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Abstract

We study the reconstruction of the missing thermal and mechanical data on an inaccessible
part of the boundary in the case of two-dimensional linear isotropic thermoelastic materials from
over-prescribed noisy measurements taken on the remaining accessible boundary part. This inverse
problem is solved by employing the method of fundamental solutions together with the method of
particular solutions. The stabilisation of this inverse problem is achieved by using several singu-
lar value decomposition (SVD)-based regularization methods, such as the Tikhonov regularization
method [36], the damped SVD and the truncated SVD [37], whilst the optimal regularization param-
eter is selected according to the discrepancy principle [38], generalized cross-validation criterion [39]
and Hansen’s L-curve method [40].

Keywords: Linear thermoelasticity; Inverse boundary value problem; Method of fundamental so-
lutions (MFS); Method of particular solutions (MPS); Singular value decomposition (SVD); Regu-
larization.

1 Introduction

For an isotropic material at a uniform reference temperature, a small uniform increase in the temper-
ature field can produce a pure volumetric expansion, provided that the solid body is not constrained
against such a movement. This phenomenon can be expressed in terms of the so-called thermal strain,
which is related to the difference between the temperature of the solid and the reference temperature
through the coefficient of thermal expansion. Such a thermal expansion may also occur with no stresses
present in the solid body [1]. Consequently, whenever a solid is subject to heating conditions that give
rise to a temperature distribution throughout its volume, it is important to perform the stress analysis
of the solid body by assuming it to be subject to thermal and mechanical loadings, i.e. thermoelastic
loadings.

The mathematical problems associated with isotropic thermoelastic solids have been the subject of
numerous studies using various numerical methods such as the boundary element method (BEM) [2–6],
the dual reciprocity BEM (DRBEM) [7], the finite element method (FEM) [8, 9], the moving least-
squares method combined with the local boundary integral method [10], the method of fundamental
solutions (MFS) [11–13], etc. In the case of direct problems in thermoelasticity, the thermo-mechanical
equilibrium equations have to be solved in a known geometry subject to known material constants,
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prescribed heat sources and/or body forces, and appropriate initial and boundary conditions for the
temperature, normal heat flux, displacement and traction vectors. The total or partial lack of knowl-
edge of at least one of these conditions leads to a so-called inverse problem. A classical example of
an inverse problem is represented by inverse boundary value problems in which the geometry of the
solution domain, the thermo-mechanical material constants and the heat sources and body forces are all
known, while boundary data are not available on an inaccessible part of the boundary and instead over-
prescribed boundary conditions are provided on the remaining boundary part. It is well-known that
inverse boundary value problems are generally ill-posed [14], in the sense that the existence, uniqueness
and stability of their solutions are not always guaranteed. For these reasons, particular care is required
in the numerical solution of such problems.

The MFS is a meshless boundary collocation method which belongs to the family of so-called
Trefftz methods [15, 16] and is applicable to boundary value problems for which a fundamental solution
of the operator in the governing equation is known. Despite this restriction, the MFS has become very
popular primarily because of the ease with which it can be implemented, in particular for the solution
of problems in complex geometries. Since its introduction as a numerical method [17], it has been
successfully applied to a large variety of physical problems, an account of which may be found in the
survey papers by Fairweather and Karageorghis [18], Fairweather et al. [19], Golberg and Chen [20],
and Karageorghis et al. [21].

Furthermore, the MFS in conjunction with various regularization methods such as the Tikhonov
regularization method (TRM) and singular value decomposition (SVD), has been used increasingly over
the last decade for the numerical solution of inverse problems. For example, the Cauchy problem asso-
ciated with the heat conduction equation [22–25], linear elasticity [26, 27], steady-state heat conduction
in functionally graded materials [28], Helmholtz-type equations [25, 29–31], Stokes problems [32], the
biharmonic equation [33], etc. have all been successfully solved by the MFS. For a survey of applications
of the MFS to inverse problems, we refer the reader to Karageorghis et al. [21].

Both the Cauchy problem and the general inverse boundary value problem in static planar ther-
moelasticity have recently been addressed by Marin and Karageorghis [34], and Karageorghis et al. [35],
respectively, who applied the MFS, Hansen’s L-curve criterion and the numerical inversion of the nor-
mal system of equations generated by the minimisation of the zeroth-order Tikhonov functional. In this
paper, we investigate these problems again more thoroughly by employing a wider range of SVD-based
non-iterative regularization methods, such as TRM [36], the damped SVD (DSVD) and the truncated
SVD (TSVD) [37]. Furthermore, we investigate several criteria for the selection of the regularization
parameter which can be chosen according to Morozov’s discrepancy principle (DP) [38], generalized
cross-validation (GCV) criterion [39] and Hansen’s L-curve (LC) method [40]. Also, a comparison of
the numerical results retrieved for every possible coupling regularization method-selection criterion is
made.

The paper is organised as follows: In Section 2 we formulate mathematically the inverse problems
under investigation. The proposed algorithm is described in Section 3, while the MFS-MPS approach is
presented in Section 4. The aforementioned SVD-based regularization methods, as well as the criteria for
the selection of the optimal regularization parameter, are briefly presented in Section 5. The accuracy
and stability of the numerical results obtained using these regularization methods and selection criteria
are thoroughly analysed for three examples in Section 6. Finally, some conclusions are presented in
Section 7.

2 Mathematical Formulation

We consider an isotropic solid which occupies a bounded planar domain Ω ⊂ R
2, and is characterised by

the following material constants: the thermal conductivity, κ, the coefficient of linear thermal expansion,
αT, Poisson’s ratio, ν, and the shear modulus, G.

In the framework of isotropic linear thermoelasticity, the strain tensor, ϵ = [ϵij ]1≤i,j≤2, satisfies the
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kinematic relation

ϵ(x) =
1

2

(
∇u(x) + ∇u(x)T

)
, x ∈ Ω , (1)

and is related to the stress tensor, σ = [σij ]1≤i,j≤2, by means of the following constitutive law [1]

σ(x) = 2G

[
ϵ(x) +

ν

1 − 2ν
tr (ϵ(x)) I

]
− γ T(x) I , x ∈ Ω. (2)

Here I = [δij ]1≤i,j≤2, ν is the equivalent Poisson’s ratio (ν = ν for a plane strain state and ν = ν
/

(1+ν)
for a plane stress state), while the constant γ is given by

γ = 2GαT(1 + ν)
/

(1 − 2ν) , (3)

where αT is the equivalent coefficient of linear expansion
(
αT = αT and αT = αT (1 + ν)

/
(1 + 2ν) for

the plane strain and plane stress states, respectively
)
. The kinematic relation (1) combined with the

constitutive law of isotropic thermoelasticity (2) yields

σ(x) = G

[(
∇u(x) + ∇u(x)T

)
+

2ν

1 − 2ν

(
∇ · u(x)

)
I

]
− γ T(x) I , x ∈ Ω . (4)

In the absence of body forces, the equilibrium equations of two-dimensional isotropic linear ther-
moelasticity, in terms of the displacement vector and the temperature, become

−∇ · σ(x) ≡ Lu(x) + γ∇T(x) = 0 , x ∈ Ω , (5)

where L = (L1,L2)
T is the partial differential operator associated with the Navier-Lamé system of

isotropic linear elasticity, i.e.

Lu(x) ≡ −G

[
∇ ·
(
∇u(x) + ∇u(x)T

)
+

2ν

1 − 2ν
∇
(
∇ · u(x)

)]
, x ∈ Ω . (6)

In the absence of heat sources, the governing steady-state heat conduction equation becomes

−∇ ·
(
κ∇T(x)

)
= 0 , x ∈ Ω . (7)

Further, we let n(x) be the outward unit normal vector to the boundary ∂Ω of Ω, q(x) be the
normal heat flux at a point x ∈ ∂Ω defined by

q(x) ≡ −
(
κ∇T(x)

)
· n(x), x ∈ ∂Ω, (8)

and t(x) be the traction vector at x ∈ ∂Ω given by

t(x) ≡ σ(x)n(x), x ∈ ∂Ω. (9)

In the direct (forward) formulation, the temperature and normal heat flux are prescribed on the
boundaries ΓT and Γq, respectively, where ΓT ∪ Γq = ∂Ω and ΓT ∩ Γq = ∅, while the displacement
and traction vectors are given on the boundaries Γu and Γt, respectively, where Γu ∪ Γt = ∂Ω and
Γu ∩ Γt = ∅. However, in many practical situations, only a part of the boundary, say Γ1 ⊂ ∂Ω, is
accessible for measurements, while the remaining boundary part, Γ2 = ∂Ω \ Γ1, is inaccessible and
hence no boundary data is available on it. In such a situation, additional measurements are available
on Γ1, hence compensating for the lack of boundary data on Γ2, and this corresponds to an inverse
boundary value problem.

In the sequel, we consider the following two inverse boundary value problems for two-dimensional
steady-state isotropic linear thermoelasticity:
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Problem (A): The Cauchy problem given by the partial differential equations (5) and (7) and the
following over-prescribed thermal and mechanical boundary conditions:

T(x) = T̃(x) and q(x) = q̃(x), x ∈ Γ1, (10a)

u(x) = ũ(x) and t(x) = t̃(x), x ∈ Γ1. (10b)

Problem (B): The inverse boundary value problem consisting of the partial differential equations (5)
and (7) and the following boundary conditions:

T(x) = T̃(x), x ∈ Γ1, (11a)

u(x) = ũ(x), x ∈ Γ1, (11b)

t(x) = t̃(x), x ∈ ∂Ω. (11c)

In equations (10) and (11), T̃, q̃, ũ and t̃ are prescribed boundary temperature, normal heat flux,
displacements and tractions, respectively. Each of the inverse problems consisting of the governing
equations (5) and (7), together with the boundary conditions (10a)–(10b) or (11a)–(11c), is considerably
more difficult to solve both analytically and numerically than direct problems since its solution does
not satisfy the general conditions of well-posedness [14]. Consequently, direct methods, such as the
least-squares method, will fail to produce stable and physically meaningful solutions to these problems
and hence suitable regularization procedures should be employed.

3 Solution Algorithm

The main idea of the present approach relies on employing a particular solution of the inhomogeneous
equilibrium equations (5) according to the method developed by Marin and Karageorghis [12, 34]. By
using the linearity of the governing partial differential operators involved in equations (5) and (7), we
transform the original inverse problem (A) or (B) into a corresponding homogeneous inverse problem
via the superposition principle. The resulting discretised inverse problem is solved, in a stable manner,
by employing a regularization method based on the SVD, namely the TRM [36], the DSVD or the
TSVD [37].

The procedure described above may be summarised, e.g. for the inverse boundary value problem
(B), as follows:

Step 1. Determine a particular solution
(
T(P),u(P)

)
in Ω̃ ⊃ Ω of the heat equation (7) and the non-

homogeneous equilibrium equations (5), respectively,

−∇ ·
(
κ∇T(P)(x)

)
= 0 , x ∈ Ω̃ ⊃ Ω, (12a)

Lu(P)(x) + γ∇T(P)(x) = 0 , x ∈ Ω̃ ⊃ Ω, (12b)

as well as the corresponding particular normal heat flux

q(P)(x) = −
(
κ∇T(P)(x)

)
· n(x), x ∈ ∂Ω, (12c)

strain tensor

ϵ(P)(x) =
1

2

(
∇u(P)(x) + ∇u(P)(x)T

)
, x ∈ Ω , (12d)

stress tensor

σ(P)(x) = 2G

[
ϵ(P)(x) +

ν

1 − 2ν
tr
(
ϵ(P)(x)

)
I

]
, x ∈ Ω , (12e)

and traction vector

t(P)(x) = σ(P)(x)n(x) , x ∈ ∂Ω . (12f)
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Step 2. Solve the resulting inverse boundary value problem associated with the homogeneous thermal and
mechanical equilibrium equations, i.e.

−∇ ·
(
κ∇T(H)(x)

)
= 0, x ∈ Ω, (13a)

Lu(H)(x) = 0, x ∈ Ω, (13b)

T(H)(x) = T̃(x) − T(P)(x), x ∈ Γ1, (13c)

u(H)(x) = ũ(x) − u(P)(x), x ∈ Γ1, (13d)

t(H)(x) − γ T(H)(x)n(x) = t̃(x) −
[
t(P)(x) − γ T(P)(x)n(x)

]
, x ∈ ∂Ω, (13e)

using one of the SVD-based regularization methods mentioned above to determine T(H)
∣∣
Ω∪Γ2

,

q(H)
∣∣
∂Ω

and u(H)
∣∣
Ω∪Γ2

.

Step 3. Apply the superposition principle to determine the unknown thermo-mechanical fields, namely
T
∣∣
Ω∪Γ2

= T(P)
∣∣
Ω∪Γ2

+ T(H)
∣∣
Ω∪Γ2

, q
∣∣
∂Ω

= q(P)
∣∣
∂Ω

+ q(H)
∣∣
∂Ω

, u
∣∣
Ω∪Γ2

= u(P)
∣∣
Ω∪Γ2

+ u(H)
∣∣
Ω∪Γ2

,

ϵ
∣∣
Ω

= ϵ(P)
∣∣
Ω

+ ϵ(H)
∣∣
Ω
and σ

∣∣
Ω

= σ(P)
∣∣
Ω

+ σ(H)
∣∣
Ω
− γ T

∣∣
Ω
I.

The proposed algorithm relies on the existence of a particular solution of the homogeneous heat
equation (7) and the non-homogeneous equilibrium equations (5) which is justified by the following
result, see e.g. Marin and Karageorghis [12] for further details:

Proposition 1. Let Ω ⊂ R
2 be a bounded planar domain occupied by an isotropic thermoelastic solid

characterised by the constant thermal conductivity, κ, the coefficient of linear thermal expansion, αT,

Poisson’s ratio, ν, and the shear modulus, G, and let γ be given by equation (3).
Then, for any set XK =

{
x(k)

}
k=1,K

⊂ R
2 \ Ω, K ∈ Z+, the temperature field

T(P)(x) =
K∑

k=1

Tk log ∥x− x(k)∥ , x ∈ Ω , (14a)

where Tk ∈ R, k = 1,K, and the displacement vector

u(P)(x) =
c(P)

2G

K∑

k=1

Tk

(
x− x(k)

)
log ∥x− x(k)∥, x ∈ Ω , (14b)

where

c(P) :=
γ

2

(
1 − 2ν

1 − ν

)
= GαT

(
1 + ν

1 − ν

)
, (14c)

represent a particular solution
(
T(P),u(P)

)
∈ C∞

(
Ω
)
×
(
C∞

(
Ω
))2

of the governing equations (5) and

(7) of two-dimensional isotropic linear thermoelasticity.

As a direct consequence of Proposition 1, the expressions for the corresponding particular strain
tensor, ϵ(P), stress tensor σ(P), and traction vector t(P), are obtained by substituting the particular
displacement vector given by (14b) into equations (12d)–(12f), respectively, i.e.

ϵ(P)(x) =
c(P)

2G

K∑

k=1

Tk

[
log ∥x− x(k)∥ I +

x− x(k)

∥x− x(k)∥
⊗

x− x(k)

∥x− x(k)∥

]
, x ∈ Ω , (15a)

σ(P)(x) = c(P)
K∑

k=1

Tk

[
1

1 − 2ν

(
log ∥x− x(k)∥ + ν

)
I +

x− x(k)

∥x− x(k)∥
⊗

x− x(k)

∥x− x(k)∥

]
, x ∈ Ω , (15b)
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t(P)(x) = c(P)
K∑

k=1

Tk

[
1

1 − 2ν

(
log ∥x− x(k)∥ + ν

)
n(x)+

(
x− x(k)

)
· n(x)

∥x− x(k)∥2
(
x−x(k)

)
]
, x ∈ ∂Ω . (15c)

As will be shown in the next section, the particular solution u(P) given by equation (14b) is related to
the fundamental solution of the two-dimensional Laplace equation (7) through the logarithmic term in
(14a) and, consequently, the same remark holds for ϵ(P), σ(P) and t(P). This remark actually represents
the rationale for employing the MFS in conjunction with a suitable regularization method to solve the
inverse problems under investigation.

The proposed algorithm can be implemented using any other numerical method which is suitable
for discretising the equations (5) and (7) such as the BEM, the FEM, or the finite-difference method
(FDM), together with the particular solution given by Proposition 1.

4 Method of Fundamental Solutions

4.1 MFS Approximation for the Thermal Problem

The fundamental solution of the two-dimensional steady-state heat conduction in an isotropic homo-
geneous (κ = constant) medium, i.e. the Laplace equation, is given by

F(x,ξ) = −
1

2πκ
log ∥x− ξ∥, x ∈ Ω, (16)

where ξ = (ξ1, ξ2) ∈ R
2\Ω is a source or singularity point. In the MFS, the temperature is approximated

by a linear combination of fundamental solutions with respect to NL sources,
{
ξ(n)

}
n=1,NL

, in the form

T(x) ≈ TNL
(c(1),ξ;x) =

NL∑

n=1

F
(
x,ξ(n)

)
c(1)n , x ∈ Ω , (17)

where c(1) =
(
c
(1)
1 , . . . , c

(1)
NL

)
∈ R

NL and ξ ∈ R
2NL is a vector containing the coordinates of the sources.

We observe that if one takes Tn := −c
(1)
n

/
(2πκ), n = 1, NL, in equation (17), then the latter represents

the expression of a particular solution, as given by relation (14a) with XNL
=
{
ξ(n)

}
n=1,NL

⊂ R
2 \ Ω,

i.e. T(x) ≈ T(P)(x) for x ∈ Ω or, equivalently, T(x) = T(P)(x) + T(H)(x) for x ∈ Ω, with T(H)(x) ≈ 0,
x ∈ Ω.

From equations (8) and (16), it follows that the normal heat flux can be approximated by

q(x) ≈ qNL
(c(1),ξ;x) = −

NL∑

n=1

[
κ∇xF

(
x,ξ(n)

)
· n(x)

]
c(1)n , x ∈ ∂Ω . (18)

We mention that, analogous to equation (17), expression (18) actually means that q(x) ≈ q(P)(x) for
x ∈ ∂Ω or, equivalently, q(x) = q(P)(x) + q(H)(x) for x ∈ Ω, with q(H)(x) ≈ 0, x ∈ ∂Ω.

Next, we select M1
L collocation points,

{
x(n)

}
n=1,M1

L

, on the boundary Γ1 and M2
L collocation

points,
{
x(M1

L
+n)
}
n=1,M2

L

, on the boundary Γ2, such that M1
L +M2

L = ML. By collocating the thermal

boundary conditions (10a) or (11a), one obtains the following linear system of equations for the unknown
coefficients c(1) ∈ R

NL :

A(11) c(1) = f (1). (19)

Here A(11) ∈ R
dM1

L
×NL is the MFS matrix associated with the thermal part of the inverse problem

under investigation and f (1) ∈ R
dM1

L contains the corresponding discretised thermal data available on
Γ1, where d = 2 for the Cauchy problem (A), and d = 1 in the case of the inverse boundary value
problem (B).
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4.2 MFS Approximation for the Non-Homogeneous Equilibrium Equations

The MFS approximation for the particular solution to the non-homogeneous equilibrium equations (5)
in R

2 is given by [12]

u(P)(y) ≈ u
(P)
NL

(c(1),ξ;y) =
c(P)

2G

NL∑

n=1

F
(
y,ξ(n)

) (
y − ξ(n)

)
c(1)n , y ∈ R

2 \ XNL
. (20)

The corresponding approximation for the particular traction vector is obtained as

t(P)(y) ≈ t
(P)
NL

(c(1),ξ;y) = −c(P)
NL∑

n=1

[(
1

1 − 2ν
F
(
y,ξ(n)

)
+

1

2πκ

ν

1 − 2ν

)
n(y)

+
1

2πκ

(
y − ξ(n)

∥y − ξ(n)∥
· n(y)

)
y − ξ(n)

∥y − ξ(n)∥

]
c
(1)
n , y ∈ ∂Ω .

(21)

Consequently, the term
(
t(P) − γ T(P) n

) ∣∣
∂Ω

, which is needed in (13e), is approximated by

(
t(P)(y) − γ T(P)(y)n(y)

) ∣∣
y∈∂Ω

≈
(
t
(P)
NL

(c(1),ξ;y) − γ TNL
(y)n(y)

) ∣∣
y∈∂Ω

= −c(P)
NL∑

n=1

[(
−F
(
y,ξ(n)

)
+

1

2πκ

ν

1 − 2ν

)
n(y) +

1

2πκ

(
y − ξ(n)

∥y − ξ(n)∥
· n(y)

)
y − ξ(n)

∥y − ξ(n)∥

]
c(1)n .

(22)

4.3 MFS Approximation for the Homogeneous Mechanical Problem

As a direct consequence of the MFS approximation for the thermal problem, the second step of the
proposed algorithm (13a)–(13e) reduces to equations (13b), (13d) and (13e) with T(H)(x) ≈ 0 for x ∈ ∂Ω
and these actually represent the equilibrium equations of two-dimensional isotropic linear elasticity in
the absence of body forces for u(H) in Ω with over-specified boundary conditions.

The fundamental solution matrix U = [Uij ]1≤i,j≤2, for the displacement vector in the Cauchy-Navier
system is given by [41]

Uij(y,η) =
1

8πG(1 − ν)

[
−(3−4ν) log ∥y−η∥ δij +

yi − ηi

∥x− η∥

yj − ηj

∥x− η∥

]
, y ∈ Ω , i, j = 1, 2 , (23)

where y = (y1, y2) ∈ Ω is a collocation point and η = (η1,η2) ∈ R
2 \ Ω is a source point.

By differentiating equation (23) with respect to yk, k = 1, 2, one obtains the derivatives of the
fundamental solution for the displacement vector, denoted by ∂ykUij(y,η), where ∂yk ≡ ∂ /∂yk . The
fundamental solution matrix T = [Tij ]1≤i,j≤2, for the traction vector in the case of two-dimensional
isotropic linear elasticity is then obtained by combining equation (23) with the definition of the traction
vector and Hooke’s constitutive law of isotropic linear elasticity [41], namely

T1k(y,η) =
2G

1 − 2ν

[
(1 − ν) ∂y1U1k(y,η) + ν ∂y2U2k(y,η)

]
n1(y)

+ G
[
∂y2U1k(y,η) + ∂y1U2k(y,η)

]
n2(y), y ∈ ∂Ω , k = 1, 2,

(24a)

and

T2k(y,η) = G
[
∂y2U1k(y,η) + ∂y1U2k(y,η)

]
n1(y)

+
2G

1 − 2ν

[
ν ∂y1U1k(y,η) + (1 − ν) ∂y2U2k(y,η)

]
n2(y), y ∈ ∂Ω , k = 1, 2.

(24b)
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As for the thermal problem, we consider NE sources,
{
η(n)

}
n=1,NE

, and approximate the displace-

ment vector, u(H), associated with the homogeneous equilibrium equation (13c) by a linear combination
of the displacement fundamental solutions (23) with respect to these sources, i.e.

u(H)(y) ≈ u
(H)
NE

(c(2),η;y) =

NE∑

n=1

U(y,η(n)) c(2)n , y ∈ Ω , (25)

where c
(2)
n =

(
c
(2)
n;1, c

(2)
n;2

)
∈ R

2, n = 1, NE , c(2) =
(
c
(2)
1 , c

(2)
2 , . . . , c

(2)
NE

)
∈ R

2NE and η ∈ R
2NE is a vector

containing the coordinates of the sources
{
η(n)

}
n=1,NE

. In a similar manner, the traction vector, t(H),

associated with the homogeneous equilibrium equation (13b) is approximated by a linear combination
of the traction fundamental solutions (24a) and (24b), namely

t(H)(y) ≈ t
(H)
NE

(c(2),η;y) =

NE∑

n=1

T(y,η(n)) c(2)n , y ∈ ∂Ω . (26)

By collocating the corresponding boundary conditions associated with the homogeneous mechani-
cal equilibrium equations (13b) at the points

{
y(n)

}
n=1,M1

E

on the boundary Γ1 and, eventually,
{
y(M1

E
+n)
}
n=1,M2

E

on the boundary Γ2, one obtains the following linear system of equations for the

unknown coefficients c(2) ∈ R
2NE :

A(22) c(2) = f (2) −A(21) c(1) . (27)

Here A(22) ∈ R
(4M1

E
+2(d−1)M2

E
)×2NE is the MFS matrix associated with the homogeneous mechanical

part of the inverse problem under investigation, f (2) ∈ R
4M1

E
+2(d−1)M2

E is the right-hand side vector
containing the corresponding discretised mechanical data available on Γ1 and, eventually, Γ2. The
matrix A(21) ∈ R

(4M1

E
+2(d−1)M2

E
)×NL represents the coupling of the mechanical part of the inverse

problem considered with its thermal part (more precisely, the influence of the thermal field on the
mechanical field) according to equations (13a), (13b), (20) and (22). Again, the values d = 2 and d = 1
cover both cases investigated herein, namely Problem (A) and Problem (B), respectively.

4.4 MFS Approximation for the Inverse Thermoelasticity Problem

From equations (16)–(27), it follows that the MFS formulation for both the Cauchy problem (5), (7)
and (10), and the inverse boundary value problem (5), (7) and (11) may be recast as

Ac = f . (28a)

The matrix A ∈ R
m×n and the vectors c ∈ R

n and f ∈ R
m in (28a), where m = dM1

L+4M1
E+2(d−1)M2

E

and n = NL + 2NE , with d = 2 for the Cauchy problem (5), (7) and (10), and d = 1 for the inverse
boundary value problem (5), (7) and (11), are given by

A =

[
A(11) 0

A(21) A(22)

]
, c =

(
c(1)

c(2)

)
, f =

(
f (1)

f (2)

)
. (28b)

Clearly, once the MFS coefficients c(1) ∈ R
NL and c(2) ∈ R

2NE have been determined by solving the
system of linear equations (28a), the approximations for the unknown elastic fields are obtained using
the superposition principle together with equations (20), (22), (25) and (26).

5 Regularization

To uniquely determine the solution c ∈ R
NL+2NE of the system of equations (28a), the numbers of

boundary collocation points and sources must satisfy the inequality dM1
L + 4M1

E + 2(d − 1)M2
E ≥

8



NL + 2NE . In practice, the same collocation points and sources are used for both the thermal and the
mechanical problems, i.e.

{
x(m)

}
m=1,ML

=
{
y(m)

}
m=1,ME

with ML = ME =: M and
{
ξ(n)

}
n=1,NL

=
{
η(n)

}
n=1,NE

with NL = NE =: N , respectively. Consequently, the inequality that ensures the unique-

ness of the solution of the system of equations (28a) reduces to (d + 4)M1 + 2(d− 1)M2 ≥ 3N , where
Mj := M j

L = M j
E , j = 1, 2.

5.1 SVD-Based Regularization Methods

Since the inverse problems (A) and (B) under investigation are ill-posed, the system of equations (28a)
is ill-conditioned and hence it cannot be solved by direct methods, such as the least-squares method,
because such an approach would produce a highly unstable solution for noisy data on Γ1 and/or Γ2.
This fact can be simply viewed from the SVD of the system matrix A ∈ R

m×n, m ≥ n, which is a
decomposition of the form [37]

A = UΣVT =

n∑

i=1

ui σi v
T
i , (29)

where U = [u1,u2, . . .um] ∈ R
m×m and V = [v1,v2, . . .vn] ∈ R

n×n are orthogonal matrices whose
columns are the left and right singular vectors ui and vi of A, respectively, and Σ = diag (σ1, σ2, . . . , σn) ∈
R
n×n is a diagonal matrix whose diagonal elements are the non-negative singular values of A appearing

in a non-increasing order, i.e. σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
By using the SVD (29), the least-squares solution c(LS) of system (28a) is obtained as

c(LS) =

n∑

i=1

uT
i b

σi
vi. (30)

The above relation clearly shows that the least-squares solution (30) is unstable and oscillatory if
singular values become small. To overcome this and obtain a stable solution, the contributions of the
small singular values to the least-squares solution (30) of (28a) need be filtered out and this is achieved
by employing a regularization method. The standard non-iterative regularization techniques usually
associated with the SVD and the corresponding regularized solutions of the system of equations (28a)
are the following [37]:

(R1) The TRM provides a regularized solution c
(TRM)
λ ∈ R

n as the solution of the following minimiza-
tion problem:

min
c∈Rn

{
∥Ac− f∥22 + λ2∥c∥22

}
, (31)

where λ > 0 is a regularization parameter to be prescribed. Based on the SVD, this TRM solution
can be written in the form

c
(TRM)
λ =

n∑

i=1

ϕ
(TRM)
i

uT
i b

σi
vi, where ϕ

(TRM)
i =

σ2
i

σ2
i + λ2

, i = 1, n. (32)

(R2) The DSVD solution c
(DSVD)
λ ∈ R

n has an expression similar to the TRM solution (32), but with
different filter factors, namely

c
(DSVD)
λ =

n∑

i=1

ϕ
(DSVD)
i

uT
i b

σi
vi, where ϕ

(DSVD)
i =

σi
σi + λ

, i = 1, n, (33)

where the regularization parameter λ > 0 is to be prescribed. We note that the DSVD filter
factors defined in (33) decay slower than the TRM filter factors given by (32) and, consequently,
the DSVD introduces less filtering than the TRM.

9



(R3) In the case of the TSVD, the original ill-conditioned MFS matrix A is considered as a noisy
representation of a mathematically rank-deficient matrix and is replaced by a well-conditioned
rank-deficient matrix that is close to A. The standard choice for this approach is to consider the
closest rank−k approximation Ak to the original matrix A, with respect to the Euclidean norm,
by truncating the SVD expression (29) at k ≤ n, namely

Ak =
k∑

i=1

ui σi v
T
i , (34)

which in turn it produces the truncated solution of (30) as

c
(TSVD)
k =

k∑

i=1

uT
i b

σi
vi. (35)

We note that the truncation number k is the regularization parameter for the TSVD. It should
be mentioned that the TSVD solution (35) can also be expressed analogously to the TRM and
DSVD solutions given by equations (32) and (33), respectively, by defining the corresponding

filter factors ϕ
(TSVD)
i , i = 1, n, namely

c
(TSVD)
k =

n∑

i=1

ϕ
(TSVD)
i

uT
i b

σi
vi, where ϕ

(TSVD)
i =

{
1 , i = 1, k

0 , i = (k + 1), n .
(36)

5.2 Criteria for Selecting the Regularization Parameter

It is well-known that the performance of regularization methods depends crucially on the choice of the
regularization parameter λ, with the convention that λ denotes the truncation number k for the TSVD.
The criteria available in the literature and usually employed for the selection of the regularization
parameter are, generally speaking, either mathematically rigorous or heuristic. Any rigorous criterion
requires a reliable estimation of the amount of noise present in the data, whereas the latter approaches,
although heuristic, may be practically useful in cases when no a priori information about the amount
of noise is available.

In this study, we employ the following criteria to select the regularization parameter for the regu-
larization methods (R1)–(R3):

(C1) The L–curve criterion (LC) [37, 40] is a heuristic approach stating that the regularization pa-
rameter λLC can be chosen at the corner (i.e. the point of maximum curvature) of the following
curve:

{(
log ∥Acλ − f ε∥2, log ∥cλ∥2

) ∣∣∣ λ > 0
}
, (37)

where f ε represents a noisy perturbation of the exact data f .

(C2) The discrepancy principle (DP) of [38] is mathematically rigorous, however it requires a reliable
estimation of the amount of noise ε present in the data, i.e.

∥f ε − f∥2 ≤ ε =⇒ λDP = max
{
λ > 0

∣∣∣ ∥Acλ − f ε∥2 ≤ ε
}
. (38)

(C3) The generalized cross-validation (GCV) criterion [39] is based on the following ideas: (i) if an
arbitrary element, fi, i ∈ 1,m, of the right-hand side f is left out, then the corresponding reg-
ularized solution should predict this observation well; and (ii) the choice of the regularization
parameter should be independent of an orthogonal transformation of f . Hence the selection of
the regularization parameter λGCV is realised by minimizing the GCV function

G (·) : (0,∞) −→ [0,∞), G (λ) =
∥Acλ − f ε∥22

[tr(Im −AA†)]2
, (39)
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where A† is the matrix that provides the regularized solution when multiplied with the perturbed
right-hand side f ε, i.e.

cλ = A† f ε, A† ≡
(
ATA + λ2In

)−1
AT. (40)

6 Numerical Results

We apply the numerical procedure described in Section 3, using the MFS-MPS presented in Section 4
together with the non-iterative regularization methods and the stopping criteria briefly described in
Sections 5.1 and 5.2, respectively, to three test problems. More precisely, we solve the inverse problems
(A) and (B) in both simply and doubly connected two-dimensional domains with either a smooth or a
partially smooth boundary, for an isotropic linear thermoelastic material (copper alloy) characterised by
the material constants G = 4.80×1010 N/m2, ν = 0.34, κ = 4.01 W m−1 K−1 and αT = 16.5×10−6 ◦C−1.

Example 1 (simply connected domain, smooth boundary): We consider the inverse boundary value

problem (B) in the unit disk Ω =
{
x ∈ R

2
∣∣∣ ∥x∥ < R

}
, R = 1.0, and the analytical solution (plane

strain state) given by equations (14a), (14b) and (15a)–(15c), with K = 2, x(1) = (5.0, 5.0), x(2) =

(−2.0, 4.0), T1 = 5◦C and T2 = −1◦C. Here, we consider Γ1 =
{
x ∈ R

2
∣∣∣ ∥x∥ = R, θ ∈ [0, θ0]

}
and

Γ2 =
{
x ∈ R

2
∣∣∣ ∥x∥ = R, θ ∈ (θ0, 2π)

}
, where θ = θ(x) is the radial angular polar coordinate of the

point x ∈ R
2 and θ0 ∈

{
2π/3,π, 4π/3

}
.

Example 2 (doubly connected domain, smooth boundary): We consider the Cauchy problem (A) in the

annular domain Ω =
{
x ∈ R

2
∣∣∣Rint < ∥x∥ < Rout

}
, where Rint = 1.0 and Rout = 2.0, which is bounded

by the inner and outer boundaries Γint =
{
x ∈ R

2
∣∣∣ ∥x∥ = Rint

}
and Γout =

{
x ∈ R

2
∣∣∣ ∥x∥ = Rout

}
,

respectively. We also assume that the thermoelastic fields associated with the Example 2 correspond
to constant inner and outer temperatures, Tint = 1◦C and Tout = 10◦C, as well as constant inner and
outer radial pressures, σint = 1.0× 1010 N/m2 and σout = 2.0× 1010 N/m2, respectively, which describe
a plane strain state. The analytical solution of this problem is:

T(an)(x) = Tout
log (∥x∥ /Rint )

log (Rout /Rint )
+ Tint

log (Rout /∥x∥)

log (Rout /Rint )
, x ∈ Ω , (41a)

q(an)(x) = −κ
Tout − Tint

log (Rout /Rint )

x · n(x)

∥x∥2
, x ∈ ∂Ω , (41b)

u(an)(x) =

[
γ

2

(
1 − 2ν

1 − ν

)
Tout − Tint

log (Rout /Rint )
log ∥x∥ + V

(
1 − ν

1 + ν

)
−W

1

∥x∥2

]
x

2G
, x ∈ Ω , (41c)

t(an)(x) =





−σout n(x) , x ∈ Γout ≡
{
x ∈ ∂Ω

∣∣∣ ∥x∥ = Rout

}

−σint n(x) , x ∈ Γint ≡
{
x ∈ ∂Ω

∣∣∣ ∥x∥ = Rint

}
,

(41d)

where

V ≡ −
σ
(H)
out R2

out − σ
(H)
int R2

int

R2
out − R2

int

, W ≡

(
σ
(H)
out − σ

(H)
int

)
R2

out R2
int

R2
out − R2

int

, (42a)

σ
(H)
out ≡ σout − γ Tout +

γ

2

Tout − Tint

log (Rout /Rint )

(
1

1 − ν
log Rout + 1

)
, (42b)
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and

σ
(H)
int ≡ σint − γ Tint +

γ

2

Tout − Tint

log (Rout /Rint )

(
1

1 − ν
log Rint + 1

)
. (42c)

Here Γ1 = Γout and Γ2 = Γint.

Example 3 (simply connected domain, piecewise smooth boundary): We consider the inverse boundary
value problem (B) in the square Ω = (−0.5, 0.5)2, with the analytical solution (plane strain state)
given by equations (14a), (14b) and (15a)–(15c), with K = 2, x(1) = (8.0, 8.0), x(2) = (5.0,−1.0),
T1 = 100◦C and T2 = 50◦C. Here, we consider Γ1 = [−0.5, 0.5] ×

{
± 0.5

}
∪
{

0.5
}
× (−0.5, 0.5) and

Γ2 =
{
− 0.5

}
× (−0.5, 0.5).

In all examples we have taken M j
L = M j

E = Mj uniformly distributed collocation points on Γj ,
j = 1, 2, such that M1 + M2 = M . Also, we take NL = NE = N uniformly distributed sources
associated with both the over- and under-specified boundaries Γ1 and Γ2, respectively. Moreover, the
sources are preassigned and kept fixed throughout the solution process (i.e. the so-called static MFS
approach has been employed) on a pseudo-boundary ∂Ω̃ of a similar shape to that of ∂Ω such that
dist

(
∂Ω̃, ∂Ω

)
is a fixed constant [42]. According to the notations used in Section 4, the corresponding

MFS parameters have been set as follows:

(i) Example 1: N = 42 on ∂Ω̃ =
{
x ∈ R

2
∣∣∣ ∥x∥ = R + d

}
, where d = 2.0 and M = (ℓ + 1)N/6 on

Γ1, for θ0 = (ℓ + 1)π/3 and ℓ ∈
{

1, 2, 3
}

.

(ii) Example 2: M1 = 40 on Γ1, N1 = 40 and N2 = 20 on Γ̃out =
{
x ∈ R

2
∣∣∣ ∥x∥ = Rout + d1

}
and

Γ̃int =
{
x ∈ R

2
∣∣∣ ∥x∥ = Rint − d2

}
, respectively, such that N = N1 + N2, where ∂Ω̃ = Γ̃out ∪ Γ̃int,

d1 = 2.0 and d2 = 0.5.

(iii) Example 3: N = 40 on ∂Ω̃ =
[
−0.5−d, 0.5+d

]
×
{
±(0.5+d)

}
∪
{
±(0.5+d)

}
×
[
−0.5−d, 0.5+d

]
,

where d = 2.0 and M1 = 3N/4 on Γ1.

In order to simulate the inherent measurement errors, we consider that the boundary data corre-
sponding to the inverse problems investigated herein is noisy. More precisely, we assume that the given
exact boundary data F̃

∣∣
Γ1

= F(an)
∣∣
Γ1

or, eventually, F̃
∣∣
∂Ω

= F(an)
∣∣
∂Ω

has been perturbed as

F̃ε(x) =
(
1 + pFρ

)
F(an)(x) , x ∈ Γ , (43)

where Γ = Γ1 or Γ = ∂Ω, pF is the percentage noise and ρ is a pseudo-random number drawn
from the standard uniform distribution on the interval [-1, 1] generated using the MATLAB com-
mand −1 + 2 ∗ rand(·). It should be mentioned that, for the inverse problems with noisy boundary
data considered, the accuracy of the numerical results was found to be quite insensitive with respect
to the location of the MFS pseudo-boundary. For all examples considered, the L-curves (37), the
DP curves (38) and the GCV functions (39), as well as the calculation of the corresponding values
of the regularization parameters, were carried out using the MATLAB routines available in Hansen’s
regularization tools package [43, 44].

Further, to assess the accuracy and convergence of the combined MFS-MPS approach and SVD-
based regularizing methods (R1)–(R3) in conjunction with the selection criteria (C1)–(C3), for any
real-valued function f : Γ −→ R, where Γ = Γ2 or Γ = ∂Ω, and any set of points

{
x(n)

}
n=1,NΓ

⊂ Γ, we

introduce the following relative root mean square (RMS ) error of f on Γ:

eΓ(f) =

√√√√ 1

NΓ

NΓ∑

n=1

[
f (num)

(
x(n)

)
− f

(
x(n)

)]2
/√√√√ 1

NΓ

NΓ∑

n=1

f
(
x(n)

)2
, (44a)
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where f (num)(x) denotes an approximate numerical value for f(x), x ∈ Γ. To investigate the local
accuracy of the numerical solution, one could also employ the following pointwise normalized error of
f at x ∈ Γ:

Ef (x) =

∣∣f (num)(x) − f(x)
∣∣

maxy∈Γ

∣∣f(y)
∣∣ , x ∈ Γ . (44b)

Table 1 presents the values of the regularization parameter and the corresponding RMS errors,
eΓ2

(T), e∂Ω(q) and eΓ2
(u), obtained using the non-iterative regularization methods (R1)–(R3), the

criteria (C1)–(C3) and various amounts of noise added to the data (11a)–(11c), for the inverse problem
given by Example 1 with θ0 = π, i.e. meas(Γ1)

/
meas(Γ2) = 1. It can be seen from this table that

each of the regularization methods (R1)–(R3) has a stabilising/regularizing effect on the numerical
solution of the inverse boundary value problem (B), provided that an appropriate criterion is employed
for the selection of the regularization parameter λ or the truncation number k. More precisely, both
the LC and the DP are suitable criteria for the regularization methods (R1)–(R3), whilst the GCV fails
to provide a good value for λ or k and hence a corresponding accurate solution for Example 1. The
best combinations, in terms of the accuracy, for the numerical solution of Example 1, are TRM-LC,
DSVD-LC and TSVD-DP, and these are displayed in Figs. 1–3, respectively. From these figures, as
well as Table 1, one can conclude that the numerical solutions of Problem (B) for Example 1 obtained
using these methods are all very accurate and stable with respect to decreasing the amount of noise in
the data.

Similar conclusions regarding the suitability of both the LC and the DP for providing good values of
the regularization parameter also hold if one considers Example 1 with θ0 = 4π/3

(
meas(Γ1)

/
meas(Γ2) >

1
)

or θ0 = 2π/3
(
meas(Γ1)

/
meas(Γ2) < 1

)
. The numerically retrieved solutions of the inverse

problem (5), (7) and (11a)–(11c), using (R1)-(R3) in conjunction with the criteria (C1)–(C3), and
pT = pu = pt ∈ {1%, 3%, 5%}, for Example 1 with θ0 = 4π/3 and θ0 = 2π/3, are presented in
Figs. 4–6 and Figs. 7–9, respectively. Although the length of the boundary Γ1 on which both the tem-
perature and the displacement vector are prescribed decreases as θ0 decreases, not only the numerical
solutions obtained via the TRM-LC, DSVD-LC and TSVD-DP remain stable, but they are also good
approximations for their corresponding exact counterparts, see Figs. 1–9. The values of λ or k and
the corresponding RMS errors, eΓ2

(T), e∂Ω(q) and eΓ2
(u), obtained using methods (R1)–(R3) with

the best criteria (C1)–(C3) and various amounts of noise in the data (11a)–(11c), for Example 1 with
θ0 ∈

{
2π/3,π, 4π/3

}
, are given in Table 2.

The TRM, DSVD and TSVD also produce accurate and stable numerical solutions for Problem
(A) in a doubly connected domain with a smooth boundary such as the annular domain considered in
Example 2. Table 3 presents the values of λ or k and the corresponding RMS errors, eΓ2

(T), eΓ2
(q),

eΓ2
(u) and eΓ2

(t), obtained using the regularization methods (R1)–(R3), the criteria (C1)–(C3) and
various amounts of noise in the data (10a)–(10b), for Example 2. As shown in Table 3, the criteria
(C1)–(C3) are all suitable for the TRM and DSVD, whilst the TSVD produces accurate and stable
numerical solutions for Example 2 in conjunction with the DP and GCV only, with the mention that
the latter criterion fails to produce accurate results when increasing the level of noise in the Cauchy
data on Γ1. The exact and numerical solutions for the thermal and mechanical fields on the boundary
Γ2, retrieved using the TRM-LC, DSVD-LC and TSVD-DP, for noisy data pT = pu ∈ {1%, 3%, 5%}
on Γ1, are displayed in Figs. 10–12, respectively.

Also for Problem (B) in a simply connected domain with a piecewise smooth boundary considered
in Example 3, stable and accurate results have been obtained for T

∣∣
Γ2

, q
∣∣
∂Ω

and u
∣∣
Γ2

, using the
TRM and DSVD in conjunction with the LC, GCV and DP, whilst the same conclusion holds if the
TSVD is employed together with the GCV and DP only. These numerical reconstructions for the
unknown boundary temperature and displacement vector on Γ2, and the unknown normal heat flux on
∂Ω = Γ1 ∪ Γ2, obtained using the TRM-LC, DSVD-LC and TSVD-DP are presented in Figs. 13–15,
respectively, together with their corresponding exact values on the side x1 = −0.5. The corresponding
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values of λ or k and the associated RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using methods
(R1)–(R3), the criteria (C1)–(C3) and various levels of noise in the boundary data u

∣∣
Γ1

and t
∣∣
Γ1

are
tabulated in Table 4.

Finally, we investigate the sensitivity of the numerical results obtained using methods (R1)–(R3),
together with the criteria (C1)–(C3), with respect to the distance between the boundary ∂Ω and
the pseudo-boundary ∂Ω̃ on which the sources are located, i.e. d = dist

(
∂Ω̃, ∂Ω

)
. To do so, we

consider the inverse boundary value problem given by Example 1 with θ0 = π, set N = 42 sources

on ∂Ω̃ =
{
x ∈ R

2
∣∣∣ ∥x∥ = R + d

}
, M = N/2 collocation points on Γ1 and pT = pu = 1%, and vary

d ∈ (0, 10]. Figs. 16(a)–16(c) present the RMS errors eΓ2
(T), e∂Ω(q) and eΓ2

(u), as functions of the
distance d, obtained using the TRM-LC, DSVD-LC and TSVD-DP, respectively. As expected, all the
RMS errors decrease with respect to increasing d and then they stabilise reaching a plateau region.

7 Conclusions

We have investigated the reconstruction of the missing thermal and mechanical data on an inaccessible
part of the boundary for two-dimensional linear isotropic thermoelastic materials from over-prescribed
noisy measurements taken on the remaining accessible boundary part. Two types of inverse problems,
namely equations (5) and (7) together with either (10) or (11), were solved by employing the MFS
in conjunction with the method of particular solutions. The stabilisation/regularization of the inverse
boundary value problems considered was achieved by using several SVD-based regularization methods,
such as the TRM [36], the DSVD and the TSVD [37], while the regularization parameter or the trun-
cation number was chosen according to the DP [38], GCV criterion [39] and Hansen’s LC method [40].
The following major conclusions have been drawn from the present study:

(i) All three regularization methods (R1)–(R3) provide us with a stable solution of the inverse bound-
ary value problems (A) and (B), provided that a suitable criterion for the selection of the regu-
larization parameter is used.

(ii) For the inverse boundary value problem (B) in a two-dimensional simply connected domain with
a smooth boundary considered in Example 1, both the LC and the DP are suitable criteria for
all three regularization methods, whilst the GCV fails to provide an optimal value for all these
methods.

(iii) In the case of inverse problems in a two-dimensional doubly connected domain with a smooth
boundary (Example 2), or a two-dimensional simply connected domain with a piecewise smooth
boundary (Example 3), a stable and accurate numerical solution is obtained if the TRM and
DSVD are combined with any of the criteria (C1)–(C3), or the TSVD is employed together with
either the GCV or the DP.

The extension of the present work to inverse boundary value problems in three-dimensional isotropic
linear thermoelasticity is currently under investigation.
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Figure Captions

Figure 1: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TRM–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = π.

Figure 2: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the DSVD–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = π.

Figure 3: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TSVD–DP approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = π.

Figure 4: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TRM–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 4π/3.

Figure 5: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the DSVD–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 4π/3.

Figure 6: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TSVD–DP approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 4π/3.

Figure 7: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TRM–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 2π/3.

Figure 8: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the DSVD–LC approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 2π/3.

Figure 9: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
∂Ω

, and

displacements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TSVD–DP approach and various

levels of noise in T
∣∣
Γ1

, u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 1 with θ0 = 2π/3.

Figure 10: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, displace-

ments (c) u1

∣∣
Γ2

, and tractions (d) t2
∣∣
Γ2

, obtained using the TRM–LC approach and various

levels of noise in T
∣∣
Γ1

and u
∣∣
Γ1

, for Example 2.

Figure 11: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, displace-

ments (c) u1

∣∣
Γ2

, and tractions (d) t2
∣∣
Γ2

, obtained using the DSVD–LC approach and various

levels of noise in T
∣∣
Γ1

and u
∣∣
Γ1

, for Example 2.

Figure 12: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, displace-

ments (c) u1

∣∣
Γ2

, and tractions (d) t2
∣∣
Γ2

, obtained using the TSVD–DP approach and various

levels of noise in T
∣∣
Γ1

and u
∣∣
Γ1

, for Example 2.
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Figure 13: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, and dis-

placements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TRM–LC approach and various levels

of noise in u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 3.

Figure 14: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, and dis-

placements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the DSVD–LC approach and various

levels of noise in u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 3.

Figure 15: The analytical and numerical (a) temperatures T
∣∣
Γ2

, (b) normal heat fluxes q
∣∣
Γ2

, and dis-

placements (c) u1

∣∣
Γ2

and (d) u2

∣∣
Γ2

, obtained using the TSVD–DP approach and various

levels of noise in u
∣∣
Γ1

and t
∣∣
Γ1

, for Example 3.

Figure 16: The RMS errors eΓ2
(T), e∂Ω(q) and eΓ2

(u) as functions of the distance d, obtained using
(a) TRM–LC, (b) DSVD–LC and (c) TSVD–DP, for the inverse problem (B) given by
Example 1 with θ0 = π and pT = pu = pt = 1% noise.
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Method pT = pu = pt λ or k eΓ2
(T) e∂Ω(q) eΓ2

(u)

TRM–LC 1% 5.52 × 10−3 1.04 × 10−2 1.26 × 10−1 8.06 × 10−6

3% 2.32 × 10−2 6.92 × 10−3 1.12 × 10−1 1.96 × 10−5

5% 3.32 × 10−2 1.02 × 10−2 1.55 × 10−1 4.73 × 10−5

TRM–GCV 1% 4.35 × 10−14 4.51 × 101 3.82 × 103 3.74 × 100

3% 4.35 × 10−14 1.35 × 102 1.15 × 104 3.37 × 101

5% 4.35 × 10−14 2.52 × 102 1.91 × 104 9.36 × 101

TRM–DP 1% 2.19 × 10−2 7.08 × 10−3 1.54 × 10−1 3.38 × 10−6

3% 5.04 × 10−2 1.29 × 10−2 2.70 × 10−1 7.35 × 10−5

5% 7.05 × 10−2 1.60 × 10−2 3.39 × 10−1 2.35 × 10−4

DSVD–LC 1% 6.55 × 10−3 8.88 × 10−3 1.03 × 10−1 6.85 × 10−6

3% 2.10 × 10−2 8.31 × 10−3 1.01 × 10−1 2.32 × 10−5

5% 3.62 × 10−2 8.73 × 10−3 1.66 × 10−1 4.13 × 10−5

DSVD–GCV 1% 1.14 × 10−14 1.15 × 102 1.25 × 104 1.52 × 101

3% 1.14 × 10−14 3.46 × 102 3.74 × 104 1.37 × 102

5% 1.14 × 10−14 5.76 × 102 6.24 × 104 3.81 × 102

DSVD–DP 1% 4.11 × 10−3 1.42 × 10−2 3.18 × 10−1 3.12 × 10−5

3% 1.12 × 10−2 9.92 × 10−3 3.05 × 10−1 1.61 × 10−4

5% 1.85 × 10−2 7.38 × 10−3 2.89 × 10−1 4.00 × 10−4

TSVD–LC 1% 10 6.94 × 10−2 1.21 × 100 6.41 × 10−3

3% 10 6.61 × 10−2 1.21 × 100 5.79 × 10−3

5% 10 6.30 × 10−2 1.21 × 10−1 5.22 × 10−3

TSVD–GCV 1% 110 5.86 × 101 5.45 × 103 5.41 × 100

3% 110 1.76 × 102 1.63 × 104 4.87 × 101

5% 110 2.93 × 102 2.72 × 104 1.35 × 102

TSVD–DP 1% 26 6.64 × 10−3 1.50 × 10−1 2.74 × 10−6

3% 17 1.71 × 10−3 2.40 × 10−1 3.31 × 10−5

5% 17 1.43 × 10−2 2.59 × 10−1 1.02 × 10−4

Table 1: The values of the regularization parameter λ or the truncation number k, and the corresponding

accuracy RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization methods (R1)–(R3)

with the criteria (C1)–(C3) for various amounts of noise in the data (11a)–(11c), i.e. pT = pu = pt ∈

{1%, 3%, 5%}, for the inverse problem (B) given by Example 1 with θ0 = π.
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Method θ0 pT = pu = pt λ or k eΓ2
(T) e∂Ω(q) eΓ2

(u)

TRM–LC 4π/3 1% 7.93 × 10−3 1.60 × 10−3 4.08 × 10−2 1.98 × 10−6

3% 2.83 × 10−2 2.33 × 10−3 1.37 × 10−1 5.98 × 10−6

5% 4.22 × 10−2 2.49 × 10−3 1.83 × 10−1 1.03 × 10−5

π 1% 5.52 × 10−3 1.04 × 10−2 1.26 × 10−1 8.06 × 10−6

3% 2.32 × 10−2 6.92 × 10−3 1.12 × 10−1 1.96 × 10−5

5% 3.32 × 10−2 1.02 × 10−2 1.55 × 10−1 4.73 × 10−5

2π/3 1% 4.35 × 10−3 6.62 × 10−3 1.72 × 10−1 4.24 × 10−6

3% 1.40 × 10−2 1.04 × 10−2 9.30 × 10−2 4.42 × 10−5

5% 2.13 × 10−2 1.18 × 10−2 7.58 × 10−2 1.04 × 10−4

DSVD–LC 4π/3 1% 7.98 × 10−3 1.58 × 10−3 4.04 × 10−2 1.97 × 10−6

3% 2.52 × 10−2 1.59 × 10−3 1.19 × 10−1 8.21 × 10−6

5% 4.27 × 10−2 2.54 × 10−3 1.85 × 10−1 9.73 × 10−6

π 1% 6.55 × 10−3 8.88 × 10−3 1.03 × 10−1 6.85 × 10−6

3% 2.10 × 10−2 8.31 × 10−3 1.01 × 10−1 2.32 × 10−5

5% 3.62 × 10−2 8.73 × 10−3 1.66 × 10−1 4.13 × 10−5

2π/3 1% 5.49 × 10−3 5.00 × 10−3 1.30 × 10−1 4.31 × 10−6

3% 1.81 × 10−2 3.71 × 10−3 7.47 × 10−2 4.28 × 10−4

5% 3.25 × 10−2 1.82 × 10−2 3.00 × 10−1 6.34 × 10−5

TSVD–DP 4π/3 1% 25 3.09 × 10−3 3.81 × 10−2 2.60 × 10−6

3% 13 1.35 × 10−2 3.27 × 10−1 7.00 × 10−4

5% 13 1.07 × 10−2 3.32 × 10−1 5.57 × 10−4

π 1% 26 6.64 × 10−3 1.50 × 10−1 2.74 × 10−6

3% 17 1.71 × 10−3 2.40 × 10−1 3.31 × 10−5

5% 17 1.43 × 10−2 2.59 × 10−1 1.02 × 10−4

2π/3 1% 21 8.92 × 10−3 1.26 × 10−1 9.80 × 10−6

3% 21 2.94 × 10−2 2.85 × 10−1 9.52 × 10−5

5% 21 5.05 × 10−2 4.71 × 10−1 2.70 × 10−4

Table 2: The values of the regularization parameter λ or the truncation number k, and the corresponding

accuracy RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization methods (R1)–(R3)

with the best corresponding selection criteria (C1)–(C3) for various amounts of noise in the data (11a)–

(11c), for the inverse problem (B) given by Example 1 with θ0 ∈
{

4π/3,π, 2π/3
}

.
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Method pT = pu λ or k eΓ2
(T) eΓ2

(q) eΓ2
(u) eΓ2

(t)

TRM–LC 1% 2.84 × 10−3 4.92 × 10−3 1.14 × 10−2 9.48 × 10−6 7.90 × 10−5

3% 1.32 × 10−2 7.65 × 10−3 9.88 × 10−3 2.24 × 10−4 2.70 × 10−4

5% 1.97 × 10−2 1.16 × 10−2 1.22 × 10−2 1.20 × 10−3 1.23 × 10−3

TRM–GCV 1% 1.69 × 10−2 2.41 × 10−3 2.71 × 10−3 7.51 × 10−4 7.53 × 10−4

3% 3.58 × 10−2 6.17 × 10−3 4.67 × 10−3 9.85 × 10−3 1.12 × 10−2

5% 6.15 × 10−2 9.48 × 10−3 5.13 × 10−3 3.68 × 10−2 4.23 × 10−2

TRM–DP 1% 2.72 × 10−2 2.19 × 10−3 1.93 × 10−3 4.31 × 10−3 4.78 × 10−3

3% 6.37 × 10−2 5.77 × 10−3 3.06 × 10−3 3.97 × 10−2 4.57 × 10−2

5% 1.06 × 10−1 9.17 × 10−3 4.16 × 10−3 7.82 × 10−2 8.82 × 10−2

DSVD–LC 1% 2.90 × 10−3 4.90 × 10−3 1.13 × 10−2 9.34 × 10−6 7.77 × 10−5

3% 9.12 × 10−3 8.66 × 10−3 1.40 × 10−2 5.76 × 10−5 1.89 × 10−4

5% 1.58 × 10−2 1.22 × 10−2 1.43 × 10−2 4.38 × 10−4 5.71 × 10−4

DSVD–GCV 1% 2.52 × 10−3 4.82 × 10−3 1.25 × 10−2 1.85 × 10−4 2.51 × 10−4

3% 3.79 × 10−3 1.26 × 10−2 3.03 × 10−2 3.94 × 10−4 9.68 × 10−4

5% 6.10 × 10−3 1.80 × 10−2 3.92 × 10−2 9.64 × 10−4 1.71 × 10−3

DSVD–DP 1% 2.52 × 10−3 4.82 × 10−3 1.25 × 10−2 1.85 × 10−4 2.51 × 10−4

3% 7.61 × 10−3 1.02 × 10−2 2.08 × 10−2 1.58 × 10−3 1.49 × 10−3

5% 1.16 × 10−2 1.47 × 10−2 2.69 × 10−2 3.31 × 10−3 3.05 × 10−3

TSVD–LC 1% 82 5.79 × 10−3 1.38 × 10−2 1.49 × 10−5 1.37 × 10−4

3% 150 3.05 × 10−1 1.88 × 100 1.39 × 10−2 1.89 × 100

5% 150 5.08 × 10−1 3.13 × 100 3.86 × 10−2 5.25 × 100

TSVD–GCV 1% 40 1.89 × 10−3 8.73 × 10−4 6.61 × 10−6 2.78 × 10−5

3% 40 5.66 × 10−3 2.62 × 10−3 3.05 × 10−5 6.35 × 10−5

5% 7 4.75 × 10−3 5.51 × 10−7 1.29 × 10−1 1.55 × 10−1

TSVD–DP 1% 40 1.89 × 10−3 8.73 × 10−4 6.61 × 10−6 2.78 × 10−5

3% 40 5.66 × 10−3 2.62 × 10−3 3.05 × 10−5 6.35 × 10−5

5% 40 9.44 × 10−3 4.37 × 10−3 7.24 × 10−5 1.14 × 10−4

Table 3: The values of the regularization parameter λ or the truncation number k, and the corresponding

accuracy RMS errors, eΓ2
(T), eΓ2

(q), eΓ2
(u) and eΓ2

(t), obtained using the regularization methods

(R1)–(R3) with the criteria (C1)–(C3) for various amounts of noise in the data (10a)–(10b), for the

inverse problem (A) given by Example 2.
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Method pu = pt λ or k eΓ2
(T) e∂Ω(q) eΓ2

(u)

TRM–LC 1% 8.08 × 10−7 4.69 × 10−6 5.30 × 10−4 1.22 × 10−6

3% 1.87 × 10−6 3.78 × 10−6 4.27 × 10−4 1.10 × 10−5

5% 3.64 × 10−6 2.43 × 10−6 2.73 × 10−4 3.06 × 10−5

TRM–GCV 1% 1.39 × 10−5 3.66 × 10−7 7.02 × 10−5 1.22 × 10−6

3% 2.71 × 10−5 1.20 × 10−6 2.00 × 10−4 1.10 × 10−5

5% 3.78 × 10−5 4.41 × 10−6 5.67 × 10−4 3.06 × 10−5

TRM–DP 1% 2.78 × 10−5 1.36 × 10−6 2.17 × 10−4 1.22 × 10−6

3% 5.42 × 10−5 1.12 × 10−5 1.37 × 10−3 1.10 × 10−5

5% 7.58 × 10−5 2.13 × 10−5 2.58 × 10−3 3.07 × 10−5

DSVD–LC 1% 5.79 × 10−7 4.26 × 10−6 4.82 × 10−4 1.22 × 10−6

3% 1.87 × 10−6 3.78 × 10−6 4.27 × 10−4 1.10 × 10−5

5% 3.08 × 10−6 2.76 × 10−6 3.10 × 10−4 3.06 × 10−5

DSVD–GCV 1% 2.51 × 10−7 8.31 × 10−5 9.27 × 10−3 1.23 × 10−6

3% 6.84 × 10−7 9.02 × 10−5 1.01 × 10−2 1.10 × 10−5

5% 1.13 × 10−6 9.06 × 10−5 1.01 × 10−2 3.06 × 10−5

DSVD–DP 1% 5.97 × 10−7 3.31 × 10−5 3.71 × 10−3 1.23 × 10−6

3% 1.91 × 10−6 2.92 × 10−5 3.33 × 10−3 1.10 × 10−5

5% 3.16 × 10−6 2.88 × 10−5 3.34 × 10−3 3.06 × 10−5

TSVD–LC 1% 8 1.93 × 10−2 1.18 × 100 2.25 × 10−4

3% 8 1.93 × 10−2 1.18 × 100 1.64 × 10−4

5% 8 1.93 × 10−2 1.18 × 100 1.15 × 10−4

TSVD–GCV 1% 42 4.38 × 10−6 5.15 × 10−4 1.22 × 10−6

3% 37 4.62 × 10−6 6.20 × 10−4 1.11 × 10−5

5% 37 4.62 × 10−6 6.20 × 10−4 3.08 × 10−5

TSVD–DP 1% 426 4.38 × 10−6 5.15 × 10−4 1.22 × 10−6

3% 376 4.62 × 10−6 6.20 × 10−4 1.11 × 10−5

5% 376 4.62 × 10−6 6.20 × 10−4 3.08 × 10−5

Table 4: The values of the regularization parameter λ or the truncation number k, and the corresponding

accuracy RMS errors, eΓ2
(T), e∂Ω(q) and eΓ2

(u), obtained using the regularization methods (R1)–(R3)

with the criteria (C1)–(C3) for various amounts of noise in the data (11a)–(11c), for the inverse problem

(B) given by Example 3.

39


