shal finally consider pseudo-linear systems of the form
T =7j(t) + A(z)z , 2(0) = zq (4.1)

in the spirit of section 2 and [1]. Again, we introduce a sequence of linear approximations to
(4.1) in the form

all(t) = 7(t) + A(y)zl (1) , 2(0) = z, (4.2)
and
ﬁ%) ﬂ)+A@“”U)MU 2(0) =25, i > 2. (4.3)
If ff}(t;:cl, R [ A(zli-1 ] then f” satisfies the inequality

3

’f}i](f;uh"',un).ﬁ% Z t) Juxl

10



where _ ‘
ni(t) = 7 ()] 5 Ea(e) = |ase(at(2))|
and
A1) = (ap(=2))) -
We shall assume that _ _ _
E8L(t) = |age(a1(2))] < panl|= 1 (1))

for some polynomial functions p;x(z) (where |z| denotes the vector norm |z| = max (|z;], - -, [Zx])-
Then by theroem 1 in [1], we have

)| < la;(0 1+/n;, ds+/Q exp] ] CteRTi=1--.n  (44)
where
ORISR HON TONEN- 10)
< Jf,lmax (13|25 0], o2 (2= )), -, g (1 (0)])]
and

Qv 23 {max[ell0.el, - 20] (In )1+ [ n61as)}
< > {max [ 0] (12,1 + [ ni(s)ds) ).

1
:cﬁ‘”(t)’ < K, t € [0,T] for some bound K and some

2t (2)]), s

I[i_l}(t)l):... 7p71j( T

o,
1

T > 0. Let .
R(K) sup Zmax [Plj (Z)ap2j(z)> T Honj(z)] .

z€[0, K]J 1

Clearly, R(K) < co and sup,cj7y P(t) £ R(X). Also,
T "
/o Al

[) TU(S)dS

t€[0,T

sup Q1) < R(K) - (|sc<o>| n

Hence, from (4.4) we have

fOTU(S)ds

sup |r
t€(0,7)

10| < 1=(0)] +

+T [H(k) : (‘z(U)I +

) exp(T - R(K))} . (4.5)
Also, from (4.2), we have
t
z(t) = eAWtz, +f eAWE=9)7(5)ds
0

11




S0

sup |z(t)| £ M(T,n) sup e* (Ia:g| -
(0,7 t€[0,T]

/DTW(S)dS

for some constants M (depending on T and n) and p. We then have
Theorem 4.1 Suppose that

) (4.6)

o0+ | n(e)a

+T {R(;ﬁ). (p:(o)] -

fDTn(s)dsD exp(T - R(K))} <K

)gK

for any given K > 0. Then the sequence of approximations (4.2), (4.3) has a convergent
subsequence which converges in C([0, T]; R") to the solution of (4.1) and, moreover, z(t) satisfies
the bound

and

M(T,n) sup e (1I0| + M)Tn(s)ds

te{0,7]

lz(t)| < K, t €[0,T].

Proof By (4.5) and (4.6) we have shown that under the conditions of the theorem, z!(t) is
uniformly bounded in C([0, T]; R") (by K). A similar argument shows that the sequence zl(t)
is equicontinuous on [0, T'] and so the result follows from the Arzela-Ascoli theorem, by standard
arguments. O

Remark 4.2 Since K is arbitrary in this theorem, it gives us a nonlocal bound on the solution
of (4.1). If K is large then the theorem gives conditions on the length of time the solution
exists relative to the size of the initial condition.

Remark 4.3 Just as in [1], we can easily consider higher-order systems of the form

y(n) = F(ti Y, ylﬁ e ?y(n—l))

by the usual phase plane trick.

5. Conclusions

In this paper we have extended the results of [1] to the case of polynomial vector fields. We have
used two approaches to the problem; in the first we fix all but one variable in each polynomial
right hand side of the defining equations so that a sublinear estimate can be obtained. The
results of [1] are then applied and it is shown that the solution will be bounded on some time
interval depending on the bound on the fixed variables. In the second method we derive a
sequence of linear (time-varying) approximations to the original equation to which the results
of [1] can again be applied. The sequence is shown to converge in an appropriate space. It is
also clear that the methods apply to systems with only local sublinear bounds, rather than the
global ones in [1].
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