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ABSTRACT

This paper focuses on active sensing of nonholonomic wheeled
mobile robots (WMRs)Active sensingolves the following prob-
lem: given a current knowledge about the robot state and the en
vironment, how to select the next sensing action or sequehce
actions. A vehicle is moving autonomously through a statid-e
ronment gathering information from sensors. The sensar ale
used to generate the robot actions in order to move arounfi a re

erence trajectory with preset initial starting and desiredl gon-

figurations and imposed constraints. The paper presentsteodhe

for the determination of optimal trajectories based onrjaa-
tion techniques. A suitable performance criterion is folated to
characterize the uncertainty and the extraction of infaiongrom
sensor data. Finally results from experiments are given.

1. MOTIVATION

A great deal of attention has been paid to nonholonomic mobot
during the last years and nevertheless it is still an opea afe
research where a lot of questions are waiting to find answees. Pr

dominantly tracking and motion generation topics have et

ted [1], [2], [3], [4], [5]. Recently attention is given to txe sens-

ing, that incorporates in itself tracking and motion plargnsolu-

tions in the presence of uncertainties. The main questicamto
swer in active sensing is: "Where will the robot move at the next

step?”. An appropriate criterion is needed for gatheringimam
information about the environment and for properly deteing

the robot motions. Some proposed trajectory generatiatesfies
are based on entropy minimization [3], [2] or consider thieoto

motion composed of primitives [6]. In [7] the concentratisron
information-gathering tasks and the choice 'where to look'rie
investigated as a special case of an optimal experimengmlesi
weighted trace of the estimation error covariance matrix@sen
as a criterion to perform the next motion.

Active sensing for nonholonomic wheeled mobile robots (WMRs)

is a challenging goal for various reasons:
e The nonholonomic characteof the systems. Aonholo-

e [tis related to th&eomputational loadtime, number of op-
erations). All generated motions are needed to be executed
on-line

e The nonlinear characterof the problem poses questions
about the systernontrollability. The majority of existing
methods reduce the nonlinear model to a form easier to deal
with (chained forms, Goursat normal forms or othier
ear representations with special properties), generate mo-
tion with the chosen specific form and then transform the
resulting trajectory into the original representation [#].

e Obstacleavoidance adds an additional level of difficulty.
Steering methods rely on topological properties of the en-
vironment [8], or other learning techniques [3], [2].

e Otheruncertaintiese.g. in the models and sensor data.

So, it can be pointed out that active sensing isogtimization
problem. This work deals with active sensing of nonholonomic
WMRs in the presence of uncertainties. The robot is moving in
the Cartesian space starting from a giveitial configurationto

a desiredjoal configuration. Between two points there are an in-
finite number of possible trajectories. On the basis of themen
data the robot is taking decisions how to move around a preket
erence trajectory. The errors in the sensor data, the inacies in

the WMR model, and inaccuracies of other type can be the neaso
that the robot does not arrive at the desired goal configurair

to arrive with considerable errors. The key idea of the apgroa
proposed here is to use some parameterized family of pedsibl
jectories and thus to reduce the infinite-dimensional gnoblo a
finitely parameterized optimization problem. To chardetethe
robot motion and to process the sensor information effiieah
appropriate criterion is introduced. The approach propdssre
examines active sensing ag/labal optimization problensubject

to constraints.

The paper is organized as follows. The motion and measurement
models of the considered nonholonomic WMR are described in
Section 2. The proposed approach for active sensing anidela

nomicsystem can be defined as a system subject to kine- criteria are given in Section 3. Section 4 presents sinoriate-
matic constraints such that the dimension of the admissible sults illustrating the effectiveness of the approach. ised sum-
controls at each point is less than the dimension of the con- marizes the results.

figuration variables [1], [8]. A consequence of the nonholo-

nomic constraints is that not each path from the admissible 2. MOTION AND MEASUREMENT MODELS
configuration space corresponds to a feasible trajectory fo
the robot. AWMR is moving in a plane. The environment is supposed known

The task solution depends on tbptimality criterion It and obstacle free. The WMR motion is in the configuration epac
should be such that maximum information is extracted from starting from a poin{z,, y,), and it is required to reach a desired
the sensor data and at the same time this information is pro- goal configuratior(z, y,) moving around a reference trajectory.
cessed in a computationally efficient way. The WMR generates its actions by processing the sensor data.
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Figure 1: WMR coordinates

The vehicle motion at each time instabtis determined by the
kinematic model [5]

Tri1 x + v, AT cos(¢pr, + r,) Mo,k
Y1 | = | ye +vrATsin(dr +9x) | + | nyr |, ()
P+ o + 22T sinyy Nk

wherezx;, andy, denote the WMR position coordinates in a fixed
frame (Fig. 1),¢ is the angle measuring the orientation with re-
spect to ther axis. L is the wheel base line (the distance between
the front steering wheel and the axis of the driving wheeld), is

the travel time between two time Steps, = (Nu.k, No.k> Do k)~
represents a process noise due to both modeling and disdieti
errors. The state vectae, = (z‘k,yk,¢k)T is denoted below
with different subscriptss stands for thestarting configurationg
refers to thegoal configuration,r to thereferencetrajectory, and
the modified robot trajectory is without any subscript.

The WMR is controlled through a demanded veloaifyand a
direction of travek)y, i.e. the control vector is;, = (vk,wk)T.
Due to physical constraints, both the velocity, and the angle
1, of any WMR cannot exceed boundary values, namglye
[Oyvmam]: wk € [_wmamﬂ/}mam] (wmam < % ) The WMR can
perform only forward motions.

subject to constraints

|ly,k| S l;q,maacy (4)
Vg S VUmazx, (5)
[Yr| < Ymass (6)

wherel, ; is the lateral deviation of the optimal trajectory from
the reference one (lateral is called the orthogonal robdiamo
deviation from the reference trajectory gndirection),ly maz iS
the maximum allowed lateral deviation value. The experiment
are conducted in a way to minimize a measure, characteriaig
WMR estimate vector.
The approach proposed here is based on a parametrization of a
classQ,

Q=09(p), peP, @)

of harmonic functions wherp is a vector of parameters obeying
to preset physical constraints. GivAhnumber of harmonic func-
tions, the new (modified) robot trajectory is generated erbidsis
of the reference one by a lateral deviation as a linear sopéipn

Sr.k
),
S, fin

N
ly,k= E Ai,ksin(iﬂ

i=1

(8)

of sinusoids, the amplituded; , of which are constantss, ;, is
the path length up to instakt ands, s, is the whole path length.
Clearly, the problem described above can be cast into tHeero
of trajectory generation of a system described by equations

Tr+1 = f(Tr, ur, My) ©)

zk = h(zk, &) (10)
with f andh nonlinear functions. In this formulation active sens-
ing is aglobal optimization problenfon the whole WMR trajec-
tory) with a criterion to be minimized

J= lglin{clI + c2C} (11)
ik

The vehicle is equipped with a sensor that can measure the rang underconstraints(4)-(6). The optimization reduces to an optimal

r, and bearindy, to a beacoiB, located at coordinate§y g, yB)T.
The observation equation for the beacon is

(’l"k) _ (Vs =)’ + (ys —ur)? + (&,k) @

O arctan(i’gifv:) — bk o)’

whereg, = (§T,k,§g,k)T is the observation noise. The measure-
ment vector is further denoted ke, = (rx, 6x)T. The noise

vectorsn,, and§,, are assumed Gaussian, zero mean, mutually un-

correlated, with covarianceg,, and Ry, respectively.

3. TRAJECTORY OPTIMIZATION

The robot 'knows' preliminary a reference trajectory, ., =

(@r.k, Yrok, $ri) T is preset at every momeht = 1,2,.... The
control vector of this trajectory ia, ;. How to move in the 'best'
way according to a formulated criterion, from the startinghe
goal configuration?

choice of amplitudesi; . The criterion (11) is composed of two
terms : Z characterizes the information extraction and accuracy,
C is the cost part. AZ could be chosen the entropy, or a scalar
function of the covariance matrix of the estimated stategeHe
is in the form

Z =trace(WP), (12)

where P is the covariance matrix of the estimated states (at the
goal configuration) W is a weighting matrix;trace(.) denotes
the matrix trace¢: andc, above are positive weighting constants.
C accounts the relative time

c :tfin/tr,fin (13)
wheret ¢;,, is the final time for reaching the goal configuration on
the modified trajectory versus the respective time;,, over the
reference trajectory (when the WMR travels at a constantcvelo
ity). Minimization of J with respect to parameters of the mod-
ified trajectories guarantees trajectories with minimaleutainty

Let Q be a class of smooth functions. The problem of determining bounds. Within a statistical framework the covariance al

the 'best' trajectoryg™ with respect to an inded can be formu-
lated as

q* = argmin(J) (3)

represents an information criterion. The weighting mat#xis a
product of a normalizing matrifV, by a scaling matrix\1, i.e.
W = M N. The normalizing matrixN = diag{1/o?, 1/03,
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..,02}, (n is the state vector dimension) transforms the crite-
rion into invariant measure to different physical units. are the
standard deviations at the goal configuration on the reberéna-
jectory, and so the extraction of information compared torif-
erence trajectory is obvious. Depending on the particulsk,ta
they could be chosen in another way. The scaling mauix=
diag{m., ..., m,} gives different weights to the separate terms
of the trace. The optimization is conducted by higher imparct
these state vector components with highgt whereas the impact
of the other states is weakened. Itis assumedjb?;\zt1 m; = n.
The criterion.J introduced in this way is a dimensionless scalar.
As 'good’ are considered trajectories which at the goal condigu
tion have the first terrf within the rangg0, n].

The state estimation in the present paper is carried oudbaise
the Unscented Kalman Filter (UKF) [10], [11] for state vector es-
timation. The UKF is implemented in its form with an augmented
state vector (a concatenation of the states and the noisgk) [
The sigma points and their weights are calculated using thledc
Unscented Transform [11]. The WMR and beacon models, (1)
and (2), are highly nonlinear, that motivates the use of the UKF
as a filtering algorithm. It does not require linearizatiooy ex-
plicit calculation of Jacobians and Hessians. The solutiiaioed

is optimal within a selected class of harmonic functions, veith
fixed, finite number terms. Harmonic signals have been used for
other aims, for experimental identification of robot partenein
[12], and [13]. In [13] the problem of robot dynamic calibicat

is considered and the optimization problem is solved by &tien
algorithm. In [12] experimental robot identification hasheper-
formed within a statistical framework.

4. SIMULATION RESULTS

The paper is concluded by some simulation results which shew t
performance of the developed approach for active sensing.

The covariance matriP;, of the estimation errae; — &, defines
an uncertainty ellipsoidz — :ik)TPk (xr — @r) = 1 that with
respect to the positior(g«, yx ) only is converted into a confidence
ellipse, characterizing the performance of active sensing
Thereference trajectorys astraight linewith a starting configura-
tionzs = (1 m, 15 m) and a goal configurationz, = (12.84 m,

15 m). The sampling time i\T = 0.2 sec. The beacon is lo-
cated in a point with coordinatasg = 9 m, yg = 19 m. Itis
assumed thatmee = 0.2 m/sec, Ymaz = 60 deg, ly,maz =3 m
andL = 0.5 m.

The UKF is implemented with the following parameters, recom-
mendable for systems with Gaussian noises and of ayder 3
(sothats + n = 3)[10],[11]: a = 1,8 = 2,k = 0. The
initial state estimate vector and covariance matrix atgyo =
(1m,15m,0deg)”, Py = diag{0.3m>,0.3m?>, 0. 0025 deg®}.
The noise covariance matrices a@; = dzag{lO °m

107% m?, 107* deg®}, Ry, = diag{0.0004d>m?, 100 deg®},
Wheredk is the distance from the WMR to the beacon. As in [4],
measured distances are used for simulating the measurgrasent
timates are used in the UKF.

The reference and modified trajectories, generated witbreifit
number of sinusoid®V, in accordance with (8), together with the
uncertainty ellipses are shown on (Figs. 2, 4). The evolution
time of the weighted covariance trace is presented on Fighg. T
bigger N is, the smaller the value af is. Better accuracy is pro-
vided with biggerN, at the cost of increased computational load.
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Figure 3: Trajectories: referenc&(= 0) and modified V = 3)

For comparison, the iteration process in the cas& o 1 was
stopped after 3 iterations, and fit = 5, after 64 iterations.

In the experiment the WMR velocity is changeable, so thagithes
the goal configuration through the different trajectormiie same
time. When the robot is moving with a constant velocity, tineeti
tsin is also an important part of the criterion. The cost criteGo
is presented in Table 1, together with the information dotef,
as well as the whole criteriafi, computed withe; = 1, ¢ = 0.1.

C is the ratio between the time for traveling over every trajpct
versus the time for traveling on the reference trajectory.

The generated optimal trajectory is required to have a emalue
for J than the straight line trajectory. For this reason itis adble
to chosen the elements Bf equal to the standard deviationsBf
on the straight line (at the final time step). The squareddstah
deviations of N, ares; = 0.025 m?, o, = 0.023 m® 0}
1.52 deg” are received from the straight line reference trajectory
at its end point. The scaling matri¥ is the identity matrix.
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Table 1: Active sensing results at the final time step.

(¥ o [ 1 [ 38 [ 5 |
[Z][3.00]2.76]2.42]2.10 |
[C][1.00]1.14]1.20 ] 1.21]
[ J][3.10]2.99]2.54]2.29]

5. CONCLUSIONS

This work concentrates on active sensing of a nonholonomtRNV

in the presence of uncertainties. The robot is required teemo

from an initial to a final goal configuration (preset posigpnThe
paper presents an information-based approach for degigmiti-

mal trajectories of the nonholonomic WMR. The problem habe

examined as a global optimization problem subject to cairgs.

A relevant performance criterion has been defined takirmy awct
count accuracy requirements and the constraints (nonbiwiian
physical). The criterion incorporates two parts: inforimatand
cost part. Their influence is decoupled. The criterion iuiv
ant to physical units and is formulated in an appropriate teay
gain information from the measurements. The optimal ttajgc
is searched within a preset class of functions, namely thbseo
harmonic ones and as a linear combination of sinusoidal cemp
nents.
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