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Abstract 

The recent developments in nanotechnology have not only increased the number of 

nanoproducts on the market, but also raised concerns about the safety of engineered 

nanomaterials (ENMs) for human health and the environment. As the production and use of 

ENMs are increasing, we are approaching the point at which it is impossible to individually 

assess the toxicity of a vast number of ENMs. Therefore, it is desirable to use time- effective 

computational methods, such as the quantitative structure-activity relationship (QSAR) 

models, in order to predict the toxicity of ENMs. However, the accuracy of the nano-

(Q)SARs is directly tied to the quality of the data from which the model is estimated. 

Although the amount of available nanotoxicity data is insufficient for generating robust nano-

(Q)SAR models in most cases, there are a handful of studies that provide appropriate 

experimental data for (Q)SAR-like modelling investigations. The aim of this study is to 

review the available literature data that are particularly suitable for nano-(Q)SAR modelling. 

We hope that this paper can serve as a starting point for those who would like to know more 

about the current availability of experimental data on the health effects of ENMs for future 

modelling purposes. 
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1. INTRODUCTION 

Nanotechnology is an emerging and rapidly growing field of engineering that has already 

been used in a wide range of consumer products and industrial applications. It is now very 

likely for one to encounter nanotechnology-based products in our daily lives. Therefore, it is 

of vital importance for us to properly and carefully examine all of the possible risks that may 

occur as a result of the exposure to these newly developed materials at the same time as they 

are being commercialised. Clearly, the risk assessment of engineered nanomaterials (ENMs) 

has fallen behind the development in nanotechnology, due to the uncertainties regarding the 

toxicological behaviour of materials at nano-scale dimensions. On the one hand, the complex 

nature of the nano-systems and the lack of regulatory frameworks specific to the applications 

that use nanotechnology make the assessment of the potential risks of ENMs to human health 

and the environment challenging [1]. On the other hand, there is now a large number ENMs 

with unknown health risks and it will soon be impossible to individually evaluate their 

toxicities [2]. Hence, it has been highlighted by many researchers [3-5] that alternative 

methods and approaches are needed in order to help close the research gap in nanotoxicology, 

before it widens any further.  

The integration of computational methods with nanotoxicology is considered to be the most 

cost– and time–effective solution to the problem of evaluating the risks of human exposure to 

a large number of ENMs. Among the wide variety of in silico methods that have been 

developed and employed in predictive toxicology, quantitative structure-activity relationship 

(QSAR) models are a common choice for nano-systems as they eliminate the need to test 

every single nanoparticle (NP) on an individual basis, by relating the physicochemical 

characteristics of nanostructures to their biological activities. The (Q)SAR approach is based 

on a very simple assumption: toxicity depends on structure. As the name suggests, the 

ultimate aim of the (Q)SAR analysis is to establish a mathematical equation in which the 



biological activity of a (homogeneous) class of compounds is expressed as a function of 

physicochemical characteristics [6].  

The modelling effort required for the development of (Q)SARs increases linearly with the 

complexity of the endpoints to be modelled. Considering the large number of factors that are 

likely to influence the biological activity of ENMs, it is possible to conclude that traditional 

(Q)SAR approach needs serious reconsiderations in order to be applied to nanomaterials 

(NMs) [5]. As the properties of ENMs are significantly different from the same materials in 

their bulk form, the toxicological behaviour of these nano-sized materials might also be 

associated with different characteristics. Therefore, the development of novel descriptors that 

are able to express the specificity and the size-dependency of nano-characteristics is one of 

the most critical requirements for the successful application of (Q)SAR-like methods in order 

to predict the toxicity of ENMs [3, 7-9].  

Moreover, similar to other data-driven methods, the accuracy of nano-(Q)SAR models is 

directly tied to the quality of the data from which the model is estimated. Therefore, the 

development of robust nano-(Q)SAR models can only be made possible with the availability 

of high-quality, consistent and systematically obtained toxicity data for ENMs that have been 

comprehensively characterised under relevant exposure conditions, prior to toxicological 

testing [6].  

The research in nanotoxicology has grown rapidly in recent years, which has significantly 

increased the amount of the nanotoxicity data available in the literature. However, the vast 

majority of the existing nanotoxicity-related studies are very limited in nature, especially in 

terms of sample sizes. In other words, these studies are usually focused on a small number of 

ENMs (e.g. fewer than six or seven ENMS) that are poorly defined and incompletely 



characterised [10]. The nano-(Q)SAR approach, on the other hand, requires a large set of 

systematically gathered data on the biological activity of a diverse collection of NPs .  

The predictive power of nano-(Q)SAR models can be affected by many factors such as the 

quality of input data and the selection of the data pre-processing or mining algorithms to be 

used for model development [11]. The collection of empirical data can be considered to be 

one of the most critical components for the successful application of (Q)SAR methodologies, 

as no data-driven model can be built without adequate data input. Therefore, one of the first 

steps that all modellers should take when attempting to build a nano-(Q)SAR model is to 

collect toxicity data on a structurally diverse set of ENMs from existing data sources, unless 

one intends to gather one’s own research data. The main objective of this study is to develop 

an annotated bibliography of the primary sources of nano-(Q)SAR data. This paper aims to 

summarize the available literature data containing information on the biological activities of 

ENMs in order to provide a starting point for those wishing to develop (Q)SAR-like models 

for ENMs. To that end, the papers that contain relevant experimental data on ENM toxicity 

will be reviewed and evaluated in terms of their usefulness for nano-(Q)SAR research. 

Moreover, the available nano-(Q)SAR models derived from these datasets will be introduced 

and discussed. 

2. NANO-(Q)SAR 

In nanotoxicology, it is desirable to use non-testing (Q)SAR methods with the aim of 

predicting the potential adverse effects of untested ENMs by making the best possible use of 

existing experimental data, wherever possible. The main steps involved in the process of 

nano-(Q)SAR model development are given in Figure 1.  

 



                                            “[Insert Figure 1 about here]” 

The nano-(Q)SAR modelling process begins with the acquisition of experimental data on the 

biological activity of a range of nano-compounds. The next step is the measurement and/or 

computation of the molecular characteristics that are going to be used as the descriptors of the 

physicochemical features and the predictors of the observed biological activity. In the data 

pre-processing step, the data should be trimmed and normalised in order to remove non-

physical values and bring the variables into alignment. Depending on the nature of the 

collected data, different data-mining algorithms can be employed in order to develop 

classification- or regression-based (Q)SAR models. After the model construction phase, the 

validity of the derived model should be checked both internally (i.e. performance on the 

sample used to develop the model) and externally (i.e. performance on a different 

population). Finally, the model’s applicability domain and the uncertainties in the constructed 

(Q)SAR model should be clearly and transparently reported by the model builder. 

There are many key issues that complicate the development of predictive nano-(Q)SAR 

models, such as the lack of knowledge of the interactions between ENMs and biological 

systems, the scarcity of systematic and consistent toxicological data, the lack of in vivo 

verification of in vitro findings and the absence of NP-specific descriptors that are able to 

express the novel and size-dependent characteristics of ENMs.  However, these challenges 

should not be seen as formidable obstacles, but rather, as the areas that need further 

improvement. Despite these limitations, there is a growing literature on the use of (Q)SAR-

like models in nanotoxicology studies. There are a great number of reviews [3, 5, 10, 12-14] 

and research articles [15-28] devoted to the investigations of in silico modelling of ENM 

toxicity in peer-reviewed scientific journals. 

 



2.1.Input data for nano-(Q)SAR analysis 

(Q)SAR approach is designed to predict the biological activity of a compound based on its 

physical and compositional features. To that end, two particular types of data are needed: 

experimental biological activity data and experimental/computational physicochemical 

characterization data. Currently, the most important sources of information regarding the 

biological activity of ENMs are in vivo and in vitro studies, the results of which can be used 

as indicators of toxicological effects (i.e. dependent variables) in nano-(Q)SAR analysis. 

Molecular descriptors, on the other hand, can be determined either from experimental data or 

theoretical calculations. However, a certain amount of uncertainty exists in both descriptor 

types.  

The first step in the computation of theoretical descriptors is the representation of the 

molecular structure, which shows how the atoms and bonds are aligned. This symbolic 

representation enables the computation of the predicted values of physicochemical properties 

(the so-called ‘descriptors’). However, the full structure of the nano-substances cannot be 

simply represented with the use of traditional techniques, mainly because of the complexity 

and the non-uniformity of the molecular architecture of NMs. More research is needed in 

order to develop a new format and notations for the appropriate transformation of the 

nanostructures into a language for computer representation. 

The main problem that exists in the experimental characterization of ENMs is the lack of 

nano-specific guidelines and standardised protocols, which give rise to incomplete and 

incomparable findings in nanotoxicology. Since the majority of the published toxicological 

studies are limited in terms of characterization, the nano-(Q)SAR models have to rely on a 

small amount of ‘available’ physicochemical descriptors, rather than the complete list of 

possible nano-toxicity-related features. Moreover, the measured characteristics of ENMs are 



not directly associated with the toxicity endpoints to be modelled, as the characterisation is 

usually performed in the absence of relevant cell medium. In an ideal world, nano-(Q)SAR 

models would be based on a large set of data that is obtained by following a standardised 

protocol and assessed in terms of quality/suitability for modelling, prior to model 

construction. 

Figure 2 shows the general data collection framework for (Q)SAR studies, together with the 

issues that directly affect the reliability and suitability of the data collected for modelling 

purposes. The sufficiency of the data for modelling and the feasibility of developing nano-

(Q)SAR models should be properly evaluated, with careful attention being given to (1) the 

reliability of the data source, (2) the quality and quantity of the dataset and (3) the suitability 

of the data for computational analysis. One of the unique studies addressing the quality and 

suitability of the existing research data for nano-(Q)SAR purposes has been conducted by 

Lubinski et al. [2]. These authors presented a data evaluation framework, that places a strong 

focus on the source, quality and quantity of the data, for assessing not only the quality of the 

data but also its suitability for modelling purposes. 

“[Insert Figure 2 about here]” 

 

2.2.Literature data available for the (Q)SAR modelling of nanomaterial toxicity 

As previously noted, the majority of the existing toxicological studies on ENMs are very 

limited in terms of sample size and the type of compounds included. However, as listed in 

Table 1, there are some pioneering studies that provide useful data for nano-(Q)SAR 

modelling purposes. In this section, the literature data that are particularly suitable for nano-



(Q)SAR modelling attempts and that have already been used for the development of nano-

(Q)SARs will be discussed. 

“[Insert Table 1 about here]” 

One of the most comprehensive nanotoxicology studies ever performed was carried out by 

Weissleder et al. [29]. These authors tested the cellular uptake of 109 NPs with the same core 

(cross-linked iron oxide) but different surface modifiers in five cell types (PaCa2, HUVEC, 

U937, GMCSF and RestMph). Of the five cell lines, only PaCa2 (human pancreatic cancer 

cell line) and HUVEC (human umbilical vein endothelial cells) showed surface chemistry-

sensitive responses. The raw data generated by Weissleder et al. [29] have been examined 

below in the context of their ability to be used for developing nano-(Q)SARs: 

 Material group: The data are associated with (magnetic) iron oxide NMs.  

 Homogeneity: The data are homogeneous as they contain no other than super 

paramagnetic iron oxide core NPs. 

 Sample size: The data set is large and contains more than a hundred NPs, which are 

decorated with different small molecules. The data size is large enough (in terms of 

the number of compounds being included) to develop and validate computational 

models.  

  Characterization: Although the authors stated that all materials were characterized 

by size measurements, relaxometry, amine content and mass spectrometry, the 

characterization data was not presented in the paper or supplementary document. The 

main reason why this dataset has been repeatedly used for (Q)SAR analysis despite 

the limited information on the physicochemical characteristics of NPs is that it 

enables the computation of the theoretical descriptors based on the chemistry of the 



surface-modifying molecules, as all of the screened NPs have the same pre-dominant 

core. 

The results of PaCa2 cell uptake for the 109 NPs are given in the supplementary information 

(Table- S1). This dataset has been used by seven different research groups [17, 19, 21, 22, 27, 

30, 31] for nano-(Q)SAR development. The modellers employed different software packages 

(i.e. Dragon, ADRIANA, PaDEL, Cerius, Chemistry Development Kit and in-house 

modelling software) in order to calculate a wide range of ‘theoretical’ descriptors based on 

the structure of the organic surface modifiers. 

Secondly, Durdagi  et al. [32] analysed the binding affinities of a series of fullerene 

derivatives. They also developed 3D-(Q)SAR models in order to predict the binding affinities 

of 48 fullerene-based derivatives based on their structures. The raw data generated by these 

authors [32] are examined for their suitability to be used for developing nano-(Q)SARs and 

the results are summarised below: 

 Material group: The data are associated with fullerenes. 

 Homogeneity: The data are very homogeneous and contain only fullerene 

derivatives. 

 Sample size: The data size is large in terms of the number of compounds (48) it 

covers. 

 Characterization: In this study, the authors did not provide any characterization data 

(i.e. they attempted to develop 3D-(Q)SARs based on field contributions which are 

measured in silico).  

The dataset including the experimental binding energies of these materials is presented in 

Table- S2. Later on, Toropov et al. [33] calculated a number of SMILES-based descriptors 

and constructed (Q)SAR models for the prediction of the binding affinities of 20 fullerene 



derivatives, using a portion of the data gathered by Durdagi  et al. [32]. In a follow up study, 

Toropova et al. [15] used CORAL (correlations and logic) software packages in order to 

develop (Q)SAR models considering all of the fullerene (48) binding affinity data. More 

recently, Singh and Gupta [30] derived classification and regression (Q)SAR models with the 

use of decision tree forest and decision tree boost algorithms for predicting the binding 

affinities of the same set of fullerenes. 

In another study, Shaw et al. [34] determined the biological activity of 50 different NPs with 

diverse metal cores under 64 different sets of conditions (four doses x four cell types x four 

assays). They performed four replicates for each toxicity measurement and expressed the 

results in terms of standard deviations (Z scores). The raw data collected by Shaw et al. [34] 

have been examined below in the context of their ability to be used for developing nano-

(Q)SARs: 

 Material group: The data are associated with metal-core NPs, especially iron-oxide 

based NPs (FexOy-core). 

 Homogeneity: The data are reasonably homogeneous as the great majority of NPs 

included contain iron-oxide core. 

 Sample size: The data is large in terms of the number of compounds (50) and toxicity 

endpoints screened.  

 Characterization: The authors reported seven different qualitative and quantitative 

descriptors for most of the screened NPs: core composition, coating type, surface 

modification, size, relaxivities (R1 and R2) and zeta potential. Although the number 

of measured (physicochemical) properties is limited, it is still possible to gain some 

useful information about what factors are likely to govern the toxicity of the ENMs.  



The results of the characterization and the toxicity testing of these NPs are given in Table- 

S3. This dataset has been widely used by several nano-(Q)SAR modellers. Firstly, Fourches 

et al. [17] performed support vector machine-based classification on this dataset. They used 

four experimental descriptors (size, zeta potential and relaxivities) that were available for 44 

of the studied NPs. Secondly, Epa et al. [21] used this dataset for their modelling studies. 

They examined the possible relationship between the biological effects (apoptosis assay) of 

31 different NPs and their structural descriptors (relaxivities and zeta potential). They 

observed a significant relationship between one of the relaxivity values (R1) and the 

apoptosis response. However, they concluded that relaxivity could be a correlative variable, 

not a causative one, as it directly depends on the core of the material. Therefore, they defined 

three indicator variables describing the material core, coating and zeta potential and used 

these values as descriptors in their study. In the modelling section, they performed linear (e.g. 

multiple linear regression) and nonlinear (e.g. artificial neural networks) modelling methods. 

In another study, Liu et al. [24] developed nano-SAR models based on multiple toxicity 

assays and a few experimental descriptors provided by Shaw et al. [34]. Recently, Singh and 

Gupta [30] employed the same dataset in order to develop classification and regression nano-

(Q)SARs. 

The full datasets collected by Weissleder et al. [29] and Shaw et al. [34] can be downloaded 

from the bottom of the following webpage (section called “NP screening data”): 

https://csb.mgh.harvard.edu/information/links.  

In 2008, Zhou et al. created a library containing 80 multi-walled nanotubes (MWNTs) with 

known biological activities [35]. They tested the toxicity of these decorated nanotubes using 

six different toxicity endpoints (four protein binding activities, cell viability and nitrogen 

oxide generation). They also revealed the structure-activity relationship between the type of 

https://csb.mgh.harvard.edu/information/links


building block and the biocompatibility. The raw data generated by Zhou et al. [35] have 

been assessed below to find out their suitability for developing nano-(Q)SAR models: 

 Material group: The data are associated with multi-walled carbon nanotubes. 

 Homogeneity: The data are very homogeneous as the designed library contains 80 

surface-modified multi-walled carbon nanotubes. 

 Sample size: The dataset obtained is large in terms of the number of compounds (80) 

and biological endpoints tested. 

 Characterization: The following analyses were made for selected MWNTs: 

elemental analysis, transmission electron microscopy (TEM) analysis, nuclear 

magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy 

analysis.  The dataset also allows the computation of the theoretical descriptors. 

Table-S4 lists the toxicity endpoint values for the 29 most nano-toxic decorated nanotubes. In 

a later study, Shao et al. [26] calculated a set of theoretical descriptors based on the surface 

structure of the 29 most toxic nanotubes and used these values as input variables in their 

(Q)SAR investigations.  

In another study, Sayes and Ivanov [16] assessed the presence of ENM-induced cell damage 

based on the release of lactate dehydrogenase (LDH) from cells. They prepared different 

concentrations (25, 50, 100, and 200 mg/L) of TiO2 and ZnO particle suspensions and 

analysed them for LDH (lactate dehydrogenase) release. They also measured six different 

physical properties (i.e.  primary particle size, size in water and buffered solutions, 

concentration and zeta potential) of these NP suspensions. The raw data generated by Sayes 

and Ivanov [16] have been reviewed below in the context of their ability to be used for 

developing nano-(Q)SARs: 



 Material group: The data are associated with two specific metal oxide NMs, TiO2 

and ZnO. 

 Homogeneity: The data are homogenous as they are made up of two kinds of NMs 

 Sample size: The sample size of data is small from the (Q)SAR modelling point of 

view but it allows the investigation of the effect of different TiO2 and ZnO features on 

the cellular membrane damage. 

 Characterization: The authors reported five different TiO2 features and six different 

ZnO characteristics (e.g.  primary particle size, size in water and buffered solutions, 

concentration and zeta potential). 

Their complete dataset is summarized in Table- S5. They attempted to perform multivariate 

linear regression (MLR) and linear discriminant analysis (LDA) classification techniques on 

the collected dataset. Although they were unable to build a regression model, they managed 

to produce a triplet-wise classifier with zero re-substitution error. Later on, Toropova and 

Toropov [36] employed this dataset in their modelling study. 

The dataset used by Puzyn et al. [18] includes the in vitro toxicities of 17 different metal 

oxide NPs against the bacterial species Escherichia coli. The authors gathered the toxicity 

data for ten different metal oxide NPs in their laboratory and combined them with the toxicity 

data taken from their previous study [37]. The raw data collected by Puzyn et al. [18] have 

been examined below in the context of their ability to be used for developing nano-(Q)SARs: 

 Material group: The data are associated with metal oxide NPs. 

 Homogeneity: The data are homogenous and include a panel of 17 metal oxide NPs 

that are widely used in industrial applications. 

 Sample size: The sample size of data is not huge but large enough to investigate the 

relationship between the structure of a set of NMs and their in vitro cytotoxicity. 



 Characterization: The authors calculated a pool of 12 different quantum-mechanical 

descriptors based on the electronic (structural) properties of 17 metal oxide NPs. 

Their complete dataset is provided in Table- S6. In the modelling section of their study, they 

used the semi-empirical PM6 (parameterization method) in the MOPAC (molecular orbital 

package) quantum chemistry software package for calculating the structural descriptors. They 

managed to derive a regression model based on the cytotoxicity data and one quantum-

mechanically calculated descriptor, the enthalpy of the formation of a gaseous cation having 

the same oxidation state as that in the metal oxide structure (ǻHMe). They were one of the 

first research groups who developed a quantitative model relating the structural features of 

metal oxide NPs to their toxicity. Apart from that, this dataset has also been employed by 

Singh and Gupta [30] for nano-(Q)SAR modelling purposes. These authors encoded the 

structure of the materials in the form of SMILES (simplified molecular input line entry 

system) and calculated a set of 32 molecular descriptors (topological, geometrical and 

constitutional) based on the SMILES notations. However, their approach is questionable, as 

the SMILES notations are not able to reflect the size-dependent properties of particles and 

hence distinguish between the bulk and nano-scale materials. 

In 2011, Liu et al. [38] measured the in-vitro toxicity of nine different metal oxide NPs; 

Al 2O3, CeO2, Co3O4, TiO2, ZnO, CuO, SiO2, Fe3O4 and WO3. Of these nine NPs, only three 

of them (ZnO, CuO and SiO2) were identified as being toxic according to the results of the 

plasma membrane integrity assay. In the modelling section, they used a set of fourteen 

descriptors ranging from number of metal and oxygen atoms to surface charge as input 

parameters. The raw data generated by Liu et al. [38] have been assessed below in the context 

of their ability to be used for developing nano-(Q)SARs: 

 Material group: The data are associated with metal oxide NPs. 



 Homogeneity: The data are homogenous. 

 Sample size: The sample size of the data is small as it only covers nine different 

compounds. 

 Characterization: The authors [38] provided a set of simple constitutional 

descriptors (e.g. number of metal and oxygen atoms, atomic mass of the nanoparticle 

metal, molecular weight of the metal oxide, group and period of the NP metal, 

atomization energy) and a few experimental descriptors (e.g. NP primary size, zeta 

potential, isoelectric point and different concentration measures) which can be used as 

an input variables in nano-(Q)SAR analysis. These characterization data (although far 

from ideal and complete) can help developing classification-based (Q)SAR models.  

Their full dataset (toxicity and characterization) is given in Table-S7. Based on these data, 

they developed a set of nano-SAR models using a logistic regression method. This dataset 

has not been used in any other work as the number of metal oxide NPs is too low for 

modelling purposes. 

In another nanotoxicity-related study, Zhang et al. [20] assessed the toxicity of 24 different 

metal oxide NPs in a set of single-parameter (i.e. MTS, ATP and LDH) and multi-parameter 

(Fluo-4, JC1, PI, MitoSox and DCF) toxicity assays. They performed a regression tree analysis 

in order to establish the relationship between the particle descriptors (i.e. band gap energy 

levels and metal dissolution) and the measured cytotoxicity. The raw data generated by 

Zhang et al [20] have been evaluated below in the context of their ability to be used for 

developing nano-(Q)SARs: 

 Material group: The data are associated with metal oxide NPs. 

 Homogeneity: The data are homogenous and contain metal oxide NPs only.  



 Sample size: The sample size of the collected data is sufficiently large in terms of the 

number of ENMs and toxicity endpoints studied. 

 Characterization: The characterization part of this study is relatively detailed as the 

authors [20] have performed following physicochemical characterization studies: 

I. Measurement of the primary size and shape of NPs by Transmission Electron 
Microscopy (TEM),  

II.  Measurement of hydrodynamic sizes by Dynamic Light Scattering (DLS), 
III.  Measurement of band gap energies by Ultraviolet–visible (UV-Vis) 

Spectroscopy 
IV.  Measurement of metal dissolution by inductively coupled plasma-mass 

spectrometry 
V. Measurement of zeta-potential and point of zero zeta-potential by Zeta 

Analyser 
VI.  Computation of conduction and valence band energies 

 

In a follow-up study, Liu et al. [25] determined a set of 30 descriptors capturing the 

physicochemical properties of NPs and developed classification-based SAR models. 

Although the descriptor datasets used for nano-SAR development have been provided in the 

electronic supplementary information by Liu et al. [25], the tabulated toxicity dataset has not 

been released by Zhang et al. [20]. As the contributors to this study have a stake in 

determining data use and all external data distributions must be approved by all contributors, 

the best way to proceed in order to be able to work on this dataset might be to contact the 

corresponding author: Dr. Andre Nel.  

The research conducted by Wang et al. [23] has been revealed to be one of the most useful 

datasets for nano-(Q)SAR modelling. The authors selected a panel of 18 ENMs with varying 

structures and conducted a set of in vitro cytotoxicity assays, including LDH release, 

apoptosis, necrosis, viability, MTT and haemolytic effects. The raw data generated by Wang 

et al. [23] have been examined below in the context of their ability to be used for developing 

nano-(Q)SARs: 



 Material group: The data are mostly associated with metal (oxide) NPs as the 

majority (i.e. 11 out of 17) of the compounds screened are metal-based NPs. 

 Homogeneity: The dataset can be considered as slightly heterogeneous as it contains 

different types of ENMs (e.g. metal oxide NPs and carbon-based NMs).  

 Sample size: The dataset is limited in terms of the number of compounds included 

(i.e. 18 ENMs) but it is still useful to test the hypothesis that ENM toxicity is a 

function of some structural or compositional features. 

 Characterization: The particle characterisation section of this study includes the 

measurement of several physicochemical properties (e.g. particle size and size 

distribution, surface area, morphology, metal content, reactivity and free radical 

generation). This is probably the most comprehensive characterization dataset used in 

nano-(Q)SAR investigations. 

 In their data-mining section, Wang et al. [16] identified the structural and compositional 

features that contribute to the toxicity of the NPs that were involved in this study. This is the 

only modelling attempt that has been performed on this dataset, as the authors have not 

released the gathered data so far. The full dataset collected by Wang et al. [23] is presented in 

Table- S8. 

More recently, Yan et al. (private communication) conducted a study on the nonspecific 

adsorption and acetylcholinesterase (AChE) inhibition of a library of 47 surface-

functionalized gold NPs. Although this manuscript is currently in press, the modelling section 

of the Yan’s project has already been published. Winkler at el. [28] performed two different 

machine learning methods, multiple linear regression and neural networks, on the dataset 

containing a number of 2D DRAGON descriptors and the biological responses of 47 gold 

NPs. They developed linear and non-linear models for AChE inhibition and protein binding. 



The raw data generated by Yan et al. (private communication) have been examined below in 

the context of their ability to be used for developing nano-(Q)SARs: 

 Material group: The data are associated with functionalised gold NPs. 

 Homogeneity: The data included in this combinatorial library are very homogeneous 

as they only contain surface-modified gold NPs. 

 Sample size: The dataset collected can be considered as large in terms the number of  

 Characterization: Although, Yan et al. (private communication) characterized 

selected gold NPs using TEM images and zeta potential measurements, the 

characterization data is not publically available yet. However, this dataset can be still 

useful for nano-(Q)SAR studies as it enables the computation of molecular 

descriptors.  

This dataset is not publicly available at present as the original research has not been 

published yet. However, it might be obtained by communication with Yan’s research group, 

if the parties agree on a joint work. 

The datasets introduced in this section are already being used by a number of modellers for 

nano-(Q)SAR analysis. However, the readily available nano-(Q)SAR models derived from 

these datasets do not necessarily imply that the same data cannot be employed for further 

modelling attempts. In fact, a single dataset can be used for multiple nano-(Q)SAR 

investigations, as long as the method for mining the data is different or the original data pool 

is enriched with the computation of new descriptors. At this stage, nano-(Q)SAR model 

builders have to rely on the existing dataset until some newer and hopefully more 

comprehensive data become available. 

 

 



2.3.Nano-(Q)SAR modelling tools 

A wide range of methods can be used to predict the toxicity of NPs based on their measured 

or calculated physicochemical properties.  

“[Insert Table 2 about here]” 

Initially, various methods such as genetic algorithms, stepwise multiple linear regression, 

principal component analysis and random forest, are used for data pre-processing and 

descriptor selection. After variable selection step, several techniques ranging from linear 

regression to artificial neural networks can be applied for the construction of nano-(Q)SAR 

models. The most common regression and classification methods used in (Q)SAR analysis 

are multiple linear regression, principal component analysis, partial least squares, decision 

trees, support vector machine, linear discriminant analysis and artificial neural networks. The 

nano-(Q)SAR approach requires the same computational efforts as the traditional (Q)SAR 

analysis, but some additional considerations should be taken into account as the available 

nanotoxicity data is still limited and the quality of the available datasets is far from ideal. It is 

our view that, at present, the nano-(Q)SAR tool selection should be made based on the 

model’s ability (1) to handle with small datasets, (2) to select/identify the descriptors that are 

associated with the toxicological outcome and (3) to develop transparent and interpretable 

models. The list of statistical methods that have been used in existing nano-(Q)SAR studies 

are given in Table 2. After model construction, different approaches, such as cross validation, 

bootstrapping, Y-scrambling, can be applied to validate the model internally and externally. 

3. NANOTOXICITY DATABASE INITIATIVES 

Currently, there are a number of ongoing studies and projects dedicated to improving our 

knowledge and understanding of ENM toxicity. Thus, one can expect that a significant 



amount of data on nanotoxicology will soon become available. At this stage, there are two 

issues that need to be dealt with: the development of standardised data sharing formats and 

the development of property-based ENM toxicity libraries. 

ISA-TAB-NANO is a specification for representing and sharing research data on NMs and 

their characterization [39]. It uses four different spreadsheet-based file formats: Investigation, 

Study, Assay and Material. Although the main aim of ISA-TAB-NANO is to facilitate the 

data exchange between different nanotechnology resources, this data logging system is also 

useful for accomplishing broad range of goals (e.g. transparent sharing of NM data and 

recording of data in a (Q)SAR-ready format). There are several reasons why data exchange 

standards and common terminology are needed in the nanotechnology community, including 

the diversity of (1) ENMs (e.g. different cores and surface modifications), (2) test systems 

(e.g. cell lines, species etc.) and (3) characterization methods/conditions. Due to the 

complexity of nano-systems and the lack of standardized protocols for nano-characterization 

and nanotoxicity testing, the data obtained by different material scientists and toxicologists 

are often incomparable and include different types of endpoints measured in different ways. 

Therefore, the presence of standard data exchange format is critical to simplify the issues 

caused by the complexity of nano-systems, and consequently to have high-quality and 

sufficiently comprehensive data that can be used by different researchers for different 

purposes (e.g. data exchange/comparison). Undoubtedly, the structured and consistent storage 

of experimental data regarding ENMs would have a positive impact on the development of 

computational models for ENMs, as it would support data curation. 

There are an increasing number of research groups that are involved in the creation of data 

repositories on NMs and their safety-related properties:  



 The Cancer Nanotechnology Laboratory Web portal (caNanoLab) [40] is a data 

repository that is designed to facilitate the sharing of nanotechnology research 

data. 

  The Nanomaterial Registry [41] is a nanotechnology information resource that 

has been developed specifically to provide consistent information on the 

physicochemical characteristics and the environmental/biological effects of NMs.  

 The NHECD (nano health and environmental commented database) [42] employs 

text-mining tools, not manual information entry systems, in order to extract 

nanotoxicity-related information from relevant scientific papers.  

While the use of text-mining algorithms can assist manual data curation in 

nanotechnology, their current performance is not satisfactory due to the non-standardised 

recording of ENM research data. This paper contains only a brief mention of database 

initiatives in nanotechnology that may provide useful data for predictive modelling. For more 

detailed information in this regard, the reader can refer to the review by Panneerselvam and 

Choi [43].  

4. CONCLUSIONS  

The widespread use of ENMs for commercial purposes has made human exposure to these 

materials almost inevitable. There is an urgent need to fully assess the potential toxicity of 

these newly manufactured materials in order to protect human health and the environment 

from their potential side effects. However, nano-sized materials behave as new substances 

when their properties (i.e. size, shape and surface composition) vary. The need to evaluate the 

hazards of not only a large number of newly manufactured NMs, but also their variants (i.e. 

those of different sizes, shapes and coatings) greatly increases the effort required in order to 

obtain information regarding the risk assessment of ENMs. The use of cost- and time- 



effective computational methods for predicting the risk associated with the exposure to each 

ENM seems to be the most rational way to deal with this situation.  

The nano-(Q)SAR modelling approach has great potential for providing an alternative, fast 

and cheap way of evaluating the risks of ENMs and predicting their toxicological behaviour 

in biological systems. However, the quality and the amount of empirical data that is currently 

available in the literature is still insufficient to support the development of predictive nano-

(Q)SAR models. Undoubtedly, the scarcity of the systematically gathered data on the 

biological activity and structural properties of the diverse collection of ENMs is one of the 

most important factors limiting the performance of (Q)SAR-like modelling methods, as the 

accuracy of the nano-(Q)SAR model outputs cannot exceed the quality of the data that are 

used to derive the model itself.  

As stated before, there is currently only a very limited number of large nanotoxicity datasets 

that are useful for computational studies. Combining the existing datasets in order to create 

more comprehensive datasets that the in silico approaches require might be the solution that 

first comes to mind, but in many cases this is not practical for the following reasons: 

 Different assays/endpoints used to measure toxicity; 

 Different cell lines;  

 Different experimental procedures (e.g. dispersion protocols);  

 Different exposure times and doses;  

 Different metrics (e.g. surface area dose or volume dose);  

 Lack of detailed information about the conditions mentioned above. 

In this paper, we reviewed the available literature data that mostly meet the needs of nano-

(Q)SAR analysis and hence can be used as data sources in nanotoxicity modelling studies. 



We believe that this paper can help the readers who wish to explore the available literature 

data on ENM toxicity that might be used as a starting point for nano-(Q)SAR investigations. 
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Table 1: The list of literature data on nanotoxicity and the (Q)SARs built on these datasets 

Dataset 
Reference 

Nanomaterials Toxicity Endpoint Available nano-
(Q)SARs 

[29] 
109 NMs with the same core 

but different surface modifiers 
Cellular uptake 

[17] 
[19] 
[21] 
[22] 
[31] 
[30] 
[27] 

[32] 
48 different fullerene 

derivatives 
Binding affinities 

(pEC50) 

[32] 
[33] 
[15] 
[30] 

[34] 
50 NMs with diverse core 

structures 

ATP content, reducing 
equivalents, apoptosis, 

mitochondrial membrane 
potential 

[17] 
[21] 
[24] 
[30] 

[35] 
80 surface-modified 

MWCNTs 

Protein binding activities, cell 
viability, nitrogen oxide 

generation 

[26] 

[30] 

[16] 
42 NMs with two cores 

(differing in physicochemical 
features) 

Cellular membrane damage 
(LDH release) 

 

[16] 
[36] 

[18] 17 metal oxide Cytotoxicity (EC50) [18] 
 NMs  [30] 

[38] 9 metal oxide NMs Cytotoxicity (PI uptake) [38] 

[20] 24 metal oxide  NMs 
MTS, ATP, LDH, Mito, Fluo4, 

JC1 and PI uptake 
[20] 

[25] 

[23] 
18 NMs (carbon-based and 

metal oxides) 

LDH release, apoptosis, pro-
inflammatory effects, 

haemolysis, MTT, DiOC6, cell 
morphology assay 

[23] 

B. Yan (in 
press) 

47 surface-modified gold NPs 
Nonspecific protein binding 

and AChE inhibition 
[28] 

 

 

 

 

 

 

 

 



Table 2: The statistical methods used in existing nano-(Q)SAR studies ((M)LR:(multiple) 
Linear Regression, GA: Genetic Algorithms, Log.R: Logistic Regression, NNet: Neural 
Networks, LDA: Linear Discriminant Analysis, NB: Naïve Bayes, SVM: Support Vector 
Machine, NNeig: Nearest Neighbours, PCA: Principal Component Analysis)  

Methods (M)LR 
  

GA 
  

Log. R 
  

NNet 
  

LDA 
  

NB 
  

SVM 
  

NNeig 
  

PCA 
  

Others 
  

Nano-
(Q)SAR 
studies 

[16]  
                

 [17]                   

 [18]                   

 [19]                 

 [20]                  Regression tree 

 [21, 28]                 Expectation max. 

 [22]                 
Self-organizing 

map 

 [23]                    

  [24]                  

 [25]                

 [26]  
            

 [27]               
Partial least 

squares 

 [30]                   Ensemble learning 

 [31, 36]               
Monte carlo 
optimazation 

 [32]                   
Partial least 

squares 

 

 

 

Figure 1: The (Q)SAR modelling workflow 

Figure 2: Data collection framework for (Q)SAR  

 

 

 


