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Abstract

There is an increasing recognition that nanomaterials pose torisknan health, and that the
novel engineered nanomaterials (ENMs) in the nanotechnology indusiryhair increasing
industrial usage poses the most immediate problem for hazard assgsasimany of them
remain untested. The large number of materials and their variantseidiffizes and coatings for
instance) that require testing and ethical pressure towards noatatesting means that
expensive animal bioassay is precluded, and the use of (quantitativedurgt activity
relationships ((Q)SAR) models as an alternative source of hazard informatiod bh@xplored
(Q)SAR modelling can be applied to fill the critical knowledge gapsnbking the best use of
existing data, prioritize physicochemical parameters driving toxigty] provide practical
solutions to the risk assessment problems caused by the divelSMMs. This paper covers the
core components required for successful application of (Q)SAR technotogiESMs toxicity
prediction, and summarizes the published nano-(Q)SAR studies and aihdirdllenges ahead
for nano-(Q)SAR modelling. It provides a critical review of (1) the preséatus of the
availability of ENMs characterization/toxicity data, (2) therela#erization of nanostructures that
meets the need of (Q)SAR analysis, (3) the summary of published nano-(Q)&id? sind their
limitations, (4) the in silico tools for (Q)SAR screening of nanotoxicity gg)dthe prospective

directions for the development of nano-(Q)SAR models.

Keywords. nanomaterial toxicity, nanotoxicology, QSAR, nanoSAR, in silico prediction of

toxicity



1. Introduction

The potential human exposure to engineered nanomaterials (ENMs) antedise @ into the
environment have become more likely with the increasing use of ENMs for corahpemposes.
Moreover, recent studies have revealed that the distinctive charactesfdiiblMs not only make
them superior to traditional bulk materials but also affect their patéoxicity (Arora, Rajwade,

& Paknikar, 2012) and present a challenge for the existing regulatoeyrsySalkner & Jaspers,
2012). There is now a growing body of literature on the potential undesetibcts caused by
the exposure to different types of ENMs (Horie & Fujita, 2011; Jeng & SwaR866; Karlsson,
Gustafsson, Cronholm, & Médller, 2009; Magrez, et al., 2006). Although the awarehéhe
potential adverse effects of ENMs is increasing, there atenstiterous unanswered questions

which complicate the appropriate evaluation of toxicity at the nano-scaénsion.

The toxicological evaluation of ENMs is complicated by manyoiac(e.g. the presence of a
large number and variety of ENMs, the difficulties in categorisiagomaterials (NMs) for
toxicological considerations and the fact that even a slight tiarian characteristics of
nanostructures may also be reflected in their biological response) avhitiatically increase the
effort required to evaluate the adverse effects of ENNisseems that the only reasonable
approach to obtain toxicity information for the numerous ENMs without testiagy single one

is to relate the biological activities o\l s to their structural and compositional features.

The need to use in silico methods, such as the (quantitative) structivig-arelationship
((Q)SAR) approach, for toxicity prediction of ENMs has been apparent since the EU’s REACH
(Registration, Evaluation, Authorisation and Restriction of Chemicals) Regularomoted the
use of alternative toxicity assessment methods (T. Puzyn, Leszczgniskazczynski, 2010). As
the name suggests, (Q)SAR is a computational technique which atterppgslict the biological
activity of a compound by relating it to a set of structural @mipositional properties such as
particle size, size distribution, particle shape, surface aréa,pptential and crystal structure.
The basic idea behind this approach is that different types of @&dfects (i.e. cytotoxic,
genotoxic and inflammatory effects) can be related to measurab&cnitable physicochemical

descriptors. A schematic representation of nano-(Q)SAR workflow is given in Figure 1. .

This data-driven approach brings many advantages in terms of costeffiectiveness and
ethical concerns. Although it has been satisfactorily used to cpréae physicochemical
properties of NMs, such as solubility (Gajewicz, 20&®araman, Srinivasan, Vasudeva Rao, &

Natarajan, 2001Toropov, Leszczynska, & Leszczynski, 200bropov, Toropova, Benfenati,
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Leszczynska, & Leszczynski, 2009) and elasticity (Mohammadpour, AvaAddullah, 2011
Toropov & Leszczynski, 2006), development of reliable (Q)SAR models beconoes
complicated when the actual processes and the endpoints of interest aiiediiplogmplex.

Despite all the challenges and open questions, there are someipgpstelies investigating the
use of (Q)SAR models to predict the toxicity of ENMs (Epa, et al., 20dicRes, et al., 2010;
R. Liu, Rallo, et al., 2013; R. Liu, Zhang, et al., 2013; T. Puzyn, et al.,, Z#yks & lvanov,
2010; Xue Zhong Wang, et al., 2014; Zhang, et al., 2012). We are now atghefstgetting the
results of initial nano-(Q)SAR modelling attempts. Although the initi@ings are encouraging,
there is also a strong need to ensure the reliability of theselsniod gaining the acceptance of
regulatory bodies and the confidence of potential end-users. Wevebéfiat once the main
challenges related to the extension of the conventional (Q)SAR appraaahotoxicology have
been overcome, nano-(Q)SAR models will be able to reach their fidirpence potential and

their outcome will be more valuable for predicting the toxicity of ENMs.

This review will focus on (Q)SAR analysis of ENMs for the purposexitity modelling. The
main aim of this paper is to give the reader a detailed uadeiag and critical analysis of the
nano-(Q)SAR process, the concepts behind it, the appropriate tools to be uies r@naaining
knowledge gaps in this area. To that end, it covers major compdhantday an important role
in both the development of (Q)SAR models and the practical use ofrtluetsds for nanotoxicity

prediction purposes.

2. Nanomaterial Toxicity

Nanotechnology is not entirely a new phenomenon since several natura EdéMlays have
been in existence in the environment for centuries. Several studies@dcale dimension have
been conducted for many years in polymer science, prior to the bimdmofechnology (Paul &
Robeson, 2008). However, the living organisms have now adapted to the N&tsrahile the
manufactured ones are completely new and unprecedented (Sadik, 2013fethe@fsENMs
falls into a very new field called nanotoxicology. These neatyitated NMs have the ability to
easly enter body, accumulate in tissues and cause harm (Oberdorsatr, 2805). In recent
years, some types of ENMs have been shown as hazardous to humian Ihe@s been
demonstrated in literature that carbon nanotubes (CNTSs) are capable aigndactive oxygen
species (ROS) (C. S. Sharma, et al., 2007) and pulmonary effects (Shveday2066a It has
also been shown in toxicological studies that nano-sized titadioride (TiO2) particles have
the potential to induce cytotoxic (Saquib, et al., 2E&tyawati, et al., 2012), genotoxic (Shukla,
et al., 2011 Trouiller, Reliene, Westbrook, Solaimani, & Schiestl, 2009) and inflammatory
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effects (Grassian, O’Shaughnessy, Adamcakova-Dodd, Pettibone, & Thorne, 2007; S. G. Han,
Newsome, & Hennig, 2013). Another important example of the ENM whislegadoxicological
concerns due to its widespread use in consumer products is nano-silver. Although nano-silver was
known to be harmless, recent studies (Asare, et al.,; Z8dl@dbjerg, Dang, & Autrup, 2011
Hussain, et al., 200&im, et al., 2009) have provided convincing evidence of toxicity assatia

with the exposure to nano-silver. More detailed information about that@btadverse effects of
various NMs has been provided by several researchers (Arora, et al.Hald&e, 2010Horie

& Fuijita, 20121 Jeng & Swanson, 2006/agrez, et al., 20Q065aquib, et al., 2031 Sharifi, et al.,

2012 Wani, Hashim, Nabi, & Malik, 2011).

Toxicological endpoint is the measure of toxic effect of a substamieh determines how
hazardous a substance is. In (Q)SAR analysis, the endpoint of interese&sare of a specific
type of activity, such as viability and cytotoxicity, which is goboegbe modelled and predicted.
The toxicity of compounds can be evaluated by conducting in vivo,rim aitd in silico studies.
Although in vitro assays are commonly preferred to in vivo tdses to their time and cost
effectiveness, there is also a well-recognised need imah@-science community to compare and
validate the in vitro findings with in vivo observations. (Q)SAR niedan be built and used for
the prediction of all toxicological endpoints as long as sufficixitity data is provided as input
(T Puzyn, Leszczynski, & Cronin, 2010). Ideally, biological effects of various compounds of
different size, structure and complexity under relevant exposure conditiontd be evaluated
with standardized methods for the successful development of nano-(Q)SAR models.

3. Physicochemical Descriptorsof ENMs

In traditional (Q)SAR analysignolecular descriptors are used to characterize and quantify the
physicochemical properties of chemicals which are potentiallyecetatthe endpoints of interest.
Theoretical descriptors provide a great variety of physico-ctanméormation sources and
valuable insights into the understanding of the potential relationshywedet molecular
characteristics and biological actiei They can be derived from either different theories/semi-
empirical methods or commercial software packages. Although mores@@hdescriptors (T
Puzyn, et al., 2010) have been proposed and calculated to represdénidtueesof molecules,
most of them are eith@émapplicable to ENMs or need at least some level of adaptatioe tsed

at the nanoscale. The main problems in the computation of theormisatiptors for nano-
systems are the complexity and non-uniformity of ENMs which m#ie appropriate
transformation of the nanostructures into a language for computer represeciatienging and
extremely time-consuming. Alternatively, the key variables, swglsize, shape and surface

charge can be measured by various experimental techniques and suskscaptors for



developing (Q)SAR models. Although the procedure of traditional (Q)SAR analyalmast
standardized, nano-(Q)SAR is still under development as thereliscstdlear consensus on
measurement and modelling standards. The lack of deeper knowleddardivaton regarding
how to characterize ENMs prior to or during the toxicity tests is witEdggnised as one of the
major challenges that must be addressed for successful applicati@@)®AR modelling
approach for ENMs. To that end, this section identifies charaatsrigiat may potentially
influence the toxicity of ENMs and presents techniques for measurisg togicity-related

parameters.

3.1 Possible factor s affecting the toxicity of ENM s and their measur ements

The first step in the modelling of ENM toxicity is the idemifiion of toxicity-related properties
which can be used as potential determinants of adverse effdedMdg. Since a complete and
exact list of parameters influencing the toxicity of ENMs hasbeen established yet, a detailed
material characterization prior to toxicity testing is essetuigaletermine the factors contributing
to the biological activities of ENMs and their potential hazaflthough there is still no
scientific consensus on the minimum set of relevant nano-chasticte for toxicological
evaluation, some particular physicochemical features are repeataghasized in the majority
of recommendations (Kevin W Powers, Carpinone, & Siebein, 2012). The size of iE NS of
the most prominent key characteristics which is held responsible foh#imging properties and
behaviour of ENMs and hence included in the recommendation list obsalmall
nanotoxicologists. However, as stated by (Oberdorster, et al., 2005), tlo¢ s@écle is not the
only factor which causes the changes in biological activitiesnaterials at the nano-scale
dimension. The following characteristics may also be linked to ogiedy: size distribution,
agglomeration state, shape, crystal structure, chemical compositidiaces area, surface
chemistry, surface charge and porosity. (Kevin W Powers, et al., 2012) haatigaved the key
elements of NM characterization and expanded the list prowgd®berdorster, et al., 2005) to
include purity, solubility and hydrophobicity. In the recent review on theimum set of
physicochemical properties needed to characterize NMs, (Pettida€l, 2013) have suggested
that in addition to the parameters that are most likely to haveffeact on NM behaviour such as
size, surface properties, solubility and aggregation characteristiftemation about the
production process and history of ENMs should also be provided to avoid incotegptetation
of toxicity data. Although it is a reasonable suggestion, the qgicaritiin of historical properties
is the prerequisite for their use as descriptors in (Q)SAR studiesof@me most comprehensive
lists of the important physico-chemical characteristics for toagioal studies has been provided
by the OECD’s Working Group on NMs (OECD, 2010). The research results have described the



physico-chemical properties of NMs that need to be addressed for characterz ttiey rmay be
relevant to (eco)toxicity. The relevant properties mentioned irgthdance are listed in Table 1.
The term composition in Table 1 covers chemical identity, molestilacture as well as degree
of purity, impurities and additives. Another term in this list whloften broadly defined is the
surface chemistry. It is meant here to identify various modidicatof the surface (i.e. coating)
and composition of outer layer of NMs. In OBG list, there are also many properties such as
dustiness and n-octanol-water partition coefficient that have notdpeified as pre-requisites
for NM characterization by other researchers. (Kevin W Powers, et 4R) 2wve taken the
dustiness as an example and argued that such a measurement for dopliditians should be
standardized first since the presence of well-established iaablytechniques for the
measurement of intended properties is essential to express the iesdmparable terms. For
the detailed description of potential toxicity-related physicavibal properties as shown in
Table 1, please refer to OECD’s guidance on testing ENMs (OECD, 2010).

3.1.1 Particlesizeand sizedistribution

The size of ENM is regarded as one of the most critical propatéesgmining the toxicity
potential of ENMs. The surface area to volume ratio increases witkadeng particle size. The
change in surfact-volume ratio also affects the surface energy and hence igactivthe
material. In addition to surface reactivity, the interaction of ENMs with livirsgesns, the uptake
and deposition of ENMs within the human body are also affected bylpasiie (Powers et al.,
2007). It is generally believed that the risk posed by mater@isaining nano-sized particles
increases with decreasing particle size (Monteiro-Riviere & Tran, 200d¢ed, (Gurr, Wang,
Chen, & Jan, 2005) have shown that the oxidative damage induced byari@les is size-
specific; the smaller the particle size, the greater the axéddamage induced. Another ENM
showing a size-dependent toxicity is nano-silver. (M. V. Park, eR@l]1) have compared the
cytotoxicity, inflammation, genotoxicity and developmental toxigitguced by different-sized
silver ENMs (20, 80 and 113nm) and stated that nano-silver particleshgismallest size have
exhibited higher toxicity than the larger ones in the assays dtulliesuch findings suggest that
the size of particles is one of the possible factors which owengribute to the toxicity of
chemicals; however, in some cases no relationship has been observednbte toxicity of
particles and their sizes (Karlsson, et al., 2009, et al., 2009).

There are several techniques that can be used to measureettd &NMs. Although not a
comprehensive list, the most common particle size measurd¢enstmiques applicable to ENM

are given in Table 2.



The results of different particle sizing techniques are usuallinrampliance with each other as
the measurement principles behind each sizing method are differeendral it is possible to
classify particle sizing methods applicable to NMs into thréegoaies: microscopy-based, light
scattering-based and separation techniques (Savolainen, et al), E¥&ron microscopy
techniques, based on scattered electrons (SEM) or transmittegtbrede(TEM), provide very
accurate information and give a clear view of individual and agtgegparticles. Therefore,
these methods can also be used for poly-disperse particle samplescarimng electron
microscopy (SEM) technique provides information about size, size disbrbyiarticle shape
and morphology but there is a risk of influencing particle properties duringleatrying and
contrasting (Bootz, Vogel, Schubert, & Kreuter, 2004). Unlike electron mmpgsechniques, a
vacuum environment is not needed to obtain atomic force microscdpyl)(Amages which
allow the measurement of particle size under ambient condi{Gnsze, Annegarn, Huth, &
Helas, 2007).

Dynamic light scattering (DLS) is based on the Brownian motion of sdsge particles in
solution. The main advantages of DLS techniques are their sim@icttyrapidity while their
main weaknesses are the high sensitivity to sample concentaatibimability to differentiate
between large individual particles and aggregates (Monteiro-Rigiefean, 2007). Dynamic
centrifugal sedimentation (DCS) and analytical ultracentrifugatise the difference in
sedimentation rates of different sized particles to separatmplesa(Tantra, et al., 2012) have
emphasized that one of the main disadvantages of DCS is thieeragnt to know the exact
density of the particle including coatings and adsorbed analytes on the surfacer Anosigng
method is the BET surface area analysis which calculatesdahe particle diameter from surface
area measurement based on the assumption that the particles grercowm-and spherical.
Additionally, there are several other size measurement methotigling laser diffraction,
mobility analysis, acoustic methods, field flow fractionation (FIF&k] fluorescence correlation
spectroscopy (FCS), each of which has its own pros and cons. (Domingas,2€08) have
provided a good example of size measurement by multiple analydmaseincluding TEM,
AFM, DLS, FCS andNPMTA and FIFFF. They have confirmed that particle size measured by
DLS is typically higher than those obtained using other sizing methduss been concluded in
this study that there is no ideal nano-sizing technique whichitabge for all sample types.
Various factors such as the nature of the substance to be measareohgtraints of cost and
time, the type of information needed play a decisive role irctiméce of sizing method to be
used. Additionally, structural properties of NMs, sample preparation and gudydity have

significant impact on the measurement results of different NM sizimgigpees.



There are three important criteria that should be met for accurateireeeent of particle size: a
well-dispersed system, selection of representative sample and amjergg@iection of sizing
method considering the nature of ENM and its intended use (Kevin W.r&oR@azuelos,
Moudgil, & Roberts, 2007). It should also be kept in mind that some metholdsasubLS,
NPTA and DSC require dispersion. The aggregation/agglomeration of gmriicldispersion
leads to an increase in the measured particle size. Althoughyilead to inaccuracy in the
measurements, it can also be seen as advantageous in narig-gixdies since NMs will
actually no longer be in a dry form when they are in contact with human cells/organs.

It is our view that the combination of microscopic technique (i.eMT& AFM) and the
ensemble technique (i.e. DLS) seems appropriate for monodisperse ssysiece theycan
provide a complete picture of size characteristics in dry form asgession. For poly-disperse
systems, the DLS technique has serious problems; hence, it shoufddoedeor complemented
with an alternative sizing approach. To sum up, it is usually useftbmbine a single particle
sizing technique with an ensemble method in order to have a tizbetiaf particle size and size
distribution, especially when the compound is unknown. The results eh stwdies undertaken
by different researchers with the aim of comparing different EMiihgs techniques are given in
Table 3. It should also be pointed out that, compared to the average¥Hieearticle size, the
size distribution measures provide more reasonable representation ot parcinformation,
which is a critical attribute in nanotoxicology. However, measurénwdnparticle size
distributions usually provides a large amount of data (e.g. hundreds eofdsiribution
components) which may cause problems in the (Q)SAR analysis (e.g.settrehance
correlations). Therefore, it is important to find a reasonable way of espiieg all components
of the size distributions with a few variables which stilanetall the information present in the
input data. (Xue Zhong Wang, et al., 2014) carried out principal companeaiysis on size
distribution data, which consists of a large number of particleds&gbution measurements, in
order to reduce the number of descriptors to a manageable sizatulhyiss a good example of
how to handle large size distribution datasets prior to nano-(Q)SAR anhigsead of reporting
mean particle size values or statistical variations, therelsers should also take into account the
variations in the size distribution as a whole since the EBipées consist of a range of particle

sizes, not only a single type of particles.

3.1.2 Particle Shape

The shape of ENM is another important feature influencing the baalbgictivities of the
particulate matter. The hydrodynamic diameters of spherical atehgedar particles with the
same mass, and hence their mobility in solution, vary due to shigmseMoreover, shape
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characteristics greatly affect the deposition and absorption dsnefi NPs in a biological
environment (Monteiro-Riviere & Tran, 2007). The importance of shapexicity has been
proven for carbon nanotubes (CNTSs). (Poland, et al., 2008) have showed that long MAfENTSs
more toxic than short/tangled MWCNTSs. The study undertaken by (Kevin WerBpet al.,
2007) has revealed that the antibacterial activity of silv@s ¢ shape-dependant. In another
study, (Gratton, et al., 2008) have demonstrated that rod-like (bgctaratio) NPs are drawn
or internalized more efficiently into the cell than cylinder NPs. Although there \aeatstudies
investigating and confirming the potential impacts of NP shape ocitigxt is still not possible

to draw certain conclusions or define any particular shape inherently ‘toxic’ with current

knowledge. To date, most of the research in this field has focuseblape assessment of

spherical NPs while very few have looked at non-spherical NPs or aggredaimse@e, Tang, §
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Chan, 201p). Further research is needed to explore the role of NP shape ity vaiic an

emphasis on NPs with similar composition but different shape.

There are several non-dimensional shape indexes such as spheduaigyity, aspect
ratio/elongation, convexity and fractal dimensions that can be useduaotify shape
characteristics of particles. The shape index of NPs is usuadlyndaed using microscopic tools
such as SEM and TEM which provide the ability to determine boticieasize and shape at the
same time. Additionally, the ratio of two particle sizes suead by different techniques such as
DLS and TEM/SEM can be used as a simple expression of pastialge (Hosokawa, Nogi,
Naito, & Yokoyama, 2007). Since shape characteristics and distribaftid®Ps may vary when
they are in contact with organisms, shape measurement should also be made “as-exposed” form,

as well as “as-received” form. (Xue Z. Wang & Ma, 2009) defined the shape of a crystal
according to the normal distance between each surface of the panticies geometrical centre.
They carried out the principal component analysis (PCA) approach oshépe description
dataset for data compression. The calculated surface-centre distartbe resultant PC values
may be directly used as shape indexes of NPs, especiallypherieal ones, in nano-(Q)SAR.
Moreover, these values can also be employed as dynamic shegpe fastudy the time and size
dependence of shape once this modelling methodology is applied to model the
aggregation/agglomeration behaviour of NPs. If aggregation/agglooreratcurs, some normal
distances for some faces may disappear with some new ones besmgtge. If breakage
happens, some new normal distances will be identified to repredsenhew faces. Such
alternative approaches would be useful for nano-(Q)SAR applications atakieeinto account

the dynamic nature of NP shape.



3.1.3 Crystal structure (crystallinity)

NMs with the same chemical composition may have different toxicological pregpdtte to their
unlike atomic arrangements and crystal structure. (Jiang, et al., 2@)Bjvkatigated the effect
of crystallinity onNP activity by comparing ROS generating capacity of JJINPs of similar size
but different crystal phases (amorphous, anatase, rutile and anatasefixtilres). The study
has demonstrated that amorphous samples showed the highest level aftRi@Sa@lowed by
pure anatase and anatase/rutile mixtures while pure rutile producedvést level of ROS.
Nano-silica which occurs in multiple forms is another nanomaterial evkmdcity may vary
depending on the nature of its crystal structure (Napierska, Thamassen, Martens, & Hoet,
2010).

A widely used technique to obtain information about crystalline phasesy, pursistal structure,
crystallite size, lattice constants and defects of NP&Ray Diffraction (XRD). It is a primar
tool to characterize nanostructures since it provides non-destrtaleation of structural
characteristics with no need for exhaustive sample preparatiors{@ded.: Cammaratra, 1998)
Its non-contact and non-destructive features make XRD ideal feitunmeasurements (R.
Sharma, Bisen, Shukla, & Sharma, 2012). Measurement in the desired atmos@iiereed in
XRD. This makes this technique advantageous for toxicological ¢bedration in which
collection of crystal structure data in a biologically relevant mediarbes@n important issue.
Additionally, high resolution transmission electron microscopy (HR-TEM) saldcted-area
electron diffraction (SAED) can be used to obtain information about tstst@ture, especially
when the data acquisition from individual nanocrystals is needed. Véed#tiat, due to sample-
damaging and the user-dependant nature of TEM, conventional XRId dmpreferred for

crystallographic investigation of nanostructures.

3.1.4 Surface Characteristics

3.1.4.1 Surface functionalization (e.g. coating or modification)

Surface chemistry is another factor that needs to be considered for tpleteochmaracterization
of NPs since it plays an important role in the surface interacindsaggregation behaviour of
NPs in liquid media. Therefore, if the surface of NM isntitenally functionalized with diverse
modifications, the chemical species on the surface and functiomabg should be identified.
The influence of coating on the toxicity of Ag-NPs has been imastigby many researchers
(CaballereDiaz, et al., 2013; Nguyen, et al., 2013; Silva, 2011; X. Yang, et al., Zbhb, &
Wang, 2012). The results from Nguyen et al. (2013) have showed ttwtad Ag-NPs are more

toxic than coated Ag-NPs. However, most probably coating is not thdéaator that reduces the
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toxicity of Ag-NPs; the changes in aggregation state and lgasiize as a result of coating may
also be important.

Information about the NM surface affecting the interactions of INRsbiological environment
can be obtained from different techniques such as electron spectroscofyréiyephotoelectron
spectroscopy (XPS) or Auger electron spectroscopy (AES)), scanning probe micr@SEbpy
and STM), ion-based methods (i.e. secondary ion mass spectrometrypvanenérgy ion
scattering) and other spectroscopic techniques (i.e. IR, NMR, Raman) (BasparGa
Nachimuthu, Techane, & Castner, 2010). The most important advantalgeibn spectroscopy
is its high surface sensitivity. XPS is one of the most commonly usethiques for surface
analysis (Tougaard, 2005). Both XPS and AES can be used to get inforataiigrthe presence,

relative surface enrichment, composition and thickness of coatings.

3.1.4.2 Surface charge

Surface charge is another important characteristic that may #ffilectoxicity of NPs. The
biological interactions of NPs, and hence their biological aasjtare highly surface-charge
dependant. (Y.-H. Park, et al., 2013) have analysed the effect of san@acge on the toxicity
using negatively and weakly-negatively charged silica-NPsy Tlage observed that negatively
charged silica-NPs have shown a higher level of cytotoxicity theakly-negatively charged
silica-NPs. In another study, the core of silicon-NPs has been cowtedlifferent organic
mono-layers to obtain different surface charges: positive, negative amdl r{Bhattacharjee, et
al., 2010). The study has demonstrated that positively charged siiesris more toxic than
neutral ones while negatively charged silicon-NPs have induced almodbricity.

As it is challenging to directly measure the charge at theasurdf particles, zeta potential
measurement utilizing dynamic or electrophoretic light scattesngsually used to quantify
surface charge. According to (Xu, 2008), among three techniques that cardodoughe
determination of zeta potential, namely electrophoretic lighttesaag (ELS), acoustic and
electroacoustic, ELS is preferred for various applications due toeitainty, sensitivity and
versatility. However, classic ELS cannot successfully deterrthieezeta potential of turbid
samples because the light cannot penetrate the sample. Blyeféra sample should be optically
clean and non-turbid for accurate measurements. It has been also ribeedame study that the
accuracy of zeta potential measurement is greatly affectedvinpemental conditions, e.g. pH
and ionic strength. The pH-dependence of zeta potential shouldeatséien into account since
changing the pH in a solution may greatly alter the dispersion of surface charge.

The current level of knowledge regarding the relationship betweercswif@rge and toxicity is

severely limited, mainly because of the incapability of existingitu measurement techniques
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and environment-dependence of zeta potential measurements (Jiang, @dreadidsBiswas
2009). Since the value of zeta potential measurement obtained raagecbetween different
techniques and experiments (Glawdel & Ren, 2008), multiple testsdshewonducted for the

best possible accuracy in determination.

3.1.5 Aggregation State

Some NPs have a tendency to approach each other and form largeeaigtgerboth in the dry
form and in suspension. If NPs form clusters, they may behave liler lpagticles due to their
increased hydrodynamic size (Buzea, Pacheco, & Robbie, 2007). Sincenegglon could
affect critical physico-chemical features such as partizke and size distribution, the biological
effects of these changes should be identified to avoid incorrectagistn of toxic potential of
ENMs (Dhawan & Sharma, 2010iang, Oberdérster, & Biswas, 2009).

The state of aggregation is often quantified by measuring thee digtribution of existing
agglomerates. It can be monitored and quantified by microscopici¢ees such as TEM, SEM
and AFM. Additionally, DLS can also be used for the investigatioNR®fggregation. However,
the characterization of the agglomerate size of NPs in suspeiisioary challenging since the
degree of aggregation can be influenced by external conditions (e.gnmé¢réture, humidity).
Ideally, in-situ instruments which are capable of measuringsites shape and number of all
aggregates in the relevant medium are required to charactee state of aggregation. The
particle size information used in earlier nanotoxicological studiaallysrefers to the primary
size of individual NPs and disregards the effect of aggregationhoddh accurate
characterization of the aggregation state prior to nanotoxicitygeistiseen as a pre-requisite by
several researchers (Boverhof & David, 20Ji@ng, et al., 20Q9/on der Kammer, et al., 2012)
there is still no clear consensus on how to characterize aggreghtit the possibility of
characterizing aggregation shape using fractal dimensions, whicli@rmviindex of complexity
by measuring the space filling capacity of an object, map®evay forward (Schaeublin, et,al.
2012).

3.2. NP-specific descriptors

As the properties of nanoscale materials are remarkably diffsmtconventional ones, it is
very likely that the toxicity of ENMs is also associatedhwdtfferent features (Burello & Worth,
2011). Therefore, the development of nano-specific descriptors withghbility to describe the

distinctive properties of NPs is one of the major research needh® iar¢éa of computational
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nanotoxicology. In this section, different approaches for developing N&~elescriptors will be

presented.

(Glotzer & Solomon, 2007) proposed an approach to charactdRzdased on microscopic
images. They defined eight orthogonal dimensions, including surfaceageyeaspect ratio,
faceting, pattern guantization branching, chemical ordering, shape gradiéntariation in
roughness, each of which can be used as an NP-descriptor to compsrectioeal similarity of
different NPs (Figure 2). Although the development of new descriptorsl lmas@nicroscopic
images is a promising idea, the numerical expression of these ddghhsions is still an

unresolved problem.

The idea suggested by (Glotzer & Solomon, 2007) has inspired otlearaesrs such as (T.
Puzyn, Leszczynska, & Leszczynski, 2009) to use microscopic imagda3sofolthe extraction
of structural information. They proposed to quantify each pixel in SEM, BBMAFM images
using RGB colour codes or grayscale representation and then produce a ractamgyl of

numbers (Figure 3). They also emphasized that these numerical gélumesge pixels can be

employed as new descriptors for encoding the structural properties of NPs.

In another study, (X.-R. Xia, Monteiro-Riviere, & Riviere, 2010) developed &-agioiensional
biological surface adsorption index (BSAI), which consisted of five quantitative nanopdessri
namely lonepair electrons, polarity/polarizability, hydrogen-bond donor, hydtmm®h acceptor

and London dispersion. These five nano-descriptors represent the funddoreetlgoverning

the adsorption process of NPs in a biological environment. In their folpostudy, (X. R. Xia, et

al., 2011) performed PCA on five-dimensional nano-descriptor dataset for reducing
dimensionality, obtaining two-dimensional representation of moledataraction forces in
biological systems and hence facilitating the characterizatiosudaice properties of ENMs
(Figure 4). After obtaining two dimensional nano-descriptors via PRy, thanaged to classify

16 different NMs into separate clusters based on their surface adsorption properties.

(Burello & Worth, 2011) proposed that different types of spectra (e.g. NMR, IR, rRdiva
Vis) can be used as nano-descriptors since they contain fingerprimtdik@aation (Fig. 5). The
first step is spectral measurement followed by conversion of spectntonaumerical matrix.
This data matrix can be seen as spectra-derived descriptors anfbu@@)SAR analysis. It is
not entirely a new perspective since spectral informatioralteady been used in a number of
studies in the literature. The use of IR information for (Q)SAR armlyas been shown to be
promising in the study carried ouy [{Benigni, Passerini, Livingstone, Johnson, & Giuliani,

1999). They compared the InfaRed (IR) spectra with several descriptoraotdynused in
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(Q)SAR studies and found that IR spectra carries unique information whicdotdae obtained
from molecular descriptors. (Zhou, et al., 2008) used the spectra of MféNEkaracterization
purposes while (Y. Yang, Guo, Hu, Wang, & Wang, 2004) attempted to link XRDtaata
photocatalytic performance tested by dye decolourisation rate. We gthaligive that the use of
spectra-derived descriptors in (Q)SAR modelling of NMs is an iritegeapproach and deserves
further investigation.

The final properties of materials are related to not only cbentiomposition and structure of
materials but also preparation, synthesis and processing methods. &indth{ke, Epa, Burden,
& Winkler, 2012) suggested to combine molecular descriptors charaagepbysicochemical
properties of compounds with historical descriptors describing the saprpparation and
synthesis techniques of materials in order to develop reliable andtweanodels. Although
historical descriptors can be useful for modelling traditional matetiladésr implementation to
nano-(Q)SAR models can be very difficult since they would probably have ity abi
distinguish between ordinary and nano-sized particles. The detewoniraiti3D descriptors
suitable for nanostructures and NP representation is another proapgireach and undoubtedly
will be put into practice in the near future. In addition, the developmientore sophisticated
image analysis approaches (e.g. texture analysis-based methods) facilitate the rapid
extraction of morphologal information (e.g. particle size, shape, surface area and aggregation

state) from microscopic images of NPs.

4. Nano-(Q)SAR and Modelling Techniques

A QSAR is a mathematical model that attempts to relate the biologicatiastin properties of a
series of chemicals to their physico-chemical characteyistia quantitative manner (T Puzyn, et
al., 2010). Although the first use of QSAR models is attributed to (Hansch, 1968)has
brought the physical organic chemistry and the study of chemical lwalagteractions together
to propose the first QSAR approach, the relationship between the chestriceture and
biological activity has also been reported in several earlier stBiesvn & Fraser, 1868
Overton, 1901 Richet & Seances, 1893Hansch’s QSAR approach has found applications in
many disciplines such as drug design, chemical and biological scidfareover, numerous
modification of Hansch’s approach to QSAR modelling have been developed by many other
researchers (Kubinyi, 2008).

It is assumed in QSAR models that the observable biological sdswbrrelated to the structure
of compounds and this correlation can be expressed in a mathematabregun QSAR, the

presumed relationship between the activity and structure is expreghethe following form of
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mathematical equation:

y=fx) 1)

where y is the biological activity of the chemical (i.e. toyicand f(x) is a function of structural
properties. A set of well-characterized compounds with known biologitedtgfis required to
obtain this mathematical algorithm. Structural features of compoundsknittvn biological
activities are represented by measured or calculated molecular descriptens.alimathematical
model relating the measured activity to the descriptor setstagsned through regression analysis.
The last step is the evaluation of the reliability of thedei and its applicability to other
compounds. One of the most critical steps, which is often skipped, is itee def model’s
boundaries and limitations to demonstrate how well it performs wheredgplisubstances that

are not used in model building.

4.1. Nano-(Q)SAR research

The opinion papers focusing on in silico modelling of ENM toxicity ksted in Table 4 while
solid attempts to model and predict the toxicity of ENMs with @RSanalysis are given in
Table 5. The majority of existing nano-(Q)SAR studies focused on the mete (MO) NPs
due to their common commercial use and high production volume. One ofstattiémpts to
demonstrate how computational (Q)SAR can give valuable information to nargtbeis been
reported by (Jianzhong Liu & Hopfinger, 2008). They used molecular dynamic sonulat
investigate the effect of CNT insertion on the cellular ineme structure. Four potential toxicity
sources were examined through membrane interaction-(Q)SAR analyssugh the result of
this study was very informative and encouraging, a proven (Q)SAR madehot established

due to the absence of experimental data.

(Sayes & Ivanov, 2010) assessed the presence of ENM-induced celledbasag on the release
of lactate dehydrogenase (LDH) from cells. Six different physicalackeristics including
primary particle size, size in water and buffered solutions, concentratid zeta potential were
measured for each of the two selected metal oxide ENMs; a&id ZnO. First of all, they
performed principal component and correlation analysis on the pre-prockgssdt to reveal
possible correlations between the physical properties and LDH refesssirements. Although
strong correlation between some of the physical features, such atepsre and concentration
in water, were observed, no correlation was found between the measuredlgingpsierties and
cellular cell damage in the principal component analysis. Thdialimtention was to use the
same dataset for developing a regression and classification.riiodedver, they were unable to

develop statistically significant regression model using the @it ZnO dataset. The results of
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classification analysis were better since they managegroduce a classifier with zero
resubstitution error. A clear description of experimental design, NM preparatell culture
conditions and methodology were given in the paper. The inclusion of such knewtedg
toxicological research is very important since it greatly improlesnterpretability of collected
data and enhances its comparability with other studies. The downghoe sifidy is undoubtedly
the small number of NMs and physical descriptors used. It is unieédiduild a (Q)SAR model
with a few NMs since it does not allow the sub-setting of oabidatasets into training,
validation and test sets. The number of final descriptors used todevéQ)SAR model can be
six or less but it is desirable to have a much larger number iad mhéscriptors, especially in the
absence of certain knowledge regarding the relevance of particular properties to napnotoxici
In another study, two different experimental nano-toxicity datasets amployed to derive a
mathematical relationship between the toxicity of NPs and thtepsicochemical properties
(Fourches, et al., 2010). The advantage of the data used in this stutliyewascurrent testing of
ENMs under the same circumstances. In the first case studydthtieet clusters of ENMs were
identified based on their biological activity and support vector macf8VM) models with high
accuracies were developed. In the second case study, it was obseregtettaiptor quantifying
lipophilicity was the most significant predictor of biological wityi since it accurately
discriminated between ENMs with low and high values of Ra@hular uptake. Overall, it has
been demonstrated in this study that the (Q)SAR approach can provide ingeation for
toxicity prediction of new ENMs. The methodology used in this work fatfilall the principles
of OECD for the validation of (Q)SAR models.

(T. Puzyn, et al., 2011) were one of the first researchers who managet/¢oadmathematical
equation based on the dataset of cytotoxicity and molecular descriptitiedly a set of 12
structural descriptors were quantum-chemically calculated using the sganieahPM6 method.
Among the pool of descriptors, only one structural descripidy,. ., representing the enthalpy
of formation of a gaseous cation having the same oxidation stét@tan the metal oxide (MO)

structure was utilized to establish the following nano-(Q)SAR model:

1
log (ECSO) = 2.59 — 0.50AH,;, )

A set of 17 MO-NPs can be considered as small from the muglglerspective, but the
development of such predictive nano-(Q)SAR models is helpful to encourage new ingestigat
Another simple, but statistically powerful nano-(Q)SAR model was dpedldy (Epa, et al.,

2012) based on the results of in vitro cell-based assays for naniegsariiobe dataset used by
(Fourches, et al., 2010) was also employed here with minor changes. féhendeé was that new

descriptors encoding the presence or absence of some particularsfesticteas coating, were

16



added and used as descriptors by (Epa, et al., 2012). They managed toebialdwing nano-
(Q)SAR equation based on these dummy variables:

Smooth Muscle Apoptosis = 2.26(+0.72) —

10.73(£1.05)Ipe203 — 5.57(£0.98) lyextran — 3-53(£0.54) [surface charge (3)

where Irez03, lgextran  @Nd Isyrace cnarge Stands for indicators (taking 1 or O) for the core
material, surface coating and surface charge, respectively. This was the pematitdtive model
developed to predict the toxicity of nanostructures. Compared to the equal, this
mathematical expression was developed from more diverse set of data.

Recently, the hypothesis that NP toxicity is a function of someigigrsemical properties has
been tested by (Xue Zhong Wang, et al., 2014). A panel of 18 NPs including -badeuh
materials and metal oxides were selected and used in this stdiidyeli types of cytotoxicity
assays such as LDH, apoptosis, necrosis, haemolytic and MTT,pedgmed and several
structural and compositional properties were measured. Initially, déipgyied PCA to the
cytotoxicity data in order to combine the toxicity values measateifferent doses into a single
value that describes all the data points on the dose-responseltghauld be mentioned here
that, as the toxicity is highly dose-dependent, the toxicologidattefare usually evaluated at
multiple concentrations in a series of tests the results ofhwhie represented with a dose-
response curve. Figure 6 shows an example of dose-response curves obtainddMsr(X8e
Zhong Wang, et al., 2014). As can be seen from this graph, the ddlityis lower in the cells
treated with N3 (nanotubes), N14 (zinc oxide) and Biifated beads)There are different
methods to analyse and compare dose response curves such as artee unoiee, slope of the
curve, threshold values, min/max response and benchmark dose approach. bdyhigXste
Zhong Wang, et al., 2014) performed PCA in order to integrate the entire anuvased the
resulting principal components as an overall measure of cumulative resgdwey concluded
that, compared to other approaches, PCA-based representation of thesgosseaecurves
provides more reasonable results when ranking the ENMs accordingirthdbard potential.
Due to the high toxicity level of four particular ENMs, i.e. zinc exigolystyrene latex amine,
Japanese nanotubes and nickel oxide, nano-(Q)SAR analysis has focukede four ENMs to
examine the potential factors behind their observed toxicity. It waduoattin this study that
physicochemical characteristics leading to the toxicity oMSNvere different and it was not
possible to draw a general conclusion which was valid for all toxic £8dvieened in this study.
However, the nano-(Q)SAR method was found useful to reveal that sonte ehdasured
properties such as metal content, high aspect ratio and particle etemgeorrelated to the

toxicity of different nano-sized materials.
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(R. Liu, Rallo, et al., 2013) developed a classification-based (Q)SAR mosksdl lma multiple
toxicity assays, 44 iron oxide core NPs, and 4 simple descriptors (sizepateantial and
relaxivities). They argued that existing nano-(Q)SAR models did not itatke acount the
acceptance level of false negative to false positive predgtiUnlike previously constructed
nano-(Q)SAR models, they also explored the decision boundaries of the nano-(Q)SARSs subject to
different acceptance levels of false negative/false positive paadict

In another study, (R. Liu, Zhang, et al., 2013) attempted to relate thegttysmical properties
of MO- NPs to their toxicity by developing a structure-activigtationship. A number of
classification nano-(Q)SAR models were developed on a largetyodatiaset of 24 MO-NPs. A
set of 30 molecular descriptors were calculated for each NPs agdtvaml of them, the
conduction band energy and ionic index, were identified as the key utaslatescriptors on
which the best performing nano-(Q)SAR model was built. Their conclusion wasgood
agreement with the results of previous researchers (Burello & Worth, 20ibljtated that the
conduction band energy of oxide NPs is related to their toxicity. Sifmidings have also been
reported by (Zhang, et al., 2012) who indicated that the oxidatives strésced by MO-NPs
could be linked to their conduction and valance band energies.

More recently, (Singh & Gupta, 2014) attempted to build classificatimh regression nano-
(Q)SAR models using ensemble methods such as decision tree fore3tgmiBecision tree
boost (DTB). Five different datasets were used to demonstrate and cdwfismitability of these
techniques for the (Q)SAR modelling process by comparing the accurttey déveloped nano-
(Q)SARs with past studies. It was concluded by the authors that ttee(@3SAR models
constructed had high performance and statistical significancen&getth superior predictive
ability.

From our point of view, the common problem that exists in the majoripubfished (Q)SAR
studies is that it is not possible to generalize their resultthenabsence of explanatory
information regarding underlying reasons for system behaviour. It lingtsige of their findings
for external compounds. When the result of (Q)SAR analysis is only validdtmd compounds,
(Q)SAR becomes a data analysis tool with no predictive ability. In order to ensure the usieable
of the established nano-(Q)SARs, the modellers should also addressdbleuncertainty arising
from experimental error and lack of knowledge. Moreover, most of the rexisino-(Q)SAR
studies use small datasets to establish a link between nanastractltoxicity. Although the
small datasets can be useful to describe or explain relaifiobstween NP structure and activity,

they may not be very useful for predictive purposes.
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Table 5 summarises the previously reported nano-(Q)SAR studies by cwgnpheir
methodology in respect to OECD principles (e.g. (1) a defined endpoint, (2) ariignaus
algorithm, (3) applicability domain and (4) model validation for stability and preityot

4.2 Nano-(Q)SAR modelling techniques

In principle, a variety of methods that have proven to be effeativdassic (Q)SAR modelling,
such as statistical methods, neural networks and decision trees,| d@n agplied to nano-
(Q)SAR. In practice, however, their direct use NNE toxicity modelling has difficulties. The
major obstacle comes from the availability of data sincees@@)SAR algorithms require large
datasets which are currently not available for ENMs. Considering thentwcarcity of
nanotoxicity data, it would be reasonable to use modelling tools whitimake effective use of
smaller datasets. In addition, there is still insufficient knowledge ahkuutsicochemical
descriptors that can influence the toxicity of ENMs. Therefore, curranb-(Q)SAR studies
should focus on identifying toxicity-related physicochemical chanatitess as well as predicting
potential toxicity values. The ease of use (i.e. the ease ofl inoiiding and of interpretation of
the results) is another critical consideration, particularly in {&)8AR world where the ability
to interpret the resulting modeksthe key to understand the correlation between different forms
of biological activity and descriptors. Overall, the following éasthave to be considered when

selecting nano-(Q)SAR modelling techniques:

e Minimal data requirements: Should be able to make effective useitgd data, without
relying on the availability of large datasets.

e Transparency: Models should be transparent rather than black-boxy@taitd able to
help identify the physicochemical descriptors that contribute to thetiogicENMs

e Ease of model construction: Should be easy to use and easy to implement.

e Non-linearity: Should be able to reveal non-linear relationships/patterns dathset

e Low over-fitting risk: Should have the low risk of over-fittinghich may reduce the
generalization performance of the model.

e Descriptor selection function: Should have the capability of featleetton in order to
exclude redundant descriptors before model building.

e Ease of interpretation: Should be able to produce meaningful ampréigble outcomes

and explain how the outcomes are produced.
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e Low modeller dependency: Should have the low sensitivity to thagelsain model

parameters.

Below, some (Q)SAR modelling methods including decision trees, sttistiethods, support
vector machines, neural networks, multi-dimensional visualisatonkaowledge-based expert
systems are examined. The focus is on examining their suitdbilinano-(Q)SAR modelling,
rather than on introducing the individual algorithms. Additionallyjursa selection and model

validation methods will also be briefly discussed.

Decision Trees (DTs). Automatic generation of decision trees from data is a powerfuhimac
learning technique that can be used as a classification orssegretool for categorical and
numerical predictions of biological activity in (Q)SAR studies (Chao ¥, Muontempo, &
Wang, 2008). DTs can be constructed with small, large or naisgeads and used to detect non-
linear relationships. They have a tree-like structure that iz points into different classes
based on the decision rules in order to categorise and model input dataus\tecision tree
generation algorithms are available, and can be broadly classsfigiiown in Figure 7. The most
significant advantages of DT methods are their capabilitiegsutomatically select the input
variables (i.e. the physicochemical descriptors that contributbetmlbserved toxicity) and to
remove the descriptors that are not related to the endpoint of interes previous study,
(Buontempo, et al., 2005) demonstrated the usa génetic programming-based decision tree
generation technique for in silico toxicity prediction. They developedcssida tree model,
involving five descriptors selected from a pool of more than a thousandpdess;rthat has good
predictive performance for both training and test datasets. This &dgevidiscovery' capability
is no doubt very valuable at present to identify the physicochedwgsariptors that contribute to
the toxic effects of ENMs. Such knowledge has even further berfefiteliminating or
minimizing the risk of ENMs through engineering approaches (i.e. matiidfic of
physicochemical properties that influence the toxicological respohsmugh the active
engineering of EMs). Another benefit of using DT analysis is its capability to avoid the (Q)SAR
model being over biased towards data cases in the dense aga®blem with some other
techniques such as linear regression and neural networks. Small data.easkta outside the
dense data area, can also be modelled as branches of a decision tree.. An additiafd) s
the ease of its interpretability (Apté & Weiss, 1997) and pare)cy (Chao Y Ma & Wang,
2009). Study on DTs for the purpose of modelling ENM toxicity requires morarogsesince in
addition to the above mentioned many advantages, there are reseawtioe have voiced
concerns about the generalization ability and predictive power of (B&sgio, Delalleau, &

Simard, 2010). To date, DTs (anbeir extension known as “random forest”) have been

20



investigated for (Q)SAR modelling in a number of studies (Andres & Hutter, 20@61aA
Sussman, Mazumdar, Yu, & Macina, 2004; L. Han, Wang, & Bryant, 2008; Chaa, et\al.,
2008; Sussman, Arena, Yu, Mazumdar, & Thampatty, 2003). Further research shoDid
focus on maximizing its advantages and overcoming its limitatmsnteresting such exarte
is random decision forest. Several studies have shown its improvelgat®n ability (Diaz-
Uriarte & De Andres, 2006; Genuer, Poggi, & Tuleau-Malot, 2010; Cha¥ Wang, 2009;
Teixeira, Leal, & Falcao, 2013).

Statistical Methods and Feature Selection. Several different statistical methods, such as
Multiple Linear Regression (MLR), Principal Component Regression (PCR) andl Ragdist
Squares (PLS) Regression, have been extensively studied in (Q)SARsadaby/$d their ease of
use and interpretation (Yee & Wei, 2012). PLS is a linear reigresnethod that handles data
cases where the number of predictors is higher than the number pbwots. The PLS method
works well when there are several noisy and inter-correlatedipgtess, and also allows multiple
responses to be modelled simultaneously (Eriksson & Johansson, 1996). The useflih8sis of
(Q)SAR studies, especially when the descriptors are highly correlatedusmerous, has been
proven by several researchers (Cramer, Bunce, Patterson, & FrankD1888 Wold, Edlund,
Hellberg, & Gasteiger, 1984%riksson, Gottfries, Johansson, & Wold, 20@l, et al., 2012
Luco, 1999 Luco & Ferretti, 1997). However, this method can only be used for thewsoliti
linear regression problems. To overcome this problem, non-linear verdidthe PLS method
have been developed based on different algorithms, such as kerrePh&¢Rosipal & Trejo,
2002), neural network PLS (Qin & McAvoy, 1992) and genetic algorithracbB$S (Hasegawa,
Miyashita, & Funatsu, 1997). These extensions allow non-lineaticeships to be modelled in
(Q)SAR studies, which is not otherwise possible with the simple &tlshique. Although MLR
is one of the most common modelling techniques used to develop regikased QSAR
models, there are three main factors limiting the use of MLR in oaiwity modelling: the
linearity assumption, i.e. it cannot detect non-linear causal relatmrbRirestriction on the ratio
of compounds to predictors in the data, i.e. the lowest ratio of the numNa&fsoto the number
of descriptors should be 5 to 1, and the dependence of its performance on reduratdesyae.
the presence of correlated input variables, as well as inpubleithat are irrelevant to the
output, may lead to poor model performance (Shahlaei, 2013). Dimension reduction methods
such as PCA can be useful for eliminating correlations between wauables (i.e.
physicochemical descriptors) without removing information aboutrtbevant variables which
may still affect the model performance. Overall, the main adganof linear models (such as
MLR and PLS) over the non-linear ones is their transparency sinceamndirectly get some
information of the relative importance of the physicochemical descsi from a linear model via
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examining the weights, but some non-linear models such as m&mwadrks cannot give such

direct information.

The feature selection process is different from the above medtioimension reduction
technique, i.e. PCA, in that it selects only the inputs that dawvepact on the outputs. The input
variables that have no or little impact on the outputs are removed dhengnodel building
process. Among the various methods for automatic input feature selegénetic algorithm
(GA) has demonstrated excellent performance. The GA featurei@elapproach can be applied
together with almost all (Q)SAR model building algorithms. GA starts feopopulation of
possible solutions (called individuals of chromosomes) which canriomdy generated. In
here, each gene in the first generation of solutions consists of randelatted descriptors.
Using the randomly selected descriptors in each chromosome, a (Q)SAR cande¢ built.
(Q)SAR models built based on the individuals in the initial population aftieak in this first
generation are evaluated using a defined fitness function. Based on Darwin’s theory of ‘survival

of the fittest’, the individuals are selected to undergo some operations such as mutation and
crossover to generate the population of individuals in the next generstisommary, a GA
algorithm has the following essential steps:

(1> Generate a set of solutions randomly (the number of solutions canthetketuser)
and code into vector group with fixed length.

(2) A new generation is produced by the method below, or is generatatisiitute the
individuals in the current population.

(2a) Selection of parent individuals based on the value of fitness function.
(2b) Crossover takes place to generate one or several sub-individuals.
(2c) Mutation operation is applied to some individuals.

(3) Repeat step 2 and the algorithm stops when one of the stopping @iteet, either
having reached the maximum number of generations or time limit, or hsatisfied the stop
criterion for the fitness function. For more details, the interastader is referred to (Goodarzi,
Saeys, Deeb, Pieters, & Vander Heyden, 2013; R. F. Li, Wang, & Abebe, 2Di8&JZhou,
2007; Chao Y. Ma & Wang, 2011; Reddy, Kumar, & Garg, 2010).

Support Vector Machines (SVM). There is an increasing interest in the use of SVM, which can
handle both regression and classification problems, as an alternaalivear modelling methods
such as MLR and PLS in (Q)SAR studi€¥drminski, Yasri, & Hartsough, 2001; Mei, Zhou,
Liang, & Li, 2005). SVM can handle many issues such as non-linearonsla collinear
descriptors, small datasets and model over-fitting that usuatigtatfiie performance of other

(Q)SAR modelling techniques (Mei, et al., 2005). It appears to have goodigistémt (Q)SAR
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analysis due to its accuracy and high generalization capabilityth® other hand, the main
disadvantages of SVM are the high sensitivity of model performemntee selection of design
parameters (e.g. Kernel functions) and the complexity of direct intatiore of SVM decision.

To date, it has been utilized in numerous studies for the comstruof classification
(Czerminski, et al., 2001; Niu, 2007; Xiaojun Yao, et al., 2005) and regression (Darnag, Minaoui,
& Fakir, 2012; Mei, et al., 2005; Niu, Su, Yuan, Lu, & Ding, 2012; XJ Yao].e2@04) based
(Q)SAR models. As mentioned earli&@A-based feature selection can be integrated with SVM

in (Q)SAR modelling, as proved in near infrared chemometrics (Chao Y. Ma & Wang, 2011).

Artificial Neural Networks (ANNs). ANNs are the computing systems that are created by
imitating how the human brain works and simulating the human braintaaiivithe computer.
Although, in some cases, the poorly understood structure of this technigots atf practical
reliability, the successful applications of ANNs in the (Q)SARrld/ (Habibi-Yangjeh,
Danandeh-Jenagharad, & Nooshyar, 2006; M Jalali-Heravi, Asadollahi-Bat®tiahbazikhah,
2008; Mehdi Jalali-Heravi & Parastar, 2000; Ventura, Latino, & Marfif6g3) keep the interest
in this method alive. ANNs offer several advantages to (Q)SARIa®ts which include the
ability to deal with the non-linear nature of structure-activigyationships and the large
descriptor datasets including unnecessary variables. Howevem ihadsseveral disadvantages
such as the difficulties in interpreting the outcome and seled¢tengtimum complexity, risk of
over-fitting and high sensitivity of its generalization powethe changes in the parameters and
network topology. In some applications, ANN models are treated aacl bbx due to its
inability to give a deep insight into the encoded relationship lestwee predictors and predicted
outcomes (Guyon & Elisseeff, 2003). There are also others highlighting thasp&éms should
not be seen as inexplicable models any more (I. I. Baskin, Palyuligfi€ov, 2009; Sussillo &
Barak, 2013) since a number of methodologies facilitating the interprettimodel outcomes
have been developed (. Baskin, Ait, Halberstam, Palyulin, & Zefirov, 2B0&len & Winkler,
1999; Guha, Stanton, & Jurs, 200B)so, it has to be pointed out that, just like other modelling
techniques, ANN can be used together with GA-based featurdi@elatgorithm in order to
remove redundant variables during the model building process. In additioa, resgarchers
have investigated the use of sensitivity analysis method formzaiion of input data dimension
and extraction of information about the relative importance of inputan output (Zurada,
Malinowski, & Cloete, 1994).

Multidimensional Visualization. Multidimensional visualisation techniques, such as the parallel
coordinates (Albazzaz & Wang, 2006; Brooks & Wilson, 2011; Inselberg, 2009; X. Z. Wang,
Medasani, Marhoon, & Albazzaz, 2004) and heat maps, are also very effeots/éor (QBAR
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analysis of toxicity data. It can visually display the caudatiomships between nanomaterials'
physicochemical descriptors and the toxicity endpoints, handle lincitddsets, and allow
investigators to interactively make analysis with the help@fnteractive functions and multiple
colours built in software tools. To provide an example, the dataaeddsy (Shaw, et al., 2008)
are scaled, displayed and coloured (Fig. 8) using a parallel coordinapés pyoaluced by C
Visual Explorer (CVE) tool.

Knowledge Based Expert Systems. (Q)SAR often refers to data driven modelling. But one
should not underestimate the usefulness of knowledge based experssgst@videnced by the
success of the expert system DEREK of Lhasafotdtoxicity predictions (LHASA, 1983). This
expert system which draws its knowledge from both literature aadbaises has been considered
as one of the most powerful tools for toxicity predictions of molecudssa matter of fact,
considering the gaps and variations in the available NM toxicityy dae. incomplete
characterisation of physicochemical descriptors and different measfubaxicity), it is our belief
that knowledge based expert systems, ideally with some kind of 'textrilaing’ capability that
can continuously capture new knowledge appearing in literature, might befahe most

effective approaches for nano-E38R.

Model Validation. Regardless of the method used for constructing the (Q)SAR mokels, t
validity of the outcome of the predictive models should be evalubtdld internally and
externally. Internal validation is the process of evaluating tedigion accuracy of (Q)SAR
models based on the dataset used in the modelling process.oBheammon internal validation
techniques used in (Q)SAR studies are least squares fit (R}ualntd (32), root-mean squared
error (RMSE), leave-one-out or leave-many-out cross validation, bootstragpidg Y-
randomization (Veerasamy, et al.). The use of external vaidédichniques, not in place of but
alongside internal validation methods, is increasingly being recodwde by researchers
(Gramatica, 2007Tropsha, 2010Veerasamy, et al., 2011) and authorities (OECD, 2007) for the
assessment of (Q)SAR model reliability in the best possible and antlsywvay. Moreover, it is
always beneficial to use more than one validation metricsaatatively measure the accuracy

of the model prediction.

Definition of the applicability domain of the constructed and sieaity validated model is the
last, but one of the most important steps, in the (Q)SAR model building protlesre are
several approaches (e.g. geometry, range, distance or probability demsition based
approaches) proposing to define the applicability domain region of sttistodels based on
different algorithms. For more detailed information about the avaitgijpeoaches for defining

the (Q)SAR model applicability domain, interested readers are encdumgefer to the review
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papers by others (Jaworska, Aldenberg, & Nikolova, 28@higara, et al., 2012).

4.4. Input data for nano-(Q)SAR and its current availability

In nano-(Q)SAR models, the importance of high-quality and well-describaedatas even more
pronounced since the novel properties of ENMs are mostly associateganficular size and
conditions (Gajewicz, 2012). Ideally, the input data required to buildiables (Q)SAR model
should be (1) obtained from a preferably single and standardized protocol, (2yeckamterms
of accuracy and suitability for (Q)SAR analysis and (3) large enough to mdtemal division of
the data into training and test sets. Since nano-(Q)SAR is a alsgd-method, the accuracy of
the data determines the quality of the final model. Therefoiis, very important to create a

comprehensive nanotoxicity database and make it broadly accessible.

In a recent study, (Lubinski, et al., 2013) developed a framework to helpletedsialuate the
guality of existing data for modelling (e.g. nano-(Q)SAR) purposes. In the first part of their study
they provided a set of criteria which are mostly related to dkece and quantity of the data,
experimental procedures and international standards followed duringareecterization process
and documentation. In the second part, they assessed the qualitpllefction of nanotoxicity

data by scoring them according to the proposed criteria. The majority (201332 data points)

of the dataset being collected and scored were evaluated aswitiefaistrictions for developing

(Q)SAR-like models. It seems that the authors were a little over-optimis

In fact, there is now a great amount of data on nanotoxicity. Howéwe majority of the
available data on NP toxicity come from studies focusing onnaBERMs and hence are not
useful for modelling purposes. It is often the case that the physmoaigroperties measured
are not directly related to the toxicity of NPs since charaetion has been carried out in the
absence of test medium. Moreover, the data obtained by different hreggatps are often

incomparable due to the differences in experimental procedures and ENMs being used.

The pre-defined data formats are necessary to facilitategeton@aintenance and exchange of
ENM data between different researchers. There are a largeenwhfreely available toxicity
databases most of which are more general in scope and not cudtéoniparticular purposes.
Commercially available NP-specific databases are stilatesearch stage and limited to a few
applications. ISA-TAB-NANO introduced by (Thomas, et al., 2013) is a stdnd® data
sharing format that facilitates the import/export of NM data arabkes data exchange between

different nanotechnology laboratories and researchers. The ISA-TAB-NAg¥® four different
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spreadsheet-based file formats: investigation, study, assay @edamfle format. The main

features of each file format are given in Table 6.

The OECD Database on Research into Safety of Manufactured Nnatsawas launched in
2009 with the aim of collecting research projects which are focused canhuealth effects and
environmental risks of ENMs. It aims to identify knowledge gapthe literature and to enhance
co-operation between researchers. It contains information about projectitig.estatus and
summary), total funding, investigator, outcomes and categorisation [geamee to NM safety,
research themes). However, this is not a database that providegsadress to data since the

overall outcomes and outputs section is usually filled as “publications”.

NANOhub is a database for managing information about ENMs. Currently, ¢ keseral
projects but the access to data is usually restricted to prqedisipants only. Another data
sharing portal which provides access to NP characterization andrin texicity data is
caNanoLab. The main aim of this data repository is to facilitetesharing of knowledge on

nanomedicine.

An alternative approach that can be taken for collecting nandtoxiata is the use of text
mining techniques to develop a customized knowledge repositoryrsybtee NHECD database
is an initiative text mining tool which allows the automatedraction of information on the
effects of ENMs on human health and the environment from scientificpagdewever, the
current performance of such NM databases employing text mining algorithms is nptezsing
due to the non-standardized recording of ENM information. At thiesiags critical to ensure
that all data is recorded in a universally agreed format whidhtdées the extraction of NM
information from the literature. The existence of specifications fdr iNformation sharing is
also very important from the point of view of (Q)SAR modelling sitize establishment of
predictive (Q)SAR models requires close collaboration between difféismplines and research
groups. The development of an agreed ontology for ENMs and nano-safety regearch
formal representation of nanostructures, biological properties, experimental sysiems,
conditions and protocols) will facilitate not only collection of nanotdyxiciata but also data

mining and resource integration efforts.
5. Final Remarks

(Q)SAR models have been successfully used by engineers, physicalediznal chemists to
predict hazardous properties of molecules for over 50 years (T Puzyn2ét8l)., Although the
adaptation of the (Q)SAR approach to nano-toxicology has been encouragedanyy m
investigators (Burello & Worth, 2011; T. Puzyn & Leszczynski, 2@h&)supported by the EU’s
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REACH regulation, there are still several barriers that need todreawe in order to establish
predictive, reliable and legally acceptable nano-(Q)SAR models. WUné&idly, the current
toxicity measurement methods used for bulk materials are not vegyatdeto examine ENMS
The absence of standardized methods and procedures for nanotoxicity testsgige to
conflicting and incomparable findings which may hinder the developmemisk reduction
strategies for ENMs.

One of the main issues that complicates the adaptation of corapatabxicity approaches to
nanotoxicology is the scarcity of consistent and high-quality expetahdata without which the
development of robust and predictive nano-(Q)SAR models is obstructed. Tbigyszasuch
data is mainly caused by difficulties in standardizing nanotoxitesting procedures and
characterization conditions for physicochemical properties. The ishtaleint of standard
protocols is essential to enable accurate measurements otqahesnical and biological
properties of ENMs. The choice of realistic characterizatiordiun&conditions and also
appropriate toxicity endpoints for the ENMs makes the accurate measurement odggsiical
and biological properties possible.

The lack of knowledge about the interactions of ENMss with biologigstess brings into
guestion the effects of several factors such as aggregation and codtiegaxicity of ENMs. If
the particle size is the critical factor that directly atf$ethe biological activity of ENMs, then the
size of aggregates in biological systems should also be coeiolethe context of nanotoxicity
modelling. However, there is still no clear consensus about how taoctbaze ENMs
aggregation in relevant media. The remaining problems in the chrazatte of NPs for toxicity
testing are directly related to the establishment of thdioe&hip between physicochemical
characteristics and toxicological response. Therefore, the developftiable nano-(Q)SAR
models requires in situ and careful characterization of ENMsr@levant biological environment
by taking into account the possible impacts of nhano-bio interaabioribe basic properties (i.e.
particle size, aggregation state and coating) of ENMs (Powats 2007). In order to be able to
draw certain conclusions about the properties influencing the toxicitNMsk: it is critical to
adequately define time and media dependent nano-characteridtiegver, the inclusion of
some kind of interactions and aggregation mechanisms in the nano-(Q)SARngquecess is
still unclear.

Another issue that make the accurate measurement of physicochemopeaties of NPs difficult
is the high polydispersity of NPs. In order to advance the qualitypefrenental characterization
data, it is needed to have new analytical methods/instrunteaitedan deal with polydispersity
and heterogeneity of NP samples. The complex and dynamic nature-ofelia interactions

should be taken into account very carefully when characterizingaNiples in order to ensure
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that the measured properties are directly associated with theltmical response. For more
detailed information regarding the factors influencing NP-biomolecuéractions, please refer
to the recent review by (Mu, et al., 2014). Although the characterizatioNM&HEs the key issue
without which it is not possible to identify the relationship bemvaano-characteristics and
biological activity, it is also equally important to speed up theiwgafsessment of ENMs to keep
the pace with the rapid growth of nanotechnology. Therefore, the use of gractet rapid
assessment platforms, such as high throughput screening method, for soxe#ying of ENMs
would provide several benefits in terms of time and cost reductionk. tHigughput screening
systems, which are capable of rapidly assessing multiple tegiganmultiple cell lines (at
multiple doses), have already been used for assessing hazard pofdahidfls (George, et al.,
20117, Harris, et al., 2013Rallo, et al., 2011Shaw, et al., 2008). We believe that HTS data will
be extremely useful in near future for establishing nano-(Q)SAR maaelsidentifyingthe
parameters that are responsible for the toxicity of ENMs, as itndyde comprehensive
toxicological information.

In addition to the guidance on what, how and where to measure, it ismTgdedant to have
standardized data reporting formats in nanotoxicology in order to deitibnsistent reporting of
the outcomes of nanotoxicity studies. The development of such an agreemfyypritol nano-
safety research will greatly facilitate data collectiontadase development, data mining and
resource integration efforts in the field of nanotoxicology.

The size dependent properties of ENMs also greatly affect taecdiection strategy in (Q)SAR
model building. Data used in classic (Q)SAR analysis includes retiffechemicals and
measured/calculated descriptors. However, nano-(Q)SAR studies requirgea det of data
which should include not only different chemicals but also a diffeieattform of the same
chemicals due to the size-dependent toxicity of ENMs. Furthermasdamportant to realise that
a NP cannot be simply considered as an equivalent of a molecute. ¥ sample can have
variations in size distribution, shape, size, surface area eteéght be that a NP sample at given
values of its physicochemical descriptors is an equivalent of a moleculi#ere sample of the
same material that has different values of its physicochenésalriptors should be considered as

a new molecule.

As the available nanotoxicity data is far from ideal for modelpagposes, the choice of nano-
(Q)SAR tool should be made by considering the nature of existing datault \sewpoint that
the nano-(Q)SAR tools at present should be able to make use of limitad identify
physicochemical descriptors that influence biological responses, reveaheanrklations in the

dataset and produce interpretable outcomes.
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Finally, the existing challenges are not all scientific. Thé-@micentrated disciplines and the
lack of communication, motivation and integration lead to repetéimh confusing literature in
nanotoxicology. More focused research, integrated processes and more diogaeededn
fact, there are now a growing number of European projects and internaffortal fecusing on
various areas of ENM toxicity. However, despite these endeavoursatieessll numerous well-
recognized but still unfilled knowledge gaps in the area of nanotoxicaligye the key issues,
such as systematic and consistent toxicological data and propactehiaation of ENMs are
solved, we believe that it will be possible to predict thecitbkiof ENMs and to interpret their
mode of toxic action through the established nano-(Q)SAR models. Inoadtht (Q)SAR
analysis, there are also other computational modelling techniquésasushysiologically base
pharmaco-kinetic (PBPK) models, which can provide useful outputs for @sgmand
prioritising health risks posed by ENMs. PBPK models can descrébentivement of particles
throughout the body after exposure. The involvement of PBPK models in toxicologiasteval
of ENMs can enhance understanding of ENM kinetics and distributionseas models are
capable of proposing a realistic representation of ENM distribution (M. Reineke, 2012). We
believe that the integration and harmonization of such in silico models with nanAR@)8dels
would greatly contribute to the development of risk assessment strategies far ENM
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Table 1:Physicochemical Properties and Material Characterization (WR: where relevanift, IA:
applicable, WA: where available, AA: as appropriate)

Characterization
(ason the shelf)

Characterization
(in respective media)

Appearance (lA)
Melting point (1A)
Density (I1A)

Size, size distribution

N-octanol-water partition
coefficient (WR)

Water solubility/dispersibility,
hydrophilicity
Solubility/dispersability in organic
solvents, oleophilicity

Auto flammability (I1A)

Flammability (I1A)
Stability in solvents and identity
of relevant degradation products

Oxidising properties (I1A)
Oxidation reduction potential
Explosiveness (1A)

Storage stability and reactivity
towards container material

Stability; thermal, sunlight, metal

Dissociation constant (1A
pH (1A)

Agglomeration or
aggregation
Crystalline phase

Crystallite and grain size
Aspect ratio, shape

Specific surface area

Zeta potential
Surface chemistry (WA)

Stability and homogeneit

(on the shelf, in water an
organic solvents)
Dustiness

Porosity, pore and pour
density
Photocatalytic activity

Catalytic activity

Radical formation
potential

Composition/purity
Size, size distribution
Agglomeration/aggregation

Zeta-Potential

Biophysical properties (AA)
(protein binding/corona
characterization, residence
times, adsorption enthalpy,
conformation changes on
binding)

Test item preparation
protocol, conditioning,
homogeneity and short term
stability




Table 2: Particle size measurement techniques

Parameters Sample Particle - .
Method Measured Required  Size Range Additional Information
Electron Particle size Dry 0.3nm-pm (+) High resolution
Microscopy Size distribution (-) Expensive and complex
Particle shape (-) Vacuum is needed
Agglomeration (Dhawan and Sharma, 2010)
Atomic Force Particle size Wet/Dry  1nm-pm (+) 3D images,
Microscopy Size distribution (+) Works well in ambient air
Morphology (-) Particles should be on the
Surface structure surface
Agglomeration (Powers et al., 2006)
Dynamic Light  Particle size Wet 1nm-6pum (+) Cheap and fast
Scattering Size distribution (-) Sample polydispersity may
(DLS) Agglomeration distort the results
Zeta Potential (Tomaszewska et al., 2013)
NP Tracking Particle size Wet 10nm-2um  (+) Particle-by-particle basis
Analysis Size distribution (-) Dependence on the settings
(NPTA) Agglomeration (Hassellov and Kaegi, 2009)
Centrifugal Particle size Wet 5nm-10um  (+) Accurate and repeatable resul
Sedimentation  Size distribution (-) Takes long time for small
particles to sediment
(Laidlaw and Steinmetz, 2005)
BET Surface Particle size Dry 5nm-pum (-) Size distribution is not providec
Area Analysis  Surface area (Dhawan and Sharma, 2010)
Laser Particle size Wet/Dry  40nm-3mm  (+) Fast and flexible
Diffraction Size distribution (-) Dependent on optical
parameters
(Kubart and Keck, 2013)
Mobility Particle size Dry 2nm-2um (+) Commonly used for aerosols
Analysis Size distribution (-) Interpretation of results may
require additional information
(Oberdorster et al., 2005)
Acoustic Particle size Wet 20nm-10um (+)Effective in concentrated
Methods Size distribution suspensions

Zeta potential

(-) Difficult to interpret the data
(Powers et al., 2006)




Table 3: Nanoparticle mean size measurement results obtained from different sizing methods

Particle Size (nm)

Ref. Thiele et al. (2010) Lee et al. (2013) | Akbari et al. (2011) | Borchert et al. (2005)
Method | Ta  TiSi, Ni C Si0-7nm Al,03 CoPt;

BET 8 19 35 45 18 27

TEM 7 13 24 31 19 24 4.86

DLS 316 157 1300 13
Others XRD:20; PCS:96 | XRD:5; SAXS:4.97

Ref. Hoo et al. (2008) Supaka (2012) Boyd et al. (2011)
Method :go I;S(‘) ZOI;SlOO 2025101 CRM- 0 CRM-100 Latex

DLS 114 23 109 245 73 105 110

AFM 99 16 15-95 16-98 58 58 98
Others SEM:79 SEM:79 NTA:99




Table 4:Review and opinion papers focusing on in silico modelling of ENM toxicity

Author Description

Gallegos et al. (2009) computational modelling, a few NP descriptors and nano-QSPR studies
Puzyn et al. (2009) use of (Q)SAR approach for risk assessment of NMs.

Burello, Worth (2011a) (Q)SAR models for nano-toxicity predictions (single example study), challen
Burello,Worth (2011b)  (Q)SAR modelling of NMs, NP descriptors for nano-bio interactions.
Fourches et al. (2011) chemoinformatic approachesto estimate the biological effects of ENMs.

Cohen et al. (2012) the use of in silico models for hazard assessment of £NM
Gajewicz (2012) computational methods/tools to support risk assessment of ENMs
Nel et al. (2012) development of predictive toxicological paradigms for ENMs.

Winkler et al. (2012) summary of the current status and known gaps of nano-QSAR modelling




Table 5:Previously reported nano-(Q)SAR studies

Authors NPs Descriptors Endpoints (Q)SAR tool Criteria met
Sayesand Ivanov (2010) 24 NP susp., 2 MOs Size measures, conc., zeta p« LDH MLR, LDA 12,4
Fourcheset al. (2010b)  44NPs, diverse core Size, relaxivities, zeta potentii ATP, Red, Apop., Mito SVM-classification 1,2,3,4
109NPs, diverse maodifier 105 MOE descriptors Cellular uptake KNN-rearession 1,234
Puzyn et al. (2011) 17 MO-NPs 12 theoretical descriptors EGCs MLR-GA 1,2,3,4
Chau and Yap (2012) 105NPs, diverse maodifier 679 theoretical descriptors Cellular uptake NB, LR,KNN,SVM 1,2.3,4
Zhang et al. (2012) 24 MO-NPs Size, crystallinity, band gap MTS, ATP, LDH, DCF, Regression tree 12,4
erergy, conduction/valance  MitoSox, Fluo4, JC1PI
band, dissolution, zeta pot.
Epaet al. (2012) 31NPs, diverse core Indicator variables, size, ATP, Red, Apop., Mito MLR, SLR, feature 1,2,4
relaxivities, zeta potential selectionANN
109NPs,diverse modifier 691 theoretical descriptors  Cellular uptake
: . LDH, Apop., Nec.,
Wang et al. (2014) 18NPs, MOs and C-base size, shape, area, porosity, fre Proinflammator
radicals, reactivity, metal conc . Y PCA 124
and charge Hemolysis, 2,
MTT, DIOCB6,
morphology
Liu et al. (2013a) 44 iron oxide core NPs  Size, relaxivities, zeta potentii ATP, Red, Apop., Mito NBC,LGR,LDANN 1,2,3,4
Liu et al. (2013b) 24 MO-NPs 30 molecular descriptors MTS, ATP, LDH, DCF, NBC, LR, LGR, 1,2,3,4
MitoSox, Fluo4, JC1PI LDA, SVM
Singh and Gupta (2014) 44 iron oxide core NPs  Size, relaxivities, zeta potentii ATP, Red, Apop., Mito 1,2,3,4
109NPs,diverse modifier 691 theoretical descriptors  Cellular uptake (Ens)etr)nbleo:earning
) Oxygen percent, molar - EL)-base
17MO-NPs refractivity, polar surface area Cytotoxicity (EGo) techniques
80 MWCNTs 6 topo. and geo. descriptors  Cell viability
48 fullerene derivatives 10 descriptors The binding affinity
Kar et al. (2014) 109 NPs, diverse modifie 307 theoretical descriptors  Cellular uptake GFA, MLR, PLS 1,2,3,4




Table 6: ISA-TAB-NANO file types (Thomas et al., 2013)

ISA-TAB-NANO Types of information entered in each | SA-TAB-Nano file
file types

1. Investigation file Reference information about each investigation, study, assay, protocol, S
file, and Assay file.

2. Study file Names and attributes of protocols used for preparing samples for analysis
source and characteristics of bio-specimens.

3. Assay file Values of measured endpoint variables and references to external data fil
each analysed sample.

4. Material file Descriptions of the material sample, its structural parts and chemical
components; linkage descriptions between chemical components; referen
information about external material data files.
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Figure 1: (Q)SAR modelling of nanomaterial toxicity
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Figure 2: Derivation of eight qualitative descriptors based on microscopic images, proposed
by Glotzer and Solomon (2007)
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Figure 3 Derivation of structural descriptors based on microscopic images, proposed by
Puzyn, Leszczynska, and Leszczynski (2009)
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Figure 4 Derivation of descriptors that represent the fundamental forces governing the

adsorption process of NPs, proposed by Xia, Monteiro-Riviere, and Riviere (2010)
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Figure 5 Derivation of NP-descriptors based on spectra of ENMs, proposed by Burello and
Worth (2011)



100.00

80.00

o
o
o
S

40.00

Viable (%)

20.00

0.00

AN

\ \ N14

NN—

31.25 62.50 125 250
Dose (ug/ml)

Figure 6: Viability results for 18 NMs (Wang, et al., 2014)
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Figure 7 A family tree of proposed inductive learning techniques, showing a selection of

specific implementations of each type.
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Figure 8: CVE plot of the data collected by Shaw, et al. (2008) (Descriptors: SizaxiRets

(R1 and R2) and Zeta potential; Toxicity Endpoints: apoptosis (APO), mitochopdteitial
(Mito), reducing equivalents (RED), ATP content (ATP)). The mean apoptosissddided

into three categories; low (<-1.54), medium (-1.54<AP0<-0.74) and high (>-0.74) ahd ea
category is highlighted in different colors.
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