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Analysis and Design Optimization of an
Improved Axially Magnetized Tubular

Permanent-Magnet Machine
Jiabin Wang, Senior Member, IEEE, David Howe, and Geraint W. Jewell

Abstract—This paper describes the analysis and design opti-
mization of an improved axially magnetized tubular permanent-
magnet machine. Compared with a conventional axially magne-
tized tubular machine, it has a higher specific force capability and
requires less permanent-magnet material. The magnetic field dis-
tribution is established analytically in the cylindrical coordinate
system, and the results are validated by finite-element analyses.
The analytical field solution allows the analytical prediction of the
thrust force and back-electromotive force (emf) in closed forms,
which, in turn, facilitates the characterization of a machine, and
provides a basis for design optimization and system dynamic mod-
eling.

Index Terms—Linear motors, permanent-magnet motors,
system analysis and design.

I. INTRODUCTION

T
HE DEMAND for linear electrical machines, for both

controlled motion and electrical power generation, has

increased steadily in recent years. For example, for applications

in the high-speed packaging and manufacturing sectors, linear

electromagnetic machines, which provide thrust force directly

to a payload without the need to convert rotary to linear motion,

offer significant advantages in terms of simplicity, efficiency,

positioning accuracy, and dynamic performance—in both

acceleration capability and bandwidth. Of the various types

and configurations of linear motor, tubular permanent-magnet

topologies are particularly attractive [1] since they have a high

thrust force density and high efficiency, no end windings, and

zero net attractive force between stator and armature. There are

various tubular motor topologies [2], [3], in which the armature

may be either air-cored or iron-cored. However, it has been

shown [4] that an axially magnetized topology, Fig. 1, has a

higher specific force capability than other candidate topologies,

but requires more permanent-magnet material. This topology

also has advantages with regard to the cost of manufacture,

since axially anisotropic magnets are widely available, and they

are magnetized simply by placing them in a solenoid impulse

magnetizing fixture.

This paper describes the analysis and design of an improved

axially magnetized tubular permanent-magnet machine, as

shown in Fig. 2, in which both the magnets and the associated
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Fig. 1. Conventional axially magnetized tubular PM machine topology.

Fig. 2. Proposed machine topology.

pole-pieces are annular shaped and supported by a nonferro-

magnetic (stainless steel, for example) rod. It offers several

advantages over the conventional topology shown in Fig. 1.

First, it eliminates the need for a nonmagnetic tube to contain

the magnets and pole-pieces, so that the effective magnetic air

gap between the stator and armature is reduced. It also reduces

the volume of permanent-magnet material. Although there

will be some flux leakage via the central rod, the reduction

in force capability can be relatively small. Furthermore, for

moving-magnet machines, it can reduce the moving mass,

and thereby increase the attainable acceleration. Further, in

order to inhibit corrosion and/or to satisfy legislative standards,

the surface of the magnets/pole-pieces can be covered with

relatively thin protective coating.

In order to facilitate design optimization and accurate

dynamic modeling, a variety of techniques has been employed

to predict the magnetic field distribution in tubular perma-

nent-magnet machines [2], the most common approach being to

employ a lumped equivalent circuit [5], [6]. However, while this

allows the relationship between critical design parameters and

machine performance to be established analytically, it suffers

from problems associated with model inaccuracy, particularly

when flux leakage is significant and the flux paths are complex.

Therefore, numerical analysis of the field distribution and

evaluation of performance [7]–[9] are also employed. However,
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Fig. 3. Field regions.

while techniques such as finite-element analysis provide an

accurate means of determining the field distribution, with due

account of saturation, etc., they remain time consuming and

do not provide as much insight as analytical solutions into the

influence of the design parameters on the machine behavior. To

overcome the aforementioned problems, an analytical solution

for the magnetic field distribution has been established in the

cylindrical coordinate system [3]. It is an extension to the anal-

ysis which has been developed for tubular permanent-magnet

machines to account specifically for the topology in Fig. 2

[10]. The analytical solution allows the prediction of the thrust

force and the back-electromotive force (emf) in closed forms,

which, in turn, facilitates the characterization of machines and

provides a basis for design optimization and system dynamic

modeling.

II. FIELD DISTRIBUTION DUE TO PERMANENT MAGNET

SOURCE

A. Magnetic Field Distribution

In order to establish an analytical solution for the magnetic

field distribution, the following assumptions are made.

i) The axial length of the machine is infinite so that the

field distribution is axially symmetric and periodic in the

-direction.

ii) The armature is slotless and the permeability of the iron

is infinite.

However, the effect of slotting, if present, can be taken into

account by introducing a Carter coefficient. Consequently, the

magnetic field analysis is confined to three regions, viz. the

airspace/winding regions and , and the permanent-magnet

region , as shown in Fig. 3, for which the field equations, in

terms of the magnetic vector potential are governed by

(1)

is the magnetization vector of the magnets and is given by

(2)

TABLE I
DESIGN PARAMETERS OF TUBULAR PM MACHINE (M)

where denotes the component of in the direction and

may be expressed as the Fourier series

(3)

where is the axial length of the magnets, is the pole-pitch,

and . The boundary conditions to be satis-

fied by the solution to (1) are

(4)

Solving (1) subject to the boundary conditions of (4) yields

(5-a)

(5-b)

(5-c)

where and are modified Bessel functions of

the first kind; and are modified Bessel func-
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Fig. 4. Comparison of axial and radial flux density components as functions
of axial position z at r = (R +R ) (a) axial flux densityB , (b) radial flux
density B .

tions of the second kind, of order 0 and 1, respectively;

and , , , , , and are defined in

the Appendix.

B. Comparison With Finite-Element Calculations

The main design parameters of the tubular machine, for

which the analytical field solution has been obtained, are

given in Table I. The magnets are sintered NdFeB, with

. The analytical field distribution has been

validated by finite-element calculation of the radial and axial

variations of the radial and axial flux density components in

the airgap/winding regions.

The finite-element solution was obtained by applying a peri-

odic boundary condition at the axial boundaries and

imposing the natural Neumann boundary condition at the sur-

face of the armature sleeve. Fig. 4 compares numerically and

analytically calculated distributions of the axial and radial flux

Fig. 5. Open-circuit flux distribution.

density components and as functions of the axial po-

sition at a constant radius . It will be seen that

the analytical solution agrees extremely well with the finite-el-

ement prediction.

Fig. 5 shows the finite-element (FE) predicted flux distribu-

tion in the tubular machine. As can be seen, flux leakage via the

nonmagnetic rod is very small, and has a negligible effect on the

winding flux linkage.

III. EMF AND FORCE PREDICTION

It has been shown in [3] that the flux linkage of a phase

winding, comprising a number of series connected coils each

displaced by a winding pitch is given by

(6)

where

(7)

where is the number of series turns per phase, and is

the inner radius of the winding. is defined as the winding

factor of the th harmonic and is given by

(8)

and is the coefficient related to the th harmonic in

the radial field distribution and is given by

(9)

Hence, the induced emf per phase is obtained as

(10)

where is the velocity of the armature. Fig. 6 compares the

numerically and analytically predicted flux linkage of one
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Fig. 6. Comparison of flux linkage per phase per pole as a function of axial
displacement of the armature.

Fig. 7. Comparison of emf per phase per pole as a function of time at an
armature speed of 10 (m/s).

pole-pair phase winding with , while Fig. 7 compares

the corresponding emf waveforms at an armature velocity of 10

(m/s) for the same machine parameters given in Table I. Again,

an excellent agreement is observed.

Similarly, the axial force exerted on a phase winding, com-

prising coils spanning a number of pole-pairs and having a

current density , is given by

(11)

where is the axial width of the phase winding per pole. With

balanced sinusoidal three-phase currents, it can be shown [4]

that the total thrust force is given by

(12)

Fig. 8. Comparison of thrust force waveforms per phase per pole at an
armature speed of 10 m/s under sinusoidal excitation.

where , , and are given by

(13)

and is the root mean square (rms) current density. As will

be evident from (13), the force ripple due to triplen harmonics

in the radial field distribution is zero. The normalized total force

ripple is, therefore, given by

TFR

(14)

Fig. 8 shows the comparison of thrust force waveforms, pre-

dicted by both FE and the analytical solution, at an armature

speed of 10 m/s for the same machine parameters given in

Table I. In both predictions, the armature is supplied with a

three-phase sinusoidal current having an amplitude of 25 (A).

It should be noted that the thrust forces in Fig. 8 do not include

the cogging force component due to finite armature length as a

periodic condition is applied in both analytical and FE models.

IV. DESIGN OPTIMIZATION

Having established an analytical expression for the force ca-

pability, the design of the tubular machine can be optimized with

respect to a given criterion, for example, for maximum force ca-

pability or for minimum cost for a given performance specifica-

tion and volumetric constraint. In this paper, design optimiza-

tion is addressed at maximizing the force capability, subject to

satisfying other performance specifications.
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It has been shown [4] that the permissible winding copper

loss and iron loss are governed by the dissipation capability of

the machine, that is

(15)

where is the winding packing factor, is the resistivity of

copper, is the armature surface temperature coefficient, is

the armature surface dissipation area, and is the allowable

temperature rise of the windings. The iron loss can be pre-

dicted using the formula in [11] from the flux density derived

from the analytical field solution. The permissible current den-

sity is, therefore, given by

(16)

Thus, (13) and (16) relate the force capability to the design

parameters under a given thermal condition.

The analytical field solution is obtained assuming that the

armature and stator iron pole-pieces are infinitely permeable.

Although saturation of the cores is unlikely in slotless perma-

nent-magnet (PM) machines, it is prudent to account for satura-

tion during the design optimization process when different com-

binations of design parameters are being considered. Thus, a fic-

titious radial air gap is introduced between the armature wind-

ings and the outer armature sleeve to account for core saturation,

its effectiveness being confirmed by finite-element analysis [4].

The main design parameters that influence the performance

of the machine are shown in Fig. 2, where is the active arma-

ture length, is the air-gap length, and is the outer radius

of the armature. For slotless machines, it has been shown that

the influence of end effects associated with the finite armature

length on the flux linkage and thrust force of the windings are

negligible [12]. Hence, (12)–(14) and (16) can be used to predict

the force capability and the force ripple. In order that the find-

ings are independent of machine size, the thrust force due to the

fundamental component of the radial magnetic field is divided

by the volume of the armature to give the force density.

Thus, the design objective is to optimize the machine parame-

ters so as to maximize the force density and minimize the total

force ripple, while satisfying other given specifications.

For a given outer radius , the design parameters that af-

fect the force density and the force ripple are , ,

, and . However, for slotless machines, the influence of

the air-gap length is not as significant as for slotted machines

and in this study, it is, therefore, considered to be constant. It

has been shown [4] that the influence of the ratio of on

the performance is largely independent of the other two-dimen-

sional ratios. By way of example, Fig. 9 shows the variation

of the force density and the normalized total force ripple with

and , assuming , ,

- , , ,

, , ,

, and .

As can be seen, the variation of the force density with

is essentially similar irrespective of the ratio of . The

general trend is that an increase in results in an increase

in the force capability. However, the rate of increase of the force

Fig. 9. Variation of force density and force ripple as functions of � =�
(a) force density and (b) normalized force ripple.

Fig. 10. Variation of force density as functions of R =R and � =R ,
� =� = 0:70.

capability reduces progressively as approaches 0.9. The

higher the ratio of , the greater the magnet volume and,

therefore, the more expensive the machine. With regard to the

total force ripple, this exhibits a local maximum at

and a minimum at . Thus, a value of

between 0.6 and 0.75 probably represents the best compromise

between performance and magnet cost.

Fig. 10 shows the variation of the force density with

and from which it is evident that for a given value of

, there is an optimal ratio of which results in the

maximum force density. For a given value of , there is
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Fig. 11. Variation of normalized force ripple as functions of R =R and
� =R , � =� = 0:70.

also an optimal value for , which results in the maximum

force density.

The optimal combination of dimensional ratios for

and for this particular example are 0.85 and 0.7,

respectively, which results in a maximum force density of

3.02 .

Fig. 11 shows the variation of the total force ripple as a func-

tion of and . As will be seen, the force ripple

increases when both of these dimensional ratios are increased.

However, at the optimal dimensional ratios for maximum force

density, the normalized total force ripple is less than 0.3%.

V. COMPARISON WITH THE CONVENTIONAL MACHINE

TOPOLOGY

In order to compare its performance with that of a conven-

tional machine topology (Fig. 1), both machines are assumed

to be slotless, and they are designed to the same criterion and

with the same thermal constraint with due account of core sat-

uration. Fig. 12 compares the force density and the normalized

force ripple of the two machines as a function of , as-

suming , , and an air-gap length of

0.001 m, with and , which are op-

timal ratios for the conventional machine topology [4]. The wall

thickness of the nonmagnetic containment sleeve in the conven-

tional motor is assumed to be 0.001(m). Thus, it has an effective

air gap of 0.002 m. In the proposed machine topology, the inner

radius of the magnets/pole-pieces is 0.005 m.

As will be seen, in this particular case, the force density of the

proposed tubular machine topology is higher than that

of the conventional machine despite the fact that it requires 4.3%

less permanent-magnet material. This is due to the smaller air

gap, which results in a slightly larger winding area and a more

radially orientated field distribution over the cross-section of the

winding. Its normalized force ripple is, however, slightly higher

although with , the force ripple of both machines

is below 0.2%, which is likely to be negligible compared with

the cogging force which results from end effects.

It should be noted that for machines with a slotted armature,

the proposed topology will be even more beneficial than the

conventional counterpart as the absence of the containment tube

can significantly reduce the magnetic air gap and, hence, results

in a greater increase in force density.

Fig. 12. Comparison of force density and normalized force ripple. (a) Force
density. (b) Normalized force ripple.

VI. CONCLUSION

A modified design of axially magnetized tubular permanent-

magnet machine has been proposed, and its magnetic field dis-

tribution has been analytically established. This allows its force

capability and force ripple to be expressed as functions of var-

ious dimensional ratios, which provides a useful tool for as-

sessing the influence of leading design parameters on the ma-

chine performance and for making comparative studies. It has

been shown that the proposed machine design has a higher force

capability than that of a conventional machine, while it requires

less permanent-magnet material. It should be noted, however,

that the design needs to be appraised mechanically in regards to

the stiffness of the thrust rod and economically in regards to the

machining of the inner bore of the magnets and pole pieces for

example.

APPENDIX

Definition of , , , , , and . Let
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Then, , , , , and are solutions of the fol-

lowing linear equations:

and , where , are the numbers of the

harmonic terms used for the calculation of the flux density in

regions , , and , respectively.
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