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ASYMPTOTICALLY OPTIMAL NONLINEAR FILTERING
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ABSTRACT. In this note we present a computationally simple algorithm for
non-linear filtering. the algorithm involves solving, at a given point in state
space, an algebraic Riccati equation. The coefficients of this equation vary
with the given point in state space. We investigate conditions under which the
state estimate given by this algorithm converges asymptotically to the first
order minimurmn variance estimate given by the extended Kalman filter. We
also investigate conditions for determining a region of stability for the filter
given by this algorithm. The analysis is based on stable manifold theory and
Hamilton-Jacobi-Bellman (HJB) equations. The motivation for introducing
HJB equations is given by reference to the maximum likelihood approach to
deriving the extended Kalman filter.

1. INTRODUCTION

In this note we present a computationally simple algorithm for non-linear filter-
ing. the algorithm involves solving, at a given point in state space, an algebraic
Riccati equation. The coefficients of this equation vary with the given point in
state space. We investigate conditions under which the state estimate given by this
algorithm converges asymptotically to the first order minimum variance estimate
given by the extended Kalman filter. We also investigate conditions for determining
a region of stability for the filter given by this algorithm. The analysis is based
on stable manifold theory and Hamilton-Jacobi-Bellman (HJB) equations. The
motivation for introducing HJB equations is given by reference to the maximum
likelihood approach to deriving the extended Kalman filter.

2. ASYMPTOTIC MINIMUM VARIANCE FILTER

Suppose we have a nonlinear, autonomous system driven by white noise with
white noise corrupted observations

Sy x(t) = fx(t)] + G[x(t)]w(t)
(2) z(t) = h[x(t)] + v(t)

where w(t) and v(t) are zero-mean, white and gaussian and uncorrelated with
themselves and with x(¢y) such that for t > g,

cov{w(t),w(7)} = Qé(t — 1)
cov{v(t),v(r)} = Ri(t — 7).

Define the processes dw(t) = w(t)dt, dv(t) = v(t)dt and dy(t) = z(t)dt. Then the
above system can be written more properly as the following Ito sense stochastic

Date: 26th November, 1998. 200448487

* [T NAREP
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differential equations

dx(t) = f[x(t)]dt + G[x(t)]dw(¢)
dy(t) = hix(t)]dt + dv(t)

where w(t) and v(t) are independent Browian motions uncorrelated with x(t) such
that

cov{w(t),w(r)} = Qmin(t,7)
cov{v(t),v(r)} = Rmin(t, 7).

Let Y(t) = {y(7) : to < 7 < t} denote the observations up to time t. Let %() =
E{x(t)|Y(t)} denote the conditional mean, i.e. the minimum variance optimal
estimate, and V(t) = var{x(t) — %(¢)|Y(¢)} denote the conditional error variance.
Then to a first order approximation the solution to the filtering problem is given
by the extended Kalman filter ([4], Chapter 9)

T -
dx(t) = f[&(8)]dt + V(t)———alja f([z{t()t)] R~ {dy(t) — h[&(t))dt}
_ [ ofR()] OfT [(1)] :
dV(t) = { ) V(t) + V(1) 500 o
T % -
+ G[&(t))QGT[x(t)] = V(1) aha x{ (t()t)} R™! 3;}[:‘2&?] V(z‘.)}dt.

The initial conditions for the extended Kalman filter are X(to) = £{x(to)} and
V(to) = var{x(to)|Y (t0)}.

Suppose now that £(0) = 0 and h(0) = 0, i.e. there is an equilibrium at x = 0.
Let

A©) = 2(0) H©)= X0

and suppose that the linear system (A(0), G(0),H(0)) is completely controllable
and completely observable.

If the state variable x is close to the equilibrium x = 0, then the extended
Kalman filter reduces to the linear Kalman filter around x = 0

3) dx(t) = A(0)%(t)dt + V()HT (0)R ™ {dy(t) — H(0)%(t)dt}

dv(t) = {A(O)V(t) +V(t)AT(0)
(4)
+ G(0)QGT(0) - V(t)HT (O)R—lH(O)V(t)}dt.

By the hypotheses on (A(0), G(0), H(0)), the linear filter is asymptotically stable

(Theorem 13.18, [3]). That is, the homogeneous part of the above linear system
dx(t) = A(0)%(t)dt — V() HT (0)R~TH(0)x(t)dt

is asymptotically stable with Lyapunov function S(%,t) = 1xTV~1(¢)x. In addi-

tion, by Theorem 13.33 of [3], V(t) tends to the unique positive definite solution

of

(5) 0=A(0)V + VAT(0) + G(0)QGT(0) - VHT (0)R"'H(0)V.
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By the assumptions on (A(0), G(0), H(0)), it follows that (A(0),G(0)) is stabi-
lizable and (H(0), A(0)) is observable. Also Q is clearly positive definite. So by
Lemma 3 of [1] (or Theorem 12.2 of [6]), H has no purely imaginary eigenvalues
and the unstable eigenspace of H is spanned by the columns of the 2n x n matrix

w A

where V! is the positive definite solution of (6), thus showing again that (7) has
a positive solution 1xV~!%.

Note, we have to apply the phase-space transformation A — —AX to get H in the
correct form to apply Lemma 3 of [1] and so their result, which concerns the stable
eigenspace, becomes a result about the unstable eigenspace. Note also that, as can
easily be checked,

1
V)

spans the stable eigenspace for the Hamiltonian matrix corrsponding to (5) and
so asymptotic stability for the Kalman filter (3), (4) corresponds to asymptotic
instability for the X-dynamics of (7) with the feedback A = V-1x.

So, from the paragraph before the previous one, the equilibrium at £ = X = 0
for the flow given by (10) is hyperbolic. By the stable manifold theorem there
therefore exist n-dimensional stable and unstable manifolds for this equilibrium.
Furthermore, the columns of (12) span the tangent space to the unstable manifold
at the origin and so the unstable manifold can be parameterised by the % coordinates
in a neighbourhood Uy of the origin. This parameterisation has the form A = 85 /8%
where-5 is the solution to (10) in U, satisfying 5(0) = 0, 85(0)/6% = 0 and
825(0)/8%* = V1. This argument comes from [5).

Since V! is positive definite and, to second order locally at x = 0,
= 1.8%8(0). 1_p.. 4.

S = ExT 85((2 )x = §xTV 'z,
if follows that S is positive definite in some neighbourhood Us C U; of % = 0. §
is then a Lyapunov function for the homogeneous part of (8) provided a certain
inequality holds on Us. For, along the trajectories of the homogeneous part of (8),
d5 _85dx
dt 0% dt
=M (f(%) - VE&)HT ()R H(%)%)

= —%)_\TG(:‘E)QGT(i)X
+ %‘THT(i)R—IH(i)i - ATV(E)HT (®)RTH(R)%
— —%)—\TG(:?:)QGT(:T:))-\
+ % (V%% - %) VRHT@RIHE)VE) (V- (®)% - )
- %XTV(:‘c)HT(i)R“H(i)V(i):\
where V(%) is the solution to (9). This is less than zero provided
(Vi®)x - ) VRHTRRITHER)VE) (V%)% - )

(152 < ATV HT ()RTTHE) V(X)X
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In the steady state case, stability follows since S(%) = %chV‘lfc is clearly greater
than zero for X # 0 and

% =%V~ (A(0) - VHT(0)R'H(0)) %

+%7 (AT(0) - HT(0)R'H(0)V) V%
%7 (V71A(0) + AT(0)V~! — 2HT(0)R'H(0)) %
=xT (-V1G(0)QG”(0)V~! - HT(0)R'H(0)) % < 0.

For the proof of stability when V depends on ¢ see [3], Theorem 13.18. Since
(A(0),G(0)) is controllable, V is positive definite and so V1 exists and satisfies
the algebraic Riccati equation .

(6) 0=V'AM)+AT(O)V!+VIG(0)QGT(0)V~! — HT(0)R"'H(0).
This cofresponds to the Hamilton-Jacobi equation for S(x%)

0=x" (VIA(0) + AT(0)V™ + V'G(0)QGT (0)V~! — HT(0)R'H(0)) %
since 8S/0% = V~I&. Setting A = 85/0% we get

(7 0=ATAW)%+ %)\TG(O)QGT(O)A - %:‘cTHT(O)R“IH(O)i.

We have thus shown that the Hamilton-Jacobi equation (7) has a solution S(%) > 0.

Consider now the following model for X away from the equilibrium % =
Assume (A(%),G(%)) and (AT(%),H7T (%)) are stabilizable for all %. Note this
holds at X = 0 by assumption on (A(0),G(0), H(0)). Write f(X) = A(%)% and
h(%) = H(X)% where A(X) - A(0) and H(%X) — H(0) as & — 0. Then % is the
solution of

8) dx(t) = £(x(2))dt + V(%(t))H" (%(2))R™" {dy(t) — h(x(t))dt}
with initial condition %X(to) = £{x(tg)} where V(&) satisfies at %
(9) 0=A(X)V(E)+ VFEAT(®) + G(%)QGT (%) - VERHT ®)RHEF)V(X).

Note the above assumptions on (A(%), G(X)) and (AT (%), HT (X)) ensure a positive
semi-definite solution to (9) exists for all . This model is simpler to implement
than the extended Kalman filter and appears to be insensitive to errors in the
initial condition, unlike the extended Kalman filter. We shall attempt to answer
the following three questions concerning this model. Firstly, what meaning can be
attached to % as derived from this model? Secondly, under what conditions is the
model stable and thus insensitive to the initial condition? Thirdly, how does this
model relate to the extended Kalman filter?

Clearly, (8) and (9) tend to the same limit as the extended Kalman filter if
% — 0, namely the steady state form of the linear filter (3) and (5) which we have
assumed is stable. We now give conditions under which (8) and (9) will be stable
on some neighbourhood of 0. To do this, consider the following Hamilton-Jacobi
equation for the function S(%),

(10) 0= XTE(%) + %XTG(i)QGT(i):\ - —;-iTHT(i‘c)R‘lH()‘c)i

e

where X ='85/0%. This equation is the nonlinear extension of (7).

The Hamiltonian flow corresponding to (10) has an equilibrium at x = X = 0
in phase space. Equation (7) is the Hamilton-Jacobi equation corresponding to the
linearisation of this flow at & = X = 0. The Hamiltonian matrix describing this
linearised flow is
i a_[ A0 GOQGT(0)

HT(0R'H(0) -AT(0) |-
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This inequality essentially says that the difference between the true feedback and the
approximation given by (9) is less than the true feedback as measured with respect
to the norm given by V(X)H7 ()R ~'H(X)V(&). Since V(&) = V, the solution to
(5), as & — 0, we would expect this inequality to hold on a neighbourhood of the
origin.

Note it is enough to test if

—;-“THT(ic)R‘lH(i)ic < MVEHTE)RH®)%

which avoids one having to consider whether V~1(%) exists. Note also that the
value of A = 85/8% can be obtained by following characteristics of (10) along the
unstable manifold starting near the origin without having to solve (10) for 5.

So suppose this inequality holds on some neighbourhood Us of the origin con-
tained within U;. Then the homogeneous part of (8) will be asymptotically stable
on the largest sublevel set of S contained within Us, i.e. for the largest v > 0 such
that {% : S(%) <~} C Us.

So to summarise we have the following result which answers the second and third
questions posed above.

Proposition 2.1. Suppose f(0) = 0 and h(0) = 0. Suppose also that the lin-
ear system (A(0), G(0),H(0)) is completely controllable and completely observable.
Then equations (8) and (9) give a model for X which agrees asymptotically as & — 0
-with the optimal (minimum variance) estimate given by the steady state limit of the
ertended Kalman filter (should the extended Kalman filter attain this limit). If U
is the largest neighbourhood of the origin on which both a positive solution S to the
Hamilton-Jacobi equation (10) exists and the inequality (13) holds, then the algo-
rithm will be asymptotically stable on the largest sublevel set of S contained within
U.

What about the first question posed above on what meaning can be attached to
the estimate X produced by (8) and (9) away from the origin? We make no claim
about this in the above result as it is not clear that away from % = 0 there is any
relationship between % and x. Probably the most that can be said is that if the
extended Kalman filter attains a steady state dV(t) = 0 away from % = 0, then
(8) and (9) provide an approximate solution of this steady state, the approximation
being that A(%) and H(%) are used instead of 8f(%)/8% and Oh(%)/0%. We know
of no conditions, however, for determining whether the extended Kalman filter will
attain a steady state. Thus a meaning can only be attached to % as & — 0, namely
X in this limit gives the minimum variance estimate of x. However, we do have
conditions which imply that the dynamics of % are stable in a region around the
origin and so we can expect this interpretation to hold eventually for trajectories
which start in and remain in this region. These conditions also imply that errors in
the initial condition %(ty) eventually disappear, unlike in the case of the extended
Kalman filter where there are no guarantees that errors in %(ty) and V(tp) are
insignificant.

3. MAXIMUM LIKELIHOOD APPROACH

In the above analysis, the central equations were those for the extended Kalman
filter. These are derived from a first order approximate solution to the modified
Fokker-Plank equation which describes the evolution of the conditional probability
density of x(t) (see [4], Chapter 9). The Hamilton-Jacobi equations (7) and (10)
which were used to prove stability were introduced in a formal way above and
are not directly related to, or required in, the derivation of the equations for the
filter dynamics. In this section we outline the maximum likelihood approach to
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estimating x(¢). This approach does lead directly to the Hamilton-Jacobi equations

from which (7) and (10) come.

We start by formulating a least squares version of the problem of estimating
x(t) in (1) given the observations z(t) from (2). Minimising an appropriate error
function subject to the dynamical constraint of (1) can be shown to be equivalent to
maximising the conditional probability density function of x(t). The corresponding
estimate %(t) so obtained is the peak or mode of the conditional probability density
function and constitutes the maximum likelihood (Bayesian) estimate of x(t). A
Hamilton-Jacobi equation is obtained by using dynamical programming to solve
the least squares problem. ‘

Let %(to) = £{x(to)}, V(o) = var{x(to)} and consider first the linear-quadratic
estimation problem (around the equilibrium x = 0) of minimising

7 = L (x(ta) - (1) " t0) (x(to) ~ %(tg)

+ E/t [(z('r) ~ H(0)x(r))" R (2(r) — H(0)x(r)) + WT(T)Q_IW(T)J 0
2 v

to

with respect to x(7) and w(7) subject to the constraint
%(t) = A(0)x(t) + G(0)w(2).

This can be thought of as attempting to determine (estimate) x(7) for to < 7°< ¢
so that, simultaneously, the errors in the dynamical system and in the observations
are small. In view of the constraint it is enough to minimise J with respect to x(tg)
and w(7) since x(7) is then determined for t, < 7 < t. Let

S(x,t) = minJ.
w(r)
Then we get the dynamic programming equation
8s . {as"“ as”

- % (z - H(0)x)T R (z - H(0)x) — %WTQ_IW}.
This is minimised by w = QGT(0)05/8x giving
85 ST 1857 78S

_ % (z— H(0)x)T R~ (z — H(0)x).

This is essentially the finite time version of (7) with the observation term z included.
The linear filter is obtained by supposing there is a solution of the form

S6,t) = 5 (x = KOV V12) (x—2(8) + a(t).

It can be shown that —S(x, t) is the exponent of the conditional probability density
function of x(t). Thus —S(x,t) can be interpreted as the likelihood of the state
trajectory passing through x at time ¢, given the observations z made up to time t.
This is clearly maximised by x = %(t) which is therefore the maximum likelihood
filtering solution. The equations for % and V are obtained by calculating 85/8t and
05/0x and substituting in (14). Since the dynamics are linear, x(t) is normal and
so the conditional mean coincides with the conditional mode. In other words, in
the linear case, the minimum variance and maximum likelihood solutions coincide
and, indeed, it turns out that the equations obtained from (14) are the same as
those for the linear Kalman filter (3) and (4). Details of the above are contained
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in [2], Section 5.3 and Examples 7.11 and 7.12 and will essentially be given in the
derivation of the first order nonlinear solution below.

Consider now the nonlinear estimation problem away from x = 0. We seek to
minimise

7 = 1 (x(t0) = (1) V(o) (x(t0) — %(t0)

+ -;—/t-o [(z('r) - h(x(‘r)))T R (z(r) - h(x(7))) + wT('r)Q_lw(r)] dr

subject to
x(t) = £(x(2)) + G(x(t))w(t).
Letting 7

S(x,t) = m{in)J_'

and repeating the above analysis leads to the following finite time version of (10)

85 oa5" 1857 r, .08
ik f(X)+§5; G(x)QG (X)g

(15) i
~ 5 (=h(x)"R™ (2 - h(x))

again with the observation term z included. The value of x which maximises — 3§ is

the maximum likelihood estimate and is denoted %(t). However it is no longer true

that this coincides with the minimum variance estimate. Also it is not possible to

derive an exact equation for x(¢) from (15).

We can however derive a first order approximate equation for %(¢) by expanding
the various terms in (15) in Taylor series around %(t) in terms up to order 1. For
the sake of brevity, we will omit the dependence of % on ¢ in the following where %
appears inside another function. Since %(t) minimises S(x, t), we get that, close to

X,

85(x,t) _ 825(x,t)
x = ox?

where we have written

(x —%(t) = V7 (£)(x - %(t))

9285(x(t),t)

vl (t)= o
To a first order approximation we then get
(16) 50x,2) = 5(x = X(B)TVA(0)(x ~ (1) + a(t)
and so
BED —al-x- )V OR
-1
42— 20" B 200)
For the other terms in (15) we get
£(x) = £(2) + 2 x — 2(1)
G(x) = G(R) + To (x — 2(1)
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Substituting these into (15) and ignoring terms of order higher than two in x we
get

—a(t)+ (- 2(0)T V0% - L x—200)” T (- 200

= (x — &(0)T V- (OFR) + (x - %()TV (1) (f‘)( —x(8)

+5 (= %(0) VI OGERQETE®V (1) (x - £(1)
_ %ZTR_IZ +(x — ()T 3h6 &) g1 (z — h(%))
1 r Ob7(%) o ; Oh(X)

- L ay B R B 4y
+hT(R)R"! (z - éh(i)) .

Now, equating terms of order 1 and 2 in (x — %X(t)) gives the first order approximate
equations for % and V!

(17) % = f(%) + V(t)ah;(i) R7!(z(t) - h(x)) .
-i-V*}(t)G(:‘c}QGT(:Tc)V“l() ah;( )R lagg‘).

The initial conditions are obtained from the boundary condition for (15)
_ 1 _
S(x(to), to) = 5 (x(to) —X(t0))” V™" (to) (x(t0) ~ %(t0)).

For S of the form (16), this is satisfied by %(to) = %(tp) and V~=1(tg) = V=1 (tp).
Implementing the algorithm (17) and (18) involves inverting V~!(t) at each step.
An explicit equation for V(t) is obtained from (18) by noting that VV~1 =1

implies that
1
gy .oy (‘N ) V.

dt dt
and so
dv(t)  of(%) ofT (%)
am & - oz YWV —

T

+6®QETH - Vi BB R By )

Equations (17) and (19) thus constitute a first order approximation to the maximum
likelihood solution to the filtering problem (1) and (2). We note that these equations
are the same as those for the extended Kalman filter which gives the minimum
variance solution. As noted above these solutions do not generally coincide and
so one can expect the higher order approximations to diverge from one another.
Also, as noted in Section 2, the algorithm given in (8) and (9) can be thought
of as an approximation to the steady state form of (17) and (19), should this
exist. It is pointed out in [2], Section 5.3, that maximum likelihood estimation is
of questionable value unless one knows in advance that the conditional probability
density function of x(¢) is unimodal and concentrated near the mode. The point
of this section, however, was to indicate where the Hamilton-Jacobi equations (7)
and (10) come from and how they are related to the derivation of the equations for
the extended Kalman filter.
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