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Methods for Moment Manipulation of Various

Traffic Sessions in Modern Small Cell Environment
Paramita Bhattacharya and Samya Bhattacharya

Abstract

In this paper, we exercise some important derivation involving moment manipulations to estimate various traffic sessions in
modern small cell environment. In the light of some previous work on cellular environment, we derive accurate expressions for
a proposed Semi-Markov model that accounts for the smaller population size of the users in modern small cells. The small cells
are generally powered by access points (WiFi/mini base stations) and are typically used as mobile clouds, hotspots. We validate
the analysis for small cell model with an existing cellular traffic model by increasing the population size of the users to a large
value (typical for a macro/micro-cellular environment). Regardless of the use of communication technology and nature of user
sessions (voice, video, data etc.), the generic analysis can provide a good insight to the state-of-the-art traffic dimensioning for
small cells.

Index Terms

Binomial moment generating function, freed carried traffic, hand-off, probability generating function, semi-markov, two-
moments.

I. INTRODUCTION

With the rapid growth of mobile users, deployment of smaller cells powered by miniature base stations (BSs), such as

access points (APs) or WiFi clouds have become increasingly popular cost-effective choice for the mobile operators around

the world. Supporting multimedia sessions in such cells require accurate traffic dimensioning to maintain various quality of

service (QoS) requirements. In addition, to maintain seamless connectivity on the move, these small cells require better session

hand-off management. Therefore, hand-off traffic plays an important role in state-of-the-art traffic analysis. The researchers in

the past have extensively studied the above in the context of cellular networks. Early traffic analyses for cellular networks were

carried out with M/M/C loss systems and single-moment approach where fresh (i.e. new) and hand-off calls were assumed to

be Poisson arrival processes [1], [2], [3]. In the context of micro-cellular systems where a user undergoes frequent hand-offs,

it was shown [4], [5], [6], [7] that the hand-off process does not remain Poisson distributed. As a result, even if the fresh call

arrival process can be represented as a Poisson distribution, the aggregated traffic stream is more realistically represented by a

General distribution. It was also proposed [7], [8], [9] that in case of General distributed traffic, the two-moment representation

of traffic (using mean and variance) is a better approach than a single-moment representation. Rajaratnam and Takawira [7],

[8], [9] in their studies pointed out that the hand-off traffic is the main distinguishing features between the PSTN and mobile

cellular networks by analysing the traffic using General distributed hand-off traffic. These analyses were applicable for densely

populated macro-micro cells. With diminishing cell sizes and thus user population in a cell, fresh call arrivals, or a new session

request in the context of modern mobile environment, follow Engset distribution [10] instead of Poisson distribution. The

corresponding effects on the traffic streams and user sessions in small cell environment have not been thoroughly investigated

in the literature to the best of our knowledge. In [11], [12], authors suggested to follow the models developed in [7], [8], [9]

for a less populated area. But the use of the above models leads to difficulties, when the fresh call arrival process is Engset

distributed. Firstly, the estimation of traffic offered to the virtual cell in their model needs a Semi-Markov analysis with Engset

distribution. Secondly, the suggested use of Binomial-Poisson-Pascal (BPP) method in [7] yields inaccurate estimates of the

carried traffic in a cell from the traffic offered to that cell when the peakedness factor (or peakedness) of the offered traffic falls

below 0.5 (common in presence of an Engset distributed traffic stream) [13]. Also, the suggested use of Girard’s method [9] to

estimate the carried traffic in a cell from the traffic offered to that cell is limited to Pure Chance Type-I (PCT-I) traffic; making

it inapplicable in the case of Engset distributed fresh call arrival process i.e. Pure Chance Type-II (PCT-II) traffic [10]. Thus,

a thorough Semi-Markov analysis for Engset distributed fresh call traffic and the corresponding traffic estimates in modern

mobile environment merits investigation.

Therefore, our contributions in this paper are two-fold. Firstly, we propose a Semi-Markov analysis for the Engset distributed

fresh traffic sessions and General distributed handoff sessions in a small cell environment. Secondly, we derive two moments

(mean and variance) of fresh and handoff traffic sessions and use those estimates to compute corresponding congestion

parameters in a small cell. In Section II, we derive various traffic estimates for the models developed in [7], [8], [9] for

micro-cellular environment. This forms the background for the proposed work in Section III. Section IV presents some numeric

results related to the model verification and validation. Finally, we conclude in Section V.

Paramita Bhattacharya and Samya Bhattacharya are with M/S Untamed Spectrum, Post Box 119, Espoo 02320, Finland, e-mail: {p.bhattacharya,
s.bhattacharya}@untamedspectrum.com. Samya Bhattacharya is also with the School of Electronic and Electrical Engineering, University of Leeds, Leeds
LS2 9JT, United Kingdom, email: s.bhattacharya@leeds.ac.uk.
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II. RELATED WORK

In this section we study the various traffic sessions related to traditional cellular networks. In cellular networks, a channel

was considered to be a single call carrying resource [7], [8], [9]. Fixed Channel Allocation (FCA) was considered where the

number of simultaneous ongoing calls or sessions is fixed in a cell. A traffic stream was represented by two moments (M,V)

denoting the corresponding mean and variance. The hand-off traffic was obtained when a fraction of users from a cell hand-off

to an adjacent cell in their two two-cell model (Fig. 1). Initially, it was assumed that the originating cell receives no hand-off

traffic. Later, the restriction was removed through an iterative process. To estimate the offered traffic to the target cell, the

carried traffic estimate in the previous (originating) cell is needed. It has been shown that the variance of the carried traffic in

the originating cell does not match with that of the traffic offered to the target cell, though the corresponding means match.

This is because the offered traffic used to be stochastically different from the carried traffic. Thus, a virtual (hypothetical)

cell of infinite capacity has been introduced between the two cells. The carried traffic in the virtual cell (also known as freed

carried traffic [14]) will now be equivalent to the offered traffic in the target cell. Later, the two-cell model was generalised to

a multi-cell model where the estimated hand-off traffic using the two-cell model was aggregated with fresh call offered traffic

to form a combined traffic stream offered to a cell.

Using various moment manipulation techniques presented in [13], [14], we in this section, present an alternative approach

to [7] to formulate and derive the moments of the corresponding traffic streams in their two-cell model. These form the

background of our work in the next section involving small cells. A session initiated by a mobile user may suffer blocking at

two stages - (a) at session initiation, known as fresh blocking or fresh congestion, and (b) at the cell boundary, which is called

hand-off blocking or hand-off congestion. Let us consider the ith cell Li (i = 1, 2) in Fig. 1. Let C be the number of channels

 

 

 L1 receives no
hand-off traffic

Originating Cell
          L1

Af

Virtual Cell Lv
Virtual Arrival Process

[Mv, Vv]

µv

Target Cell L2

µd1 = µt + µh1 µd2 = µt + µh2

µh1

Figure 1: The two-cell model with a virtual cell [7].

assigned to the cell; λi = λf be the mean arrival rate of fresh requests to the cell, which is Poisson distributed. A mobile user

vacates a channel in a cell due to either session termination or session hand-off to the other cell. Both processes are assumed

to be Poisson distributed with mean rate µt and µhi, respectively. Thus, session departure process from a cell is also Poisson

distributed with mean rate µdi = µt + µhi. It is imperative to state that the channel holding time is Negative Exponential

distributed with mean 1/µdi. It is noted that some studies modelled the channel holding time as Gamma distribution [15]

or Hyper-Erlang distribution [16] or Lognormal distribution [17] or a combination of constant and Negative Exponential

distribution [8]. However, considering the urban scenario [18], the channel holding time is modelled as Negative Exponential

distribution in this work. Assuming that the originating cell L1 initially receives no hand-off traffic, the offered traffic to that

cell is Poisson distributed (fresh requests only) with mean Af = λf/µd1. The carried traffic (MC1
, VC1

) in the cell is obtained

as below.

A. Expressions for the Carried Traffic in L1

Let there be k ongoing sessions in L1. Then the probability (pk) that L1 is in state k [13], is given by

pk =

Ak
f

k!
∑C

i=0

Ai
f

i!

=

Ak
f

k!

eC(Af )
(1a)

pC =

AC
f

C!
∑C

i=0

Ai
f

i!

= B(Af , C) (1b)

where eC(Af ) =
∑C

i=0

Ai
f

i! is the incomplete exponential function and pC is the Erlang loss function. Since the carried traffic

has only the fresh component, it is sufficient to use Probability Generating Function (PGF) [13] alone, which is defined as
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G(z) =
∑

∞

k=0 pkz
k. Using Eqn. (1a), we obtain

G(z) =

∑C
k=0 z

k Ak
f

k!
∑C

i=0

Ai
f

i!

(2)

Therefore, G′(z) =

∑C
k=1 kz

k−1Ak
f

k!
∑C

i=0

Ai
f

i!

(3)

and G′′(z) =

∑C
k=2 k(k − 1)zk−2Ak

f

k!
∑C

i=0

Ai
f

i!

(4)

We express the mean (MC1 ) of the carried traffic from [13] as

MC1 = G′(1)

=

∑C
k=1 k

Ak
f

k!
∑C

i=0

Ai
f

i!

[Using Eqn. (3)]

=

∑C
k=1

Ak
f

(k−1)!

∑C
i=0

Ai
f

i!

= Af

∑C−1
i=0

Ai
f

i!
∑C

i=0

Ai
f

i!

= Af

∑C
i=0

Ai
f

i! −
AC

f

C!
∑C

i=0

Ai
f

i!

= Af



1−

AC
f

C!
∑C

i=0

Ai
f

i!





= Af [1−B(Af , C)] [Using Eqn. (1b)] (5)

We express the variance (VC1
) of the carried traffic from [13] as

VC1
= G′′(1) +G′(1)− (G′(1))2

= MC1
− [(G′(1))2 −G′′(1)] [Using Eqn. (5)] (6)

Using Eqn. (1b), (3), (4), and (5), we get

[(G′(1))2 −G′′(1)] =A2
f (1− pC)

2
−

∑C
k=2

Ak
f

(k−2)!

∑C
i=0

Ai
f

i!

=A2
f (1− pC)

2
−A2

f

∑C−2
i=0

Ai
f

i!
∑C

i=0

Ai
f

i!

=A2
f (1− pC)

2
−A2

f

∑C
i=0

Ai
f

i! −
AC

f

C! −
A

C−1
f

(C−1)!

∑C
i=0

Ai
f

i!

=A2
f (1− pC)

2
−A2

f



1−

AC
f

C!
∑C

i=0

Ai
f

i!

−
C

Af

AC
f

C!
∑C

i=0

Ai
f

i!





=A2
f (1− pC)

2
−A2

f

[

1− pC −
C

Af

pC

]

[Using Eqn. (1b)]

=A2
f − 2A2

fpC +A2
fp

2
C −A2

f +A2
fpC + CAfpC

=CAfpC −A2
fpC +A2

fp
2
C

=AfpC [C −Af (1− pC)]

=AfpC [C −MC1 ]

=AfB(Af , C) [C −MC1 ] (7)
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Substituting Eqn. (7) in Eqn. (6), we obtain

VC1 = MC1 −AfB(Af , C)(C −MC1) (8)

B. Factorial Moments for the Offered Traffic in L2

Let the inter-arrival time of the offered traffic be denoted as A(t). From [14], the kth factorial moments (M(k)) of the offered

traffic is expressed as

M(k) =
1

µd(EA)

k−1∏

j=1

jA∗(jµd)

1−A∗(jµd)
k ∈ I (9)

where µd is the mean service rate (Poisson distributed), EA is the mean inter-arrival time. If A∗(s) denotes the L.S.T. of

A∗(t), then for Poisson distributed offered traffic, we have

A∗(s) =
λf

s+ λf

(10)

Further, from [14], we get

EA = −A∗(0) = −
−λf

(s+ λf )2

∣
∣
∣
∣
s=0

=
1

λf

(11)

Substituting EA from Eqn. (11) in Eqn. (9), we obtain

M(k) =
1

µd
1
λf

k−1∏

j=1

jλf

jµd+λf

1−
λf

jµd+λf

=
λf

µd

k−1∏

j=1

λf

µd

=

(
λf

µd

)k

= Mk (12)

where M =
λf

µd
is the first factorial moment of the Poisson distributed offered traffic.

C. Expressions for the Overflow Traffic in L1

Let Ms,(k) (s = 1, 2 and k = 1, 2, . . .) be the kth factorial moment of the sth traffic stream, where s = 1 denotes the

overflow stream and s = 2 denotes the freed carried traffic stream [14]. In our notation, the mean (M1) of the overflow

traffic [14] is written as

1

M1
=

1

M1,(1)
=

C∑

l=0

(
C

l

)
l!

M(l+1)

Therefore, M1 =
1

∑C
l=0

(
C
l

)
l!

M(l+1)

=
1

∑C
l=0

(
C
l

)
l!

M l+1

[Using Eqn. (12)]

=
M

∑C
l=0

C!M−l

(C−l)!

= M
MC

C!
∑C

l=0
MC−l

(C−l)!

= M
MC

C!
∑C

i=0
Mi

i!

= MB(M,C) [Using Eqn. (1b)] (13)

From [13], the variance (V1) of the overflow traffic can be expressed in terms of the mean (M1) and the second factorial

moment (M1,(2)) of the overflow traffic as

V1 = M1,(2) −M1(M1 − 1) (14)
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The second factorial moment (M1,(2)) of the overflow traffic from [14] is written as

1

M1,(2)
=

C∑

l=0

(
C

l

)
(l + 1)!

M(l+2)

Therefore, V1 +M1(M1 − 1) =
1

∑C
l=0

(
C
l

) (l+1)!
M(l+2)

[Using Eqn. (14)]

=
1

∑C
l=0

C!(l+1)!
l!(C−l)!M l+2

=
1

C!
MC+2

∑C
l=0(l + 1)MC−l

(C−l)!
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=
M2MC

C!
∑C

k=0(C + 1− k)M
k

k!

=
M2MC

C!

(C + 1)
∑C

k=0
Mk

k! −M
∑C−1

j=0
Mj

j!

=
M2

MC

C!
∑

C
k=0

Mk

k!

(C + 1)−M

[∑
C
j=0

Mj

j! −
MC

C!
∑

C
k=0

Mk

k!

]

=
M2B(M,C)

C + 1−M [1−B(M,C)]

=
MM1

C + 1−M +M1
[Using Eqn. (13)]

Therefore,
V1

M1
+ (M1 − 1) =

M

C + 1−M +M1

∴ V1 = M1 −M2
1 +

MM1

C + 1−M +M1
(15)

D. Expressions for the Freed Carried Traffic in LV

From the conservation of flow, the mean (MV ) of the freed carried traffic can be expressed as

MV = M2 = M −M1 = M [1−B(M,C)] [Using Eqn. (13)] (16)

which is equal to the mean carried traffic. The second factorial moment (M2,(2)) of the freed carried traffic from [14] is written

as

M2,(2) =M2

M(2)

M(1)
−M1[V1 +M1(M1 − 1)]

C∑

l=1

(
C

l

)
l!

M(l+1)

l∑

m=1

[
mM(m)

M(m+1)
+ 1

]

(17)

Using the relation between ordinary, central and factorial moments of a distribution [13] we rewrite Eqn. (17) as

V2 +M2(M2 − 1) =M2

M(2)

M(1)
−M1[V1 +M1(M1 − 1)]

C∑

l=1

(
C

l

)
l!

M(l+1)

·

l∑

m=1

[
mM(m)

M(m+1)
+ 1

]

=M2M −M1[V1 +M1(M1 − 1)]
C∑

l=1

C!M−(l+1)

(C − l)!

l∑

m=1

(m

M
+ 1
)

=M2M −M1[V1 +M1(M1 − 1)]

C∑

l=1

C!M−(l+1)

(C − l)!

[

l +
l(l + 1)

2M

]

=M2M −M1[V1 +M1(M1 − 1)]

[
C∑

l=1

C!M−(l+1)l

(C − l)!

+

C∑

l=1

C!M−(l+2)l(l + 1)

2(C − l)!

]

=M2M −M1[V1 +M1(M1 − 1)]









C−1∑

k=0

C!M−(C−k+1)(C − k)

k!
︸ ︷︷ ︸

=A (say)

+

C−1∑

k=0

C!M−(C−k+2)(C − k)(C − k + 1)

2k!
︸ ︷︷ ︸

=B (say)









(18)
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Now,

A =

C−1∑

k=0

C!M−(C−k+1)(C − k)

k!

=CC!

C−1∑

k=0

M−(C−k+1)

k!
− C!

C−1∑

k=1

M−(C−k+1)

(k − 1)!

=
CC!

MC+1

C−1∑

k=0

Mk

k!
−

C!

MC

C−2∑

j=0

M j

j!

=
CC!

MC+1

[
C∑

k=0

Mk

k!
−

MC

C!

]

−
C!

MC





C∑

j=0

M j

j!
−

MC

C!
−

MC−1

(C − 1)!





=
C

M

∑C
k=0

Mk

k!
MC

C!

[

1−
MC

C!
∑C

k=0
Mk

k!

]

−

∑C
j=0

Mj

j!

MC

C!

[

1−
MC

C!
∑C

k=0
Mk

k!

−
C

M

MC

C!
∑C

k=0
Mk

k!

]

=
C

M

1

B(M,C)
[1−B(M,C)]−

1

B(M,C)

[

1−B(M,C)−
C

M
B(M,C)

]

=
C

M1
−

CB(M,C)

M1
−

1

B(M,C)
+ 1 +

C

M

=1 +
C

M1
−

1

B(M,C)
[Using Eqn. (13)] (19)

and,

B =

C−1∑

k=0

C!M−(C−k+2)(C − k)(C − k + 1)

2k!

=
C!

2MC+2

C∑

k=0

Mk

k!
(C − k)(C − k + 1)

=
C!

2MC+2

C∑

k=0

Mk

k!
[C2 + C − 2Ck + k(k − 1)]

=
C!

2MC+2

[

(C2 + C)

C∑

k=0

Mk

k!
− 2C

C∑

k=1

Mk

(k − 1)!
+

C∑

k=2

Mk

(k − 2)!

]

=
C!

2MC+2



(C2 + C)
C∑

k=0

Mk

k!
− 2CM

C∑

j=0

M j

j!
+ 2CM

MC

C!
+M2

C∑

j=0

M j

j!

−M2M
C

C!
−M2 MC−1

(C − 1)!

]

=
1

2M2

∑C
k=0

Mk

k!
MC

C!

[

C2 + C − 2CM + 2CM
MC

C!
∑C

k=0
Mk

k!

+M2
−M2

MC

C!
∑C

k=0
Mk

k!

−CM
MC

C!
∑C

k=0
Mk

k!

]

=
1

2M2B(M,C)
[C2 + C − 2CM + 2CMB(M,C) +M2

−M2B(M,C)

− CMB(M,C)]

=
1

2MM1
[C2 + C − 2CM + CM1 +M2

−MM1] [Using Eqn. (13)] (20)
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Substituting A from Eqn. (19) and B from Eqn. (20) in Eqn. (18), we obtain

V2 +M2(M2 − 1) =M2M −M1[V1 +M1(M1 − 1)]

[

1 +
C

M1
−

1

B(M,C)

+
1

2MM1

(
C2 + C − 2CM + CM1 +M2

−MM1

)
]

=M2M − [V1 +M1(M1 − 1)]

[

M1 + C −M

+
1

2M

(
C2 + C − 2CM + CM1 +M2

−MM1

)
]

[Using Eqn. (13)]

=M2M −
V1 +M1(M1 − 1)

2M
[C2

−M2 + C + CM1 +MM1]

=M2M −
M1 −M2

1 + MM1

C+1−M+M1
+M1(M1 − 1)

2M
· [C2

−M2 + C + CM1 +MM1]

[Using Eqn. (15)]
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=M2M −
M1

2(C + 1−M2)
[C2 + C + CM − CM2 −MM2]

[Using Eqn. (16)]

Therefore,
V2

M2
=1−M2 +M −

M1

2M2(C + 1−M2)

[

C(C + 1−M2) +M(C −M2)

]

=1−
M1

2M2

[
2M2

2

M1
−

2MM2

M1
+ C +

M(C −M2)

C + 1−M2

]

=1−
MB(M,C)

2M(1−B(M,C))

[
2M2(M2 −M)

M1
+ C +

M(C −M2)

C + 1−M2

]

[Using Eqn. (13)]

=1−
B(M,C)

2[1−B(M,C)]

[

C − 2M2 +
M(C −M2)

C + 1−M2

]

[Using Eqn. (16)]

=1−
B(M,C)

2[1−B(M,C)]

[

C −M2 −

(

M2 −
M(C −M2)

C + 1−M2

)]

=1−
B(M,C)

2[1−B(M,C)]

[

C −M2 +M1 −

(

M −
M(C −M2)

C + 1−M2

)]

[Using Eqn. (16)]

=1−
B(M,C)

2[1−B(M,C)]

[

C −M2 +M1 −
MC +M −MM2 −MC +MM2

C + 1−M2

]

=1−
B(M,C)

2[1−B(M,C)]

[

C −M2 +M1 −
M

C + 1−M2

]

(21)

In the present case, M = Af , M1 = AfB(Af , C), M2 = MV , and V2 = VV . Substituting the above quantities in Eqn. (21),

we obtain

VV = MV

[

1−
B(Af , C)

2 [1−B(Af , C)]

(

C −MC1
+AfB(Af , C)−

Af

C −MC1
+ 1

)]

(22)

E. Expressions for the Hand-off Offered Traffic

From [13], the first two ordinary moments (α1, α2) of the aggregated offered traffic and the ith (i = 1, 2, . . .) individual

traffic stream (αi
1, α

i
2) are related as

αi
1 = Piα1 (23a)

αi
2 = P 2

i α2 + Pi(1− Pi)α1 (23b)

where Pi is the probability of a session belonging to stream i. In the present case, there are two streams, viz. (i) the stream

containing sessions that are completing within a cell and (ii) the stream containing sessions that are handed off to another cell.

For the second stream (Pi) is expressed as

Pi =
µh

µh + µt

= ζ (24)

The parameter ζ is called the mobility [1]. Using the relation between the ordinary moments, mean, and variance of a

distribution [13], we write

α1 = MV and α2 = VV +M2
V (25a)

αi
1 = Mh and αi

2 = Vh +M2
h (25b)
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Using Eqn. (23), (24), and (25), we obtain

Mh = PiMV

=
µh

µh + µt

MV (26a)

Vh +M2
h = P 2

i

(
VV +M2

V

)
+
(
Pi − P 2

i

)
MV

Therefore, Vh = P 2
i VV + P 2

i M
2
V + PiMV − P 2

i MV −M2
h

= P 2
i MV +M2

h +Mh − P 2
i MV −M2

h [Using Eqn. (26a)]

= Mh + P 2
i (VV −MV )

= Mh + Pi

Mh

MV

(VV −MV ) [Using Eqn. (26a)]

= Mh

[

1 + Pi

(
VV

MV

− 1

)]

= Mh

[

1 +
µh

µh + µt

(
VV

MV

− 1

)]

(26b)

III. CASE OF FINITE POPULATION SIZE IN SMALL CELL WIFI / MOBILE CLOUD ENVIRONMENT

As mentioned earlier, the fresh traffic in a small cell environment follows Engset distribution [10]. Thus, cell L1 in the

two-cell model receives Engset distributed fresh requests in our case instead of Poisson distributed fresh requests in case

of [7]. Thus, the user population in L1 is now finite. Let N be the number of users in L1, λi = λ′

f be the mean arrival rate

of fresh sessions per idle user and µd be the mean departure rate from L1. We develop a joint Semi-Markov model to obtain

the variance of the offered traffic to L2. The Semi-Markov model does not have a closed form solution and needs complex

manipulation using Probability Generating Function (PGF) and Binomial Moment Generating Function (BMGF).

A. Carried Traffic in L1 for the Engset type arrival

0 1 i C-1 C

Nλ'f (N-1)λ'f (N-i)λ'f (N-C+1)λ'f

µd 2µd iµd (C-1)µd Cµd

Figure 2: State transitions of the Engset distribution.

The state transition diagram for the Engset distribution is shown in Fig. (2). Let pi be the probability of L1 in state i. The

cut equations in Fig. 2 yields

iµdpi = (N − i+ 1)λ′

fpi−1 for 0 ≤ i ≤ C

∴ ipi =
λ′

f

µd

(N − i+ 1)pi−1 (27)
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The expression for the mean (MC) of the carried traffic is written as

MC =
C∑

i=0

ipi

=

C∑

i=1

λ′

f

µd

(N − i+ 1)pi−1

=

C−1∑

i=0

λ′

f

µd

(N − i)pi

=
λ′

f

µd

N
C−1∑

i=0

pi −
λ′

f

µd

C−1∑

i=0

ipi

=
λ′

f

µd

N(1− pC)−
λ′

f

µd

(
C∑

i=0

ipi − CpC

)

∵

C∑

i=0

pi = 1

=
λ′

f

µd

N(1− pC)−
λ′

f

µd

(MC − CpC)

∴ MC

(

1 +
λ′

f

µd

)

=
λ′

f

µd

[N − (N − C)pC ]

∴ MC =
Nλ′

f

λ′

f + µd

[

1−
N − C

N
pC

]

(28)

The expression for the variance (VC) of the carried traffic is written as

VC =
C∑

i=0

(i−MC)
2
pi

=

C∑

i=0

i2pi − 2MC

C∑

i=0

ipi +M2
C

C∑

i=0

pi
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=

C∑

i=0

i2pi − 2M2
C +M2

C

=

C∑

i=0

i2pi −M2
C (29)

Now, let X =
∑C

i=0 i
2pi.

∴ X =

C∑

i=0

i · ipi

=

C∑

i=1

i
λ′

f

µd

(N − i+ 1)pi−1

=

C−1∑

i=0

λ′

f

µd

(i+ 1)(N − i)pi

=
λ′

f

µd

C−1∑

i=0

[Nipi − i2pi +Npi − ipi]

=
λ′

f

µd

C−1∑

i=0

[

N(MC − CpC)−

C−1∑

i=0

ipi +N(1− pC)− (MC − CpC)

]

∴

(

1 +
λ′

f

µd

)

X =
λ′

f

µd

[
N +NMC −MC + C2pC −NCpC + CpC −NpC

]

=
λ′

f

µd

[N +MC(N − 1) + CpC(C −N) + pC(C −N)]

=
λ′

f

µd

[N +MC(N − 1) + (C −N)(C + 1)pC ]

∴ X =
λ′

f

λ′

f + µd

[N +MC(N − 1) + (C −N)(C + 1)pC ] (30)

Hence,

VC =
λ′

f

λ′

f + µd

[N +MC(N − 1) + (C −N)(C + 1)pC ]−M2
C (31)

As mentioned before, mean of the offered traffic to LV is equal to the mean of the carried traffic in L1. Therefore, we need

to find out variance of the traffic in LV .

B. Semi-Markov Analysis to estimate the variance of the traffic in LV

The state space Markov diagram for the carried sessions in L1 and LV is shown in Fig. 3. Let pn,m denotes the joint

probability distribution, when there are n carried sessions in cell L1 and m sessions are carried to LV . The PGF of the joint

probability distribution is defined as

Gn(z) =

∞∑

m=0

pn,mzm (32a)

∴ zGn(z) =

∞∑

m=1

pn,m−1z
m (32b)
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(n+1,m-1)

(n,m-1)

(n,m)

(n+1,m)

(n-1,m) (n,m+1)

(n-1,m+1)

(n+1)µd1

mµd2

nµd1

(m+1)µd2

(N-n)λ'f

(N-n+1)λ'f

Figure 3: Semi-Markov model for the carried sessions in L1 and offered sessions to LV .

From Eqn. (32a), we obtain

G′

n(z) =

∞∑

m=1

mpn,mzm−1

=

∞∑

m=0

(m+ 1)pn,m+1z
m (32c)

∴ zG′

n(z) =

∞∑

m=1

mpn,mzm

=

∞∑

m=0

mpn,mzm (32d)

Further, the Binomial Moment Generating Function (BMGF) of the joint probability distribution is defined as

Fn(x) = Gn(x+ 1) =

∞∑

m=0

βn,mxm (33a)

where βn,m =

n∑

q=m

(
q

m

)

pq (33b)

where pq =
∞∑

k=0

(−1)k−q

(
k

q

)

(33c)

From the above Markov state diagram, the B-D equations in terms of joint probability distribution are written as
(
Nλ′

f +mµd2

)
p0,m =µd1p1,m−1

+ (m+ 1)µd2p0,m+1 for n = 0 (34a)
[
(N − n)λ′

f + nµd1 +mµd2

]
pn,m =(m+ 1)µd2pn,m+1

+ (N − n+ 1)λ′

fpn−1,m

+ (n+ 1)µd1pn+1,m−1 for 0 < n < C (34b)

(mµd2 + Cµd1)pC,m =(m+ 1)µd2pC,m+1

+ (N − C + 1)λ′

fpC−1,m for n = C (34c)
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For n = 0, we transform Eqn. (34a) in terms of PGF, using Eqn. (32), as

Nλ′

fG0(z) + µd2zG
′

0(z) =µd1zG1(z) + µd2G
′

0(z)

⇒Nλ′

fG0(z) + µd2(z − 1)G′

0(z) =µd1zG1(z)

⇒Nλ′

fG0(x+ 1) + µd2(x)G
′

0(x+ 1) =µd1(x+ 1)G1(x+ 1) (35a)

Similarly, for 0 < n < C, Eqn. (34b) leads to

(N − n)λ′

fGn(z) + µd1nGn(z)

+ µd2zG
′

n(z) =µd2G
′

n(z) + (N − n+ 1)λ′

fGn−1(z)

+ (n+ 1)µd1zGn+1(z)

⇒µd2(z − 1)G′

n(z)

+
[
(N − n)λ′

f + nµd1

]
Gn(z) =(n+ 1)µd1zGn+1(z)

+ (N − n+ 1)λ′

fGn−1(z)

⇒µd2xG
′

n(x+ 1)

+
[
(N − n)λ′

f + nµd1

]
Gn(x+ 1) =(n+ 1)µd1(x+ 1)Gn+1(x+ 1)

+ (N − n+ 1)λ′

fGn−1(x+ 1) (35b)

Similarly, forn = C, Eqn. (34c) leads to

µd2zG
′

C(z) + Cµd1GC(z) =µd2G
′

C(z) + (N − C + 1)λ′

fGC−1(z)

⇒µd2(z − 1)G′

C(z) + Cµd1GC(z) =(N − C + 1)λ′

fGC−1(z)

⇒µd2(x)G
′

C(x+ 1) + Cµd1GC(x+ 1) =(N − C + 1)λ′

fGC−1(x+ 1) (35c)

Now, transforming the set of Eqn. (35) in terms of BMGF using Eqn. (33), we obtain

Nλ′

fF0(x) + µd2xF
′

0(x) = µd1(x+ 1)F1(x) for n = 0 (36a)

µd2xF
′

n(x)

+
[
(N − n)λ′

f + nµd1

]
Fn(x) = (n+ 1)µd1(x+ 1)Fn+1(x)

+(N − n+ 1)λ′

fFn−1(x) for 0 < n < C (36b)

µd2xF
′

C(x) + Cµd1FC(x) = (N − C + 1)λ′

fFC−1(x) for n = C (36c)

Expressing the set of Eqn. (36) in terms of βn,m, we obtain

µd2x
∞∑

m=0

β0,mmxm−1 +Nλ′

f

∞∑

m=0

β0,mxm

= µd1(x+ 1)

∞∑

m=0

β1,mxm for n = 0 (37a)

µd2x
∞∑

m=0

βn,mmxm−1 +
[
(N − n)λ′

f + nµd1

]
∞∑

m=0

βn,mxm

= (n+ 1)µd1(x+ 1)

∞∑

m=0

βn+1,mxm

+(N − n+ 1)λ′

f

∞∑

m=0

βn−1,mxm for 0 < n < C (37b)

µd2x

∞∑

m=0

βC,mmxm−1 + Cµd1

C∑

m=0

βC,mxm

= (N − C + 1)λ′

f

∞∑

m=0

βC−1,mxm for n = C (37c)
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For n = 0, equating coefficients of x from Eqn. (37a), we get

µd2β0,1 +Nλ′

fβ0,1 =µd1β1,0 + µd1β1,1

⇒(Nλ′

f + µd2)β0,1 =µd1β1,1 + µd1p
′

1 (38a)

where βn,0 = p′n =

(
N
n

) ( λ′

f

µd1

)n

∑C
k=0

(
N
k

) ( λ′

f

µd1

)k

︸ ︷︷ ︸

State probability of the
Engset distribution [10]

(38b)

For 0 < n < C, equating coefficients ofx from Eqn. (37b), we get

µd2βn,1 +
[
(N − n)λ′

f + nµd1

]
βn,1 =(n+ 1)µd1 (βn+1,0 + βn+1,1)

+ (N − n+ 1)λ′

fβn−1,1

⇒
[
(N − n)λ′

f + µd2 + nµd1

]
βn,1 =(n+ 1)µd1(βn+1,1 + p′n+1)

+ (N − n+ 1)λ′

fβn−1,1 (38c)

Forn = C, equating coefficients ofx from Eqn. (37c), we get

µd2βC,1 + Cµd1βC,1 =(N − C + 1)λ′

fβC−1,1

⇒(µd2 + Cµd1)βC,1 =(N − C + 1)λ′

fβC−1,1 (38d)

For n = 0, equating coefficients of x2 from Eqn. (37a), we obtain

µd22β0,2 +Nλ′

fβ0,2 =µd1β1,1 + µd1β1,2 (39a)

For 0 < n < C, equating coefficients ofx2 from Eqn. (37b), we obtain

µd22βn,2 +
[
(N − n)λ′

f + nµd1

]
βn,2 =(n+ 1)µd1(βn+1,1 + βn+1,2) (39b)

+ (N − n+ 1)λ′

fβn−1,2 (39c)

Forn = C, equating coefficients ofx2 from Eqn. (37c), we obtain

µd22βC,2 + Cµd1βC,2 =(N − C + 1)λ′

fβC−1,2 (39d)

Adding Eqn. (39b), (39c), and (39d), we obtain

µd2(2β0,2 + 2β1,2 + . . .+ 2βC,2) + µd1(β1,2 + 2β2,2 + . . .+ CβC,2)

+ λ′

f [Nβ0,2 + (N − 1)β1,2 + . . .+ (N − C + 1)βC−1,2]

= µd1(β1,1 + 2β2,1 + . . .+ CβC,1) + µd1(β1,2 + 2β2,2 + . . .+ CβC,2)

+ λ′

f [Nβ0,2 + (N − 1)β1,2 + . . .+ (N − C + 1)βC−1,2]

⇒µd22
C∑

n=0

βn,2 = µd1

C∑

n=0

nβn,1

⇒2
C∑

n=0

βn,2 =
µd1

µd2

C∑

n=0

nβn,1 (40)

where
∑C

n=0 βn,2 is the complete 2nd Binomial moments of the offered traffic to LV . The terms βn,1 are the partial Binomial

moments of the offered traffic to LV .

From [13], using Eqn. (32), we express the variance of the offered traffic to LV as

VV = G′′

n(1) +G′

n(1)− [G′

n(1)]
2

= G′′

n(1)−M2
V +MV (41)
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Using Eqn. (32) and (33), we obtain

Gn(z) =
C∑

n=0

∞∑

m=0

βn,m(z − 1)m

=
C∑

n=0

∞∑

m=0

m∑

k=0

(
m

k

)

zk(−1)m−k

=

[

(−1)m +mz(−1)m−1 +

(
m

2

)

z2(−1)m−2 + . . .

]

∴ G′

n(z) =

C∑

n=0

∞∑

m=0

βn,m

[

0 +m(−1)m−1 +m(m− 1)z(−1)m−2 + . . .

]

∴ G′′

n(z) =
C∑

n=0

∞∑

m=0

βn,m

[

0 + 0 +m(m− 1)(−1)m−2 +m(m− 1)(m− 2)

+m(m− 1)(m− 2)(m− 3) + . . .

]

(42)

Now

For m = 0 . . . 2

G′′

n(1) =

C∑

n=0

2βn,2

For m = 0 . . . 3

G′′

n(1) =
C∑

n=0

[

2βn,2 + [(−3 · 2) + (3 · 2)]βn,3

]

For m = 0 . . . 4

G′′

n(1) =

C∑

n=0

[

2βn,2 + (−3 · 2 + 3 · 2)βn,2 + (4 · 3− 4 · 3 · 2 + 4 · 3 · 2)βn,4

]

...
...

G′′

n(1) =

C∑

n=0

2βn,2 (43)

Finally, from Eqn. (41), we obtain

VV = 2

C∑

n=0

βn,2 −M2
V +MV

=
µd1

µd2

C∑

n=0

nβn,1 −M2
V +MV [From Eqn. (40)] (44)

We solve the equation set (38) for βn,1 as follows. Consider a C × 1 matrix X that contains the C + 1 solutions in terms of

βn,1. Further, consider a C × C matrix A and a C × 1 matrix B such that AX=B. We obtain the elements of A and B from

Eqn (38) as

An,m =

∣
∣
∣
∣
∣
∣
∣
∣

−(N −m)λ′

f for 0 ≤ n ≤ C,m = n− 1

(N − n)λ′

f + µd1 + nµd2 for 0 ≤ n ≤ C,m = n

−(n+ 1)µd1 for 0 ≤ n ≤ C,m = n+ 1
µd1 + Cµd2 for n = C,m = n

(45a)

Bn,m =

∣
∣
∣
∣

(n+ 1)µd1pn+1 for 0 ≤ n ≤ C
0 otherwise

(45b)

Once we compute X , the variance VV can be easily computed from Eqn. (44). Finally. following the steps in Section (II-E),

mean and variance of the hand-off offered traffic to L2 can easily be computed. Since, various types of congestions are

important QoS parameters in traffic dimensioning, we compare various types of congestions [12] estimated using our analysis

for small cell model with that of [7] in the next section.
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IV. SMALL CELL MODEL VALIDATION AND DISCUSSION

We validate the proposed model by considering a special case where it reduces to some already existing model. As mentioned

in the literature, when the population size increases and theoretically tends to infinity, the Engset distribution behaves as Poisson

distribution. In our small cell case, we observed that around N ≥ 150, the corresponding fresh traffic behaves as Poisson

distribution. Thus, we choose N, λ′

f such that some equivalent fresh offered traffic (Poisson distributed) is injected into the

proposed model. In such a condition, the congestions estimated using the proposed small cell model are compared with (a)

the model proposed by Rajaratnam and Takawira (R-T Model) [7], [8], [9] and (b) the model proposed by Foschini et al.

(Foschini’s Model) [1]. Table I presents the estimated congestion (fresh and hand-off) for the above models. In the first case

Table I: Small Cell Model Validation

(a) Effect of varying number of users on congestion in a small cell.

No. Of

Users

Small Cell

Model

(Hand-off

Congestion)

Small Cell

Model

(Fresh

Congestion)

R-T Model

(Hand-off

Congestion)

R-T Model

(Fresh

Congestion)

Foschini’s

Model

(Fresh /

Hand-off

Congestion)

150 0.0001534 0.0001593 0.0001592 0.0001594 0.0001584

190 0.001766 0.001795 0.001808 0.001812 0.001803

230 0.008448 0.008477 0.008404 0.008456 0.008526

270 0.022 0.022 0.022 0.022 0.022

310 0.041 0.041 0.041 0.042 0.042

350 0.062 0.064 0.063 0.064 0.064

390 0.085 0.087 0.085 0.087 0.087

430 0.108 0.11 0.108 0.11 0.11

(b) Effect of varying mobility of users on congestion in a small cell.

User

Mobility

Small Cell

Model

(Hand-off

Congestion)

Small Cell

Model

(Fresh

Congestion)

R-T Model

(Hand-off

Congestion)

R-T Model

(Fresh

Congestion)

Foschini’s

Model

(Fresh /

Hand-off

Congestion)

0 0 0.046 0 0.046 0.046

0.1 0.044 0.044 0.044 0.044 0.044

0.3 0.041 0.041 0.041 0.041 0.041

0.5 0.037 0.037 0.036 0.037 0.037

0.7 0.03 0.03 0.03 0.03 0.03

0.9 0.018 0.018 0.017 0.018 0.018

(Table Ia), the number of users in a small cell is varied from 150 to 430, while other parameters such as user mobility, session

duration, session request rate, cell capacity (channels) are kept constant. In the second case (Table Ib), the user mobility in a

small cell is varied from 0 (static) to 0.9 (highly mobile), while other parameters such as number of users, session duration,

session request rate, cell capacity (channels) are kept constant. Table I shows that all models are in good agreement. This

validates the correctness of the small cell model. We further observe in Table Ia that both types of congestions increase with

the number of users, which is expected. In Table Ib, we notice that the fresh congestion decreases with mobility. This is

expected because the dropped hand-off requests allow greater chances of acceptance to the fresh requests. However, hand-off

congestion decreases with user mobility as well, which is unusual. This happens because of the insensitivity of the existing

models towards population size. The existing models treat hand-off traffic as fresh traffic from the same cell of large population

size. Hence, the phenomena for fresh traffic repeats for hand-off traffic. This reveals the key limitation of the existing models

making them inapplicable for small cells.

Fig. 4 shows the percentage of deviation in congestion estimates using the Small Cell Model with that of the R-T Model.

Since the variance of the fresh requests, initiated from a finite population size, is smaller compared to that initiated from a large

population size, we observe that the R-T Model largely over estimates fresh congestion. The hand-off congestion is also over

estimated because a part of the fresh session requests hand-offs to the adjacent cell. We observe in Fig. 4a that the deviation

decreases with the increase in number of users. This can be attributed to the fact that with increasing number of population

the fresh request distribution (Engset) tends more towards Poisson distribution. Thus, the variance of the fresh offered traffic

increases and the difference with the case of large population size decreases. Since, the fresh request is directly affected by

the population size, the deviation is more in this case. However, with the increase in user mobility in Fig. 4b, the deviation

for both fresh requests and hand-off request increase drastically. This can be explained as follows. In the Small Cell Model,

hand-off congestion increases with the mobility, which is not the case for the R-T Model. Thus, the estimates largely differs
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(a) Varying number of users in a small cell.
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(b) Varying user mobility in a small cell.

Figure 4: Percentage deviation in congestion (Small Cell Model versus R-T Model).

for the hand-off congestion. In case of fresh congestion, deviation occurs from two phenomena. Firstly, the small population

size in the Small Cell Model limits the variance of the fresh session requests which, in turn, makes the fresh traffic more

predictable. This reduces the fresh congestion. Secondly, the increasing hand-off congestion favours the fresh session requests

and reduces the fresh congestion. R-T Model is insensitive to these phenomena.

V. CONCLUSION

We developed some traffic estimation techniques using various moment manipulations for Semi-Markov model applicable

in a small cell scenario. The analysis accounts for the limited population size of the users in modern small cells. It is observed

that the distributions of the traffic streams largely vary from the large population scenario in traditional cells. These affect the

QoS parameters such as congestions both for fresh session requests and hand-off requests. The deviation between the small cell

model and large population model increases with the user mobility while the same decreases with the increase in population

size. Thus, it can be concluded that as the cell size diminishes, small cell model becomes more appropriate for dimensioning.

Further, if the cell size increases and population size becomes comparable with the large cell case, both small cell models and

R-T models yield same results because population size shapes the fresh traffic to be Poisson nature. Thus, for accurate traffic

dimensioning in small cells, it is essential to adopt proper modelling and estimation technique.
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