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ABSTRACT 

 

This paper presents, and investigates properties of, a doubly dynamic simulation assignment 

model which involves specifying a day-to-day route choice model as a discrete time stochastic 

process, combining a between-day driver learning and adjusting model with a continuous time, 

within-day dynamic network loading. Such a simulation model may be regarded as the 

realisation of a stochastic process, which under certain mild conditions, admits a unique 

stationary probability distribution (i.e. an invariant probability distribution over time of network 

flows and travel times). Such a stationary state of the stochastic process is of interest to transport 

modellers, as one can then describe the stochastic process by its moments such as the means, 

variances and covariances of the flow and travel time profiles. The results of a simulation 

experiment are reported in which the process of individual drivers� day-to-day route choices are 

based on the aggregate learning of the experienced within-day route costs by all drivers 

departing in the same period. Experimental results of the stationarity of the stochastic process 

are discussed, along with an analysis of the sensitivity of autocorrelations of the route flows to 

the route choice model parameters. The results also illustrate the consistency of the link flow 

model with properties such as First-In, First-Out (FIFO), and a simple network is used to 

illustrate the properties. 
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INTRODUCTION 

 

Traditionally, dynamic traffic assignment in the literature refers to the modelling of traffic flows 

on street networks due to the variations in the demand within a day, and capturing the spatio-

temporal congestion effects through suitable dynamic link travel time functions. Usually such 

models are aimed at solving for either dynamic system optimal or dynamic user equilibrium 

problems. As they consider deterministic flow variables, the solutions naturally tend to be 

deterministic representing an average situation at each moment. As a result, the within-day 

deterministic models cannot explain the random variations in traffic flow, besides being unable 

to represent the transient states in the evolution towards equilibrium (1). In fact, the purview of 

dynamic traffic assignment is much wider and includes day-to-day variations in the demand in 

addition to the usual within-day variations. Day-to-day evolution of traffic flows was considered 

by several authors in the past (1-4), all of whom focused on the evolution of the traffic flows 

across the days either as a stochastic or a deterministic process, but primarily based on static 

within-day cost-flow functions. On the contrary, nowadays, more generalised traffic assignment 

models are being developed which are aimed at addressing both the day-to-day and within-day 

variations in route flows and such models are called doubly dynamic traffic assignment models, 

which are the main subject of the present paper. 

Cascetta and Cantarella (5) developed such a doubly dynamic simulation model in which 

they defined the route flows on any day as a stochastic process and included a queuing model to 

capture the delays on the links. Friesz et al (6) considered deterministic flow variables and 

defined implicitly a doubly dynamic assignment model considering the day-to-day and within-

day dynamics simultaneously, but the model carries with it the usual limitations associated with 

the deterministic approaches described in the previous paragraph. Balijepalli and Watling (7) 

developed a variance approximation method to estimate the properties of a stationary probability 

distribution of a stochastic process in a doubly dynamic environment. Their model was 

developed as an alternative to the simulation model, based on a deterministic approximation 

approach. On the other hand, the present paper considers the simulation of route choice process 

based on a Monte Carlo technique. This paper focuses further on the concept of stationarity of 

stochastic processes and analyses correlograms as a way of detecting the stationarity based on a 

necessary condition.  

This work builds on the findings of Cantarella and Cascetta (8), and the particular aims 

of this paper being to specify and investigate the properties of a doubly dynamic simulation 

model for the route choice process incorporating the drivers� day-to-day learning and adjustment 

process through an aggregate memory model, combined with a continuous time dynamic 

network loading method to obtain the drivers� experienced travel costs within a day. The doubly 

dynamic traffic assignment problem is solved using a Monte Carlo simulation method. Given the 

time varying demand profile and the network specification, the expected output of the stochastic 

process model includes, during each departure period within a day, the mean traffic flow, the 

variance of route flows, as well as estimates of the covariance in flows between days and time 

periods when the process is stationary. Thus this research provides a further step in advancing 

our understanding of the modelling of variability of traffic flows on street networks. A simple 

grid network with multiple origins and destinations is used to illustrate the principles described. 
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SIMULATION MODELLING FRAMEWORK 

 

Preliminaries and Modelling Assumptions 

 

Consider a network of directed links serving O-D demand represented by  where 

is the O-D demand for a particular commodity k, each commodity defining a combination of 

origin, destination and (discrete) departure period. It is assumed that the total period of analysis 

is divided into L departure periods. Each commodity k is served by a set of routes  with 

{ ,......., kq=Q }
kq

kR kR  

elements; the full route set across all commodities thus has dimension ∑
=

=
K

k

kR
1

ρ . Let f be the 

ȡ- vector of commodity route flows and c(f) the vector of commodity route costs.   

It is assumed that all the trip makers of commodity k are rational in their behaviour when 

choosing their route, in an attempt to minimise their perceived cost of travel. For each 

commodity k and route , the perceived travel cost  at the start of day k is given by kRr∈ kn

rC )(�

 
(n)k

r
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r

(n)k

r ȘCC += −�           (1) 

 

where  is the population-mean perceived cost for commodity k and route r at the end of 

day n-1, and  is a random variable describing unobserved attributes contributing to the 

population-dispersion of the perceived attractiveness of route r by commodity k. The 

kn

rC )1( −

kn

r

)(η
ρ -vector 

C(n-1)
 represents the collection of population-mean perceived costs across all commodities. The 

probability of choosing route r on day n is then given by:  
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pk
(.) then represents the vector (of dimension kR ) of route choice probabilities for the 

commodity k, and p(.) denotes the collection of these choice probability vectors over all the 

commodities so is a vector of dimension ȡ. The functional form of the path choice probabilities 

depends on the joint probability density function assumed for the residuals { }k

kn

r Rr∈:)(η  for 

each commodity k, resulting (for example) in a logit model, if independent Gumbel distributions 

are assumed, and a probit model for a multivariate normal distribution. 

 

Day-to-day Learning Model 

 

While the behavioural choice-side of the model is quite conventional, a simple linear learning 

filter is used to replicate drivers building up their experience of travel costs on a day-by-day 

basis following the completion of each day�s trip. In this research, we assume a simple weighted 

average approach akin to many other simulation experiments, for example, Horowitz (9), 

Cascetta (1) and Nakayama et al (10). Thus following the completion of trips on any day (n-1), 

the population-mean experienced costs are updated based on a weighted average of costs 

actually incurred in a finite number of previous days m, using the form: 
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where, s(Ȝ) is simply a scaling factor to make the weights sum to unity, c(.) the commodity route 

cost-flow function as defined above, and Fn
 a vector random variable of dimension ȡ denoting 

the network path flows by commodity on day n.   

 

Stochastic Process Model 

 

The number of drivers in each commodity, as defined by the combination of OD pair and 

departure period, choose routes independently on day n based on the experienced costs, implying 

a probability distribution in the space of commodity flows. Assuming that for any day n and for 

each commodity k, all q
k
 drivers wishing to travel make their travel choices independently 

conditional on their experiences in the past days, then the number of drivers taking each possible 

route on day n by each commodity k, conditional on the costs (3) experienced in the past, is 

obtained as:  

 

( )(,qlMultinomia~ 1)(nkk1)(n(n)k −− CpCF )    independently for k = 1,2,,�.K  (5) 

 

where F(n)k
 is the vector of route flows on day n by the commodity k. The route choice 

probabilities in equation (5) are computed based on the experienced costs up to the end of the 

previous day. Individual differences among users in the same commodity are taken into account 

through random residuals around the population-mean experienced costs defined by equation 

(3), and hence models of this form are called aggregate memory models. However, in a more 

general situation, each driver�s perceptions can be modelled through individual learning models, 

which are called disaggregate memory models, but at the cost of significant computing time (8). 

It is also noted that OD demand is assumed to be constant, but could be readily extended to the 

case of uncertain demand as in (11) and ( 12). 

 

Dynamic Network Loading Model 

 

In order to be able to capture the interactions amongst the vehicles departing in the 

same/successive departure periods, we need to subdivide each departure period into a number of 

smaller time steps. Let į be the time increment of this discretisation, and denote the complete 

analysis period by (0, Nį] for some positive integer N. The time increments are thus the intervals 

(t-į, t] for t = į, 2į, �,Nį, which are referred to as minor time steps. Below, when we refer to a 

time step (or interval) t, it is to be understood that we are referring to the period (t-į, t]. We 

assume that į is chosen so as to be smaller than the free flow time to traverse any link. The OD 

demand rates are assumed (for notational convenience) to be specified over a common 

discretisation of the whole analysis period (0,Nį], divided it into L major time periods, also 

referred to as departure periods (wj-1, wj] (for j = 1,2,..,L) such that 

( ] ( ] ( ] ( ]δNwwwwww LL ,0,........,, 12110 =−UUU . These match exactly the departure periods 

defined in the previous section, and for convenience are assumed to be of the same duration, i.e. 

κ=− −1jj ww  for all j = 1,2,,�L and some given κ .  
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Link and Path Travel Times 

 

Assuming that whole link travel time models of linear form (13) are defined on each of the links 

on any route r, and that for this route r the links traversed in order are numbered { } 

the travel time function and exit time functions for any link a
raaa ,...,, 21

i on this path may be expressed as a 

nested path cost operator. It is noted that the assumption of linear travel time models is not 

necessary for the application of our model, as the simulation models can be coupled with any 

type of link travel time models based on linear or non-linear, continuous or discrete time 

approaches. However, it is important to note that only the linear travel time function is 

guaranteed to satisfy the desirable properties such as FIFO (14), and hence has been the choice 

here. Then the expressions for travel time and the exit time are as given below: 

 

( ) ( ))()(
11

tgtg
iiiii aaaaa −−

+= βατ  ( )ttgr1,2i a ≡= )(;,...,
0

    (6) 

( ))()()(
11

tgtgtg
iiii aaaa −−

+= τ          (7) 

 

where ( ).
iaτ  is the travel time on the link ai , 

iaα the free flow time on the link, 
iaβ  the inverse 

of the exit capacity of the link ai, ( ).
iax  the number of vehicles on the link ai , and  the exit 

time from the link a

(.)
iag

i.  

As the model discretises time into a finite number of minor time steps, we have the 

knowledge of travel times computed only at the discrete time steps. But this will be insufficient 

to compute the path travel time on any path with multiple links, especially from the second link 

onwards where the travel time needs to be computed at some real time and not just integers. This 

is countered by computing the travel time in equation (6) using linear interpolation, which is 

given below: 

 

( ) ( )[ ]δδτδδτ
δ

δδδδττ ./�).1/(�
./

)./(�)( ><−+><
><−

+><≈ tt
tt

tt
iiii aaaa    (8) 

for (t ≥ 0; i = 1,2,�,n), where, ( ).�
iaτ  is the travel time on link ai at integer time, and <t/į> the 

integer part of time t/į. 
 

Then for example, the path travel time for vehicles entering the link a1 at time t on route 

r (with ar being the last link on route r before discharging the vehicles to their destination) is 

simply given as the difference between the exit time from link n and the entry time at the origin, 

expressed as:  

 

[ ]ttgtc
ra −= )()( .          (9) 

 

Finally, the departure-time dependent mean travel time for route r with uniform inflow rate in 

any departure time period T bounded by ( ]jj ww ,1−  may be expressed as, 
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where n is the number of minor time steps in major time period T. The departure-time dependent 

mean travel time obtained from equation (10) is used for updating the drivers� memorised travel 

cost in equation (3), which then determines the route choice probability distribution for the 

following day through (5).  

 

Experimental Set Up 

 

A Monte Carlo simulation method has been used to solve the doubly dynamic assignment 

problem described. This means that the drivers are allocated to the routes based on pseudo-

random numbers generated from a pre-specified distribution with the expected values given by 

the route choice probabilities. The steps in the simulation are listed below: 

 

[1] initialise the route choice probabilities based on free flow costs (initialisation of (3)); 

[2] allocate the drivers in various departure periods to routes based on random 

multinomial experiments (implementation of (5)); 

[3] compute the departure period dependent experienced route costs based on a dynamic 

network loading map, (6)-(10); 

[4] at the end of day n-1, the population mean experienced route costs are updated using 

the learning model (3) and the costs fed back to the first step above; and 

[5] compute the summaries viz., means, variances and covariances of route flows at the 

end of the realisation. 

 

EXPERIMENTAL RESULTS 

 

Network Supply and Demand Characteristics 

 

In order to illustrate the principles described in the previous section, a simple grid network of 12 

links serving two origins and three destinations is used (Figure 1). Note that all the links are one-

way, and there are 14 routes in all and the link-path incidence is shown in Table 1. It is assumed 

that dynamic linear travel time functions with parameters shown in Table 2 are defined on all the 

links of the network. The demand for each of the six possible O-D pairs is assumed to be known 

a-priori in each departure period, (Table 1). In this example, we included four departure periods 

of 15 minutes duration each and we assumed a minor step length of one minute each for 

dynamic network loading purposes. The route choice probability model is assumed to follow the 

logit principle with the dispersion parameter ș = 0.1, unless otherwise mentioned. Drivers were 

assumed to remember up to m = 2 days, and the memory weight was taken to be Ȝ = 0.5. 

 

 

 

 

 

 

 



Balijepalli, Watling and Liu            8 

 

O1

O2

D1

D2

D3

1

2

3

4

5

6

7 

8 

9

10

11

12

FIGURE 1   Grid Network 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1 OD Demand and Link � Path Incidence 
OD Demand (No. of Drivers per 

Departure Period)

OD 

Pair

1 2 3 4

Available 

Paths

Links Used by 

Paths

O -D1 1 400 700 500 300 1 1-4

     2 1-9-5-11

     3 7-2-5-11

       

O -D1 2 100 125 155 195 4 1-9-5

     5 7-2-5

       

O -D1 3 225 182 142 112 6 1-9-5-12

     7 7-2-5-12

       

O -D2 1 121 144 199 137 8 8-2-5-11

     9 3-10-5-11

       

O -D2 2 165 165 165 165 10 8-2-5

     11 3-10-5

       

O -D2 3 325 267 319 255 12 3-6

     13 8-2-5-12

     14 3-10-5-12

 

TABLE 2     Network Link Parameters 
Link Free flow time, 

αa minutes 

Service Rate, βa 

minutes/vehicle 

Exit Capacity, 

Vehicles/hour 

1 6 0.025 2400 

2 4 0.040 1500 

3 5 0.029 2069 

4 4 0.021 2857 

5 5 0.015 4000 

6 5 0.030 2000 

7 3 0.018 3333 

8 2 0.024 2500 

9 4 0.019 3158 

10 3 0.022 2727 

11 6 0.01 6000 

12 5 0.01 6000 
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Total Travel Time 

 

Total travel time measured by the vehicle-hours on the network indicates the intensity of travel 

over the network, and if monitored over the period of simulation, will indicate the day-to-day 

evolution of the intensity of travel. Figure 2 shows the day-to-day total travel on the network.  

 

 
FIGURE 2   Total Travel time on the Network over 500 Days 

 

Figure 2 indicates that in a realisation of 500 days, the total travel time on the network settles 

down to a mean value of around 3079 veh-hrs, with a standard deviation of 18.4 veh-hrs. If it 

were a stationary deterministic process then the graph of total travel time would have been a 

horizontal line over the number of simulated days, but a stochastic process even when stationary 

will always exhibit some variation due to the inherent nature of randomness in the variable being 

studied. A stochastic process is said to be in equilibrium if the probability distribution remains 

unaltered with time shifts. Therefore, it is important to draw the histograms of route flows to 

ensure the stationarity of the process. While monitoring the total travel on the network, in order 

to account for the empty network conditions, an assumed initial burn in period equivalent to 

10% of the simulated days has been discounted. Figure 3 shows the day-to-day evolution of 

travel over 1000 days and provides a sustained visual reassurance that the process is stable. 

Somewhat more formally, we could apply statistical hypothesis tests: e.g., a t-test to check 

whether the means of two samples from a realisation are the same. However, this is not the same 

as testing for stationarity, a more complex task yet crucial for the practical application of such 

models � this is therefore explored in more detail below. 
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FIGURE 3   Total Travel time on the Network over 1000 Days 

 

Stationarity of Stochastic Process 

 

A stochastic process is said to be strictly stationary if its properties remain unaffected by a 

change of time origin, or in other words, the joint probability distribution of m observations 

made at any set of times t ( for t = 1,2,..,m) is the same as that associated with m observations 

separated by an integer k made at set of times t+k (for t = 1,2,..,m and k is an integer) where k is 

called the lag.  

To illustrate this, let us consider the flow on route 1 on the network over a period of 300 

days from 201 to 500 in a realisation of 1000 days. Let us also consider that another set of 300 

observations also picked up from the same realisation from 426 to 725 days. Figure 4 shows the 

joint probability distribution of flows on route 1 for each of the four departure periods, for each 

of the two sets of observations as described above.  
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FIGURE 4  Histograms of Flows on Route 1 

 

Visual observation of Figure 4 reveals that the distribution of the flows on route 1 in each 

departure period is similar in each case for the two sets of the observations. Moreover, in each 

case the mean and standard deviation of the route flows are nearly identical to each other 

indicating that the stochastic process being considered is stationary. Histograms of flows on 

routes 2 and 3 corroborated the earlier comments on route 1 reassuring the stationarity of the 

process, but due to reasons of brevity they are not included here. 

 

 

 

Autocorrelations of Route Flows 

 

In order to further ensure that the stochastic process is stable, we have analysed the 

autocorrelations of route flows based on a 1000-day long simulation. Autocorrelations are 

expected to die down with larger lags for a stationary series and indicate that the random 

variable under consideration is stable about its mean value. Figure 5 shows the autocorrelations 

in path flows on routes 1,2 and 3 for up to 15 days of lag over a realisation of 1000 days.  
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FIGURE 5   Correlogram for Flows on Routes 1,2 and 3 

 

As the correlation of the flows with themselves is unity, the first bar (with �0� lag) 

reflects the same. From then on, the autocorrelations can be observed to reduce with increasing 

lags. Figure 5 includes error bars (based on Bartlett�s formula for large lag standard error (15)) 

for each of the routes 1,2 and 3, for some lag k>0 beyond which the theoretical autocorrelation 

function has deemed to have died out. Insignificant autocorrelations compared to standard errors 

at some lag k>0 indicate that the flows on any route do not depend on the flows on the same 

route beyond k days during the same departure period. This condition implies that the process is 

stationary, but it is not sufficient to prove the stationarity. A necessary and sufficient test of 

stationarity of the time series would be that the determinant of the autocorrelation matrix and all 

the minors should be greater than zero, thus requiring a large number of conditions to be 

satisfied, all of which can be brought together by using spectral density functions (15).  

The autocorrelations in departure periods 3 and 4 appear significant compared to the 

departure periods 1 and 2. This is due to the effect of carried over traffic from earlier departure 

periods to the later departure periods. Clearly, the link travel times at any instance are functions 

of the number of vehicles on the link at that instance, which can be composed of earlier, 

contemporaneous and later departures from any origin. In addition to the above, the travel times 

in departure periods 3 and 4 could also be affected by the type of travel time function chosen for 

the experiment, namely a linear function, as we shall explain here. Specifically it is known that 

linear travel time functions are likely to systematically overestimate the travel times in 

uncongested conditions (14), with the degree of overestimation increasing as the number of 

vehicles on the link increases (up to some point where congestion starts to form). In the 

experiments reported above, the effect of this over-estimation is seen to be particularly 

significant in departure periods 3 and 4, where the carried-over traffic from earlier departure 
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periods contributes substantially to the number of vehicles on the links in periods 3 and 4, 

resulting in an inflated over-estimation of travel times. This in turn affects the route travel times 

on any given day, and in turn the route choice of the drivers the following day. Hence, higher 

autocorrelations in departure periods 3 and 4 are observed than in periods 1 and 2. Had we, on 

the other hand, adopted travel time functions of a higher order, we would expect the degree of 

over-estimation of uncongested travel times to be lower, and this may have led to less of a 

difference in magnitude of autocorrelations between departure periods. 

 

Effect of Varying Perception Error 

 

Quite differently from the above discussion, it is informative to investigate how the 

autocorrelations reflect a change in dispersion of the perceived costs which is parameterised by 

the logit choice parameter ș. As described earlier, autocorrelations in Figure 5 were based on a 

value of ș = 0.1. Figure 6 illustrates the autocorrelations of route flows with ș = 0.01. As ș 
decreases (in the limit as 0→θ ), the dispersion of the perceived costs increases indicating that 

the drivers ignore the experienced costs and choose routes at random in which case the route 

flows on any day do not depend on any other day�s flows implying that the autocorrelations will 

be smaller compared to those in Figure 5. In the limit, the autocorrelations bars will vanish with 

even lower values of ș. 
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FIGURE 6   Correlogram of Flows on Routes 1,2 and 3 (ș = 0.01) 
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On the other hand, increasing values of ș will reduce the dispersion of the perceived 

costs and then the drivers start thinking alike while perceiving the route costs and making route 

choices. Due to this lack of taste variation, the solutions tend to be �all-or-nothing� in the limit, 

giving rise to a kind of deterministic periodic system. In this case, most of the drivers choose the 

least cost route on any given day, then there is very little probability that they choose the same 

route on the following day, because they experience high cost of travelling on the previous day. 

This means that the route flows tend to be negatively correlated as shown in Figure 7. In the 

limit with higher values of ș, the autocorrelations will be equal to -0.5 at lag k = -1 and -2, 

indicating a deterministic periodic motion with a period of m = 2. This is true as long as there 

being another shorter route available to shift to at the end of the day. Otherwise the drivers 

continue to choose the same route on all days irrespective of the experienced costs (just as in the 

case of fixed route costs) and then the autocorrelations will be equal to zero for all routes. Due to 

this reason, in Figure 7, the autocorrelations for route 2 are smaller relative to routes 1 and 2 and 

are expected to be zero with even higher values of ș.  
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FIGURE 7   Correlogram of Flows on Routes 1,2 and 3 (ș = 0.5) 

 

Link Time Plots 

 

On a separate issue to that of investigating stationarity of the process is the question of the 

validity of the dynamic network loading model used for the within-day propagation of route 

flows. In order to verify the model in this respect, Figure 8 shows the link-time plot for routes 1, 

2 and 3 in each of the departure periods for one particular day. They indicate that the travel times 
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are fanning out in general, meaning that the congestion builds up as we progress with the 

dynamic loading of vehicles over the network. This phenomenon is particularly clear on links 1 

and 2. On the other hand, parallel travel time lines indicate that the links are uncongested and 

operate below the capacity, as is the case with most of the links on routes 1, 2 and 3. Figure 8 

also indicates that the model results are consistent with FIFO property as we do not have any 

intersecting link travel time lines. The figure is also indicative of satisfying the FIFO property at 

the path level.  
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FIGURE 8  Link-Time Plots for Routes 1,2 and 3 

 

Although links 1 and 2 show significant fanning of travel times, the case of link 2 will be 

interesting to see as it is used by several paths as set out by the link path incidence relationships 

(Table 2). Figure 9 shows the inflows, travel times and outflows from link 2, spread over the 

within-day time scale. Link 2 receives its inflows from the combined outflows of links 7 and 8 

which shoot up to a maximum of about 30 vehicles/ minute at about 35 minutes after the 

simulation is started. Then the inflow rates start reducing as indicated by the two troughs 

between 35 and 60 minutes of elapsed time. The travel time profile steadily increases 

corresponding to the steady increase in the inflows and flattens once the inflows start dwindling 

and falls steeply when the inflows cease, and attains free flow time when there are no vehicles 

on the link any more. It can easily be observed that although the travel time falls steeply, the 

gradient of the line is greater than -1, thus satisfying the condition for FIFO (16). The outflows 

are computed corresponding to the travel times, and the outflow profile illustrates the dispersion 

of the outflows over larger periods than the inflow periods again indicating that there is some 

congestion on the link. Although Figure 9 indicates that the vehicles on link 2 no longer operate 
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under free flow speeds, the link has still some spare capacity as indicated by the outflow profile 

lying below the exit capacity. 
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FIGURE 9   Inflow and Outflow Profiles for Link 2 

 

CONCLUSIONS 

 

The technique of simulation modelling provides solutions to complex traffic assignment 

problems such as the doubly dynamic traffic assignment described in this paper through a fairly 

simple and transparent process. For transport modellers applying such models, the practical 

counterpart to deterministic equilibrium is the stationary state of the stochastic processes, and in 

this paper correlograms were analysed as a way of detecting the stationarity. Properties of link 

travel time models including FIFO compliance were illustrated. In the future, affirmative tests of 

stationarity of the stochastic processes such as the ones involving spectral density functions will 

be investigated. Further useful experiments could also be performed to investigate the impact of 

alternative travel time functions (e.g. higher order than linear) on the autocorrelation functions.  
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