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Uncertainty and Analyticity

Vladimir V. Kisil

Abstract. We describe a connection between minimal uncertainty states
and holomorphy-type conditions on the images of the respective wavelet
transforms. The most familiar example is the Fock–Segal–Bargmann
transform generated by the Gaussian, however, this also occurs under
more general assumptions.
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1. Introduction

There are two and a half main examples of reproducing kernel spaces of an-
alytic function. One is the Fock–Segal–Bargmann (FSB) space and others
(one and a half)—the Bergman and Hardy spaces. The first space is gener-
ated by the Heisenberg group [2, § 1.6; 5, § 7.3], two others—by the group
SU(1, 1) [5, § 4.2] (this explains our way of counting).

Those spaces have the following properties, which make their study
particularly pleasant and fruitful:

i. There is a group, which acts transitively on functions’ domain.
ii. There is a reproducing kernel.
iii. The space consists of holomorphic functions.

Furthermore, for FSB space there is the following property:

iv. The reproducing kernel is generated by a function, which minimises the
uncertainty for coordinate and momentum observables.

It is known, that a transformation group is responsible for the appearance of
the reproducing kernel [1, Thm. 8.1.3]. This paper shows that the last two
properties are equivalent and connected to the group as well.
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2. The Uncertainty Relation

In quantum mechanics [2, § 1.1], an observable (self-adjoint operator on a
Hilbert space H) A produces the expectation value Ā on a state (a unit
vector) φ ∈ H by Ā = 〈Aφ, φ〉. Then, the dispersion is evaluated as follow:

∆2
φ(A) =

〈

(A− Ā)2φ, φ
〉

=
〈

(A− Ā)φ, (A− Ā)φ
〉

=
∥

∥(A− Ā)φ
∥

∥

2
. (1)

The next theorem links obstructions of exact simultaneous measurements
with non-commutativity of observables.

Theorem 1 (The Uncertainty relation). If A and B are self-adjoint operators

on a Hilbert space H, then

‖(A− a)u‖ ‖(B − b)u‖ ≥ 1
2 |〈(AB −BA)u, u〉| , (2)

for any u ∈ H from the domains of AB and BA and a, b ∈ R. Equality holds

precisely when u is a solution of ((A − a) + ir(B − b))u = 0 for some real r.

Proof. The proof is well-known [2, § 1.3], but it is short, instructive and
relevant for the following discussion, thus we include it in full. We start from
simple algebraic transformations:

〈(AB −BA)u, u〉 = 〈(A− a)(B − b)− (B − b)(A− a))u, u〉
= 〈(B − b)u, (A− a)u〉 − 〈(A− a))u, (B − b)u〉
= 2iℑ 〈(B − b)u, (A− a)u〉 (3)

Then by the Cauchy–Schwartz inequality:

1
2 〈(AB −BA)u, u〉 ≤ |〈(B − b)u, (A− a)u〉| ≤ ‖(B − b)u‖ ‖(A− a)u‖ .

The equality holds if and only if (B − b)u and (A− a)u are proportional by
a purely imaginary scalar. �

The famous application of the above theorem is the following fundamen-
tal relation in quantum mechanics. Recall [2, § 1.2], that the one-dimensional
Heisenberg group H1 consists of points (s, x, y) ∈ R3, with the group law:

(s, x, y) ∗ (s′, x′, y′) = (s+ s′ + 1
2 (xy

′ − x′y), x+ x′, y + y′). (4)

This is a nilpotent step two Lie group. By the Stone–von Neumann the-
orem [2, § 1.5], any infinite-dimensional unitary irreducible representation
of H1 is unitary equivalent to the Schrödinger representation ρ

ℏ
in L2(R)

parametrised by the Planck constant ℏ ∈ R \ {0}. A physically consistent
form of ρ

ℏ
is [6, (3.5)]:

[ρ
ℏ
(s, x, y)f ](q) = e−2πiℏ(s+xy/2)−2πixq f(q + ℏy). (5)

Elements of the Lie algebra h1, corresponding to the infinitesimal generators
X and Y of one-parameters subgroups (0, t/(2π), 0) and (0, 0, t) in H

1, are
represented in (5) by the (unbounded) operators M and D on L2(R):

M = −iq, D = ℏ
d
dq , with the commutator [M,D] = iℏI. (6)
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In the Schrödinger model of quantum mechanics, f(q) ∈ L2(R) is interpreted
as a wave function (a state) of a particle, with M and D are the observables
of its coordinate and momentum.

Corollary 2 (Heisenberg–Kennard uncertainty relation). For the coordinate

M and momentum D observables we have the Heisenberg–Kennard uncer-
tainty relation:

∆φ(M) ·∆φ(D) ≥ h

2
. (7)

The equality holds if and only if φ(q) = e−cq2 , c ∈ R+ is the vacuum state in

the Schrödinger model.

Proof. The relation follows from the commutator [M,D] = iℏI, which, in
turn, is the representation of the Lie algebra h1 of the Heisenberg group. The
minimal uncertainty state in the Schrodinger representation is a solution of
the differential equation: (M − irD)φ = 0 for some r ∈ R, or, explicitly:

(M − irD)φ = −i

(

q + rℏ
d

dq

)

φ(q) = 0. (8)

The solution is the Gaussian φ(q) = e−cq2 , c = 1
2rℏ . For c > 0, this function

is in the state space L2(R). �

It is common to say that the Gaussian φ(q) = e−cq2 represents the
ground state, which minimises the uncertainty of coordinate and momentum.

3. Wavelet transform and analyticity

3.1. Induced wavelet transform

The following object is common in quantum mechanics [4], signal processing,
harmonic analysis [8], operator theory [7,9] and many other areas [5]. There-
fore, it has various names [1]: coherent states, wavelets, matrix coefficients,
etc. In the most fundamental situation [1, Ch. 8], we start from an irreducible
unitary representation ρ of a Lie group G in a Hilbert space H. For a vector
f ∈ H (called mother wavelet, vacuum state, etc.), we define the map Wf

from H to a space of functions on G by:

[Wfv](g) = ṽ(g) := 〈v, ρ(g)f〉 . (9)

Under the above assumptions, ṽ(g) is a bounded continuous function on G.
The map Wf intertwines ρ(g) with the left shifts on G:

Wf ◦ ρ(g) = Λ(g) ◦Wf , where Λ(g) : ṽ(g′) 7→ ṽ(g−1g′). (10)

Thus, the image WfH is invariant under the left shifts on G. If ρ is square
integrable and f is admissible [1, § 8.1], then ṽ(g) is square-integrable with
respect to the Haar measure on G. At this point, none of admissible vectors
has an advantage over others.

It is common [5, § 5.1], that there exists a closed subgroup H ⊂ G and
a respective f ∈ H such that ρ(h)f = χ(h)f for some character χ of H . In
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this case, it is enough to know values of ṽ(s(x)), for any continuous section s

from the homogeneous space X = G/H to G. The map v 7→ ṽ(x) = ṽ(s(x))
intertwines ρ with the representation ρχ in a certain function space on X
induced by the character χ of H [3, § 13.2]. We call the map Wf : v 7→ ṽ(x)
the induced wavelet transform [5, § 5.1].

For example, if G = H1, H = {(s, 0, 0) ∈ H1 : s ∈ R} and its character
χℏ(s, 0, 0) = e2πiℏs, then any vector f ∈ L2(R) satisfies ρ

ℏ
(s, 0, 0)f = χℏ(s)f

for the representation (5). Thus, we still do not have a reason to prefer any
admissible vector to others.

3.2. Right shifts and analyticity

To discover some preferable mother wavelets, we use the following a general
result from [5, § 5]. Let G be a locally compact group and ρ be its repre-
sentation in a Hilbert space H. Let [Wfv](g) = 〈v, ρ(g)f〉 be the wavelet
transform defined by a vacuum state f ∈ H. Then, the right shift R(g) :
[Wfv](g

′) 7→ [Wfv](g
′g) for g ∈ G coincides with the wavelet transform

[Wfgv](g
′) = 〈v, ρ(g′)fg〉 defined by the vacuum state fg = ρ(g)f . In other

words, the covariant transform intertwines right shifts on the group G with
the associated action ρ on vacuum states, cf. (10):

R(g) ◦Wf = Wρ(g)f . (11)

Although, the above observation is almost trivial, applications of the following
corollary are not.

Corollary 3 (Analyticity of the wavelet transform, [5, § 5]). Let G be a group

and dg be a measure on G. Let ρ be a unitary representation of G, which can

be extended by integration to a vector space V of functions or distributions

on G. Let a mother wavelet f ∈ H satisfy the equation
∫

G

a(g) ρ(g)f dg = 0,

for a fixed distribution a(g) ∈ V . Then any wavelet transform ṽ(g) = 〈v, ρ(g)f〉
obeys the condition:

Dṽ = 0, where D =

∫

G

ā(g)R(g) dg, (12)

with R being the right regular representation of G.

Some applications (including discrete one) produced by the ax+b group
can be found in [8, § 6]. We turn to the Heisenberg group now.

Example 4 (Gaussian and FSB transform). The Gaussian φ(x) = e−cq2/2 is
a null-solution of the operator ℏcM − iD. For the centre Z = {(s, 0, 0) : s ∈
R} ⊂ H1, we define the section s : H1/Z → H1 by s(x, y) = (0, x, y). Then,
the corresponding induced wavelet transform is:

ṽ(x, y) = 〈v, ρ(s(x, y))f〉 =
∫

R

v(q) eπiℏxy−2πixq e−c(q+ℏy)2/2 dq. (13)
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The infinitesimal generatorsX and Y of one-parameters subgroups (0, t/(2π), 0)
and (0, 0, t) are represented through the right shift in (4) by

R∗(X) = − 1
4πy∂s +

1
2π∂x, R∗(Y ) = 1

2x∂s + ∂y.

For the representation induced by the character χℏ(s, 0, 0) = e2πiℏs we have
∂s = 2πiℏI. Cor. 3 ensures that the operator

ℏc · R∗(X) + i ·R∗(Y ) = −ℏ

2
(2πx+ iℏcy) +

ℏc

2π
∂x + i∂y (14)

annihilate any ṽ(x, y) from (13). The integral (13) is known as Fock–Segal–
Bargmann (FSB) transform and in the most common case the values ℏ = 1
and c = 2π are used. For these, operator (14) becomes −π(x + iy) + (∂x +
i∂y) = −πz + 2∂z̄ with z = x + iy. Then the function V (z) = eπzz̄/2 ṽ(z) =

eπ(x
2+y2)/2 ṽ(x, y) satisfies the Cauchy–Riemann equation ∂z̄V (z) = 0.

This example shows, that the Gaussian is a preferred vacuum state (as
producing analytic functions through FSB transform) exactly for the same
reason as being the minimal uncertainty state: the both are derived from the

identity (ℏcM + iD)e−cq2/2 = 0.

3.3. Uncertainty and analyticity

The main result of this paper is a generalisation of the previous observation,
which bridges together Cor. 3 and Thm. 1. Let G, H , ρ and H be as before.
Assume, that the homogeneous space X = G/H has a (quasi-)invariant mea-
sure dµ(x) [3, § 13.2]. Then, for a function (or a suitable distribution) k on
X we can define the integrated representation:

ρ(k) =

∫

X

k(x)ρ(s(x)) dµ(x), (15)

which is (possibly, unbounded) operators on (possibly, dense subspace of) H.
In particular, R(k) denotes the integrated right shifts, for H = {e}.
Theorem 5. Let k1 and k2 be two distributions on X with the respective

integrated representations ρ(k1) and ρ(k2). The following are equivalent:

i. A vector f ∈ H satisfies the identity

∆f (ρ(k1)) ·∆f (ρ(k2)) = |〈[ρ(k1), ρ(k1)]f, f〉| .
ii. The image of the wavelet transform Wf : v 7→ ṽ(g) = 〈v, ρ(g)f〉 consists

of functions satisfying the equation R(k1 + irk2)ṽ = 0 for some r ∈ R,

where R is the integrated form (15) of the right regular representation

on G.

Proof. This is an immediate consequence of a combination of Thm. 1 and
Cor. 3. �

Example 4 is a particular case of this theorem with k1(x, y) = δ′x(x, y)
and k2(x, y) = δ′y(x, y) (partial derivatives of the delta function), which rep-
resent vectors X and Y from the Lie algebra h1. The next example will be of
this type as well.
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3.4. Hardy space

Let SU(1, 1) be the group of 2 × 2 complex matrices of the form

(

α β
β̄ ᾱ

)

with the unit determinant |α|2−|β|2 = 1. A standard basis in the Lie algebra
su1,1 is

A =
1

2

(

0 −i
i 0

)

, B =
1

2

(

0 1
1 0

)

, Z =

(

i 0
0 −i

)

.

The respective one-dimensional subgroups consist of matrices:

etA =

(

cosh t
2 −i sinh t

2
i sinh t

2 cosh t
2

)

, etB =

(

cosh t
2 sinh t

2
sinh t

2 cosh t
2

)

, etZ =

(

eit 0
0 e−it

)

.

The last subgroup—the maximal compact subgroup of SU(1, 1)—is usually
denoted by K. The commutators of the su1,1 basis elements are

[Z,A] = 2B, [Z,B] = −2A, [A,B] = −1

2
Z. (16)

Let T denote the unit circle in C with the rotation-invariant measure.
The mock discrete representation of SU(1, 1) [10, § VI.6] acts on L2(T) by
unitary transformations

[ρ1(g)f ](z) =
1

(β̄z + ᾱ)
f

(

αz + β

β̄z + ᾱ

)

, g−1 =

(

α β
β̄ ᾱ

)

. (17)

The respective derived representation ρ1∗ of the su1,1 basis is:

ρA1∗ = i
2 (z + (z2 + 1)∂z), ρB1∗ = 1

2 (z + (z2 − 1)∂z), ρZ1∗ = −iI − 2iz∂z.

Thus, ρB+iA
1∗ = −∂z and the function f+(z) ≡ 1 satisfies ρB+iA

1∗ f+ = 0.
Recalling the commutator [A,B] = − 1

2Z we note that ρ1(e
tZ)f+ = eitf+.

Therefore, there is the following identity for dispersions on this state:

∆f+(ρ
A
1∗) ·∆f+(ρ

B
1∗) =

1
2 ,

with the minimal value of uncertainty among all eigenvectors of the operator
ρ1(e

tZ).
Furthermore, the vacuum state f+ generates the induced wavelet trans-

form for the subgroup K = {etZ | t ∈ R}. We identify SU(1, 1)/K with
the open unit disk D = {w ∈ C | |w| < 1} [5, § 5.5; 9]. The map s :

SU(1, 1)/K → SU(1, 1) is defined as s(w) = 1√
1−|w|2

(

1 w
w̄ 1

)

. Then, the

induced wavelet transform is:

ṽ(w) = 〈v, ρ1(s(w))f+〉 =
1

2π

√

1− |w|2

∫

T

v(eiθ) dθ

1− we−iθ

=
1

2πi

√

1− |w|2

∫

T

v(eiθ) deiθ

eiθ − w
.

Clearly, this is the Cauchy integral up to the factor 1√
1−|w|2

, which presents

the conformal metric on the unit disk. Similarly, we can consider the operator
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ρB−iA
1∗ = z + z2∂z and the function f−(z) = 1

z simultaneously solving the

equations ρB−iA
1∗ f− = 0 and ρ1(e

tZ)f− = e−itf−. It produces the integral
with the conjugated Cauchy kernel.

Finally, we can calculate the operator (12) annihilating the image of
the wavelet transform. In the coordinates (w, t) ∈ (SU(1, 1)/K) × K, the
restriction to the induced subrepresentation is, cf. [10, § IX.5]:

LB−iA = e2it(−1

2
w + (1 − |w|2)∂w̄).

Furthermore, if LB−iAṽ(w) = 0, then ∂w̄(
√
1− ww̄ · ṽ(w)) = 0. That is,

V (w) =
√
1− ww̄ · ṽ(w) is a holomorphic function on the unit disk.

Similarly, we can treat representations of SU(1, 1) in the space of square
integrable functions on the unit disk. The irreducible components of this rep-
resentation are isometrically isomorphic [5, § 4–5] to the weighted Bergman
spaces of (purely poly-)analytic functions on the unit, cf. [11].

References

[1] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Coherent states, wavelets and their gen-

eralizations. Graduate Texts in Contemporary Physics. Springer-Verlag, New York,
2000.

[2] G. B. Folland. Harmonic analysis in phase space. Annals of Mathematics Studies,
vol. 122. Princeton University Press, Princeton, NJ, 1989.

[3] A. A. Kirillov.Elements of the theory of representations. Springer-Verlag, Berlin, 1976.
Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen
Wissenschaften, Band 220.

[4] V. V. Kisil. p-Mechanics as a physical theory: an introduction. J. Phys. A, 37 (1):183–
204, 2004. E-print: arXiv:quant-ph/0212101, On-line. Zbl # 1045.81032.

[5] V. V. Kisil. Erlangen programme at large: an Overview. In S. V. Rogosin and A. A.
Koroleva (eds.) Advances in applied analysis, pages 1–94, Birkhäuser Verlag, Basel,
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