UNIVERSITY OF LEEDS

This is a repository copy of Origin, evolution and anatomy of silt-prone submarine external levées.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/82588/

Article:

Morris, EA, Hodgson, DM, Brunt, RL et al. (1 more author) (2014) Origin, evolution and anatomy of silt-prone submarine external levées. Sedimentology, 61 (6). 1734 - 1763. ISSN 0037-0746

https://doi.org/10.1111/sed.12114

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Origin, Evolution and Anatomy of Silt-prone Submarine External Levées

- 3 Emma A. Morris¹ David M. Hodgson^{*, 2}, Rufus L. Brunt³ and Stephen S. Flint³
- 4 ¹Stratigraphy Group, Geology and Geophysics, School of Environmental Science, University of Liverpool, 4 Brownlow Street,

5 Liverpool, L69 3GP, U.K.

- 6 ²Stratigraphy Group, School of Earth and Environment, University of Leeds, UK
- ⁷ ³Stratigraphy Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
- 8 *e-mail: d.hodgson@leeds.ac.uk
- 9 *Corresponding author.

10

11 ABSTRACT

12 Submarine external levées are constructional features that develop outside slope channel systems, 13 and are a volumetrically significant component of continental margins. However, detailed 14 observations of their process sedimentology and depositional architecture are rare. Extensive 15 exposures of external levées at multiple stratigraphic intervals and well constrained 16 palaeogeographic positions in the Fort Brown Formation, Karoo Basin, South Africa have been 17 calibrated with research boreholes. This integrated dataset permits their origin, evolution and 18 anatomy to be considered, including high-resolution analysis of sedimentary facies distribution, and 19 characterisation of depositional sub-environments. Initiation of external levée construction is 20 commonly marked by deposition of a basal sand-rich facies with sedimentary structures indicating 21 rapid deposition from unconfined flows. These deposits are interpreted as frontal lobes. Propagation 22 of the parent channel, and resultant flow confinement, leads to partial erosion of the frontal lobe and development of constructional relief (levées) by flow overspill and flow stripping. Overall fining-23 24 and thinning-upwards profiles reflect increased flow confinement and/or waning flow magnitude 25 through time. Identification of a hierarchy of levée elements is not possible due to the absence of 26 internal bounding surfaces or sharp facies changes. The downslope taper in levée height and 27 increasing channel sinuosity results in increasing numbers of crevasse lobe deposits, and is reflected 28 by the increased occurrences of channel avulsion events downdip. External levées from the Fort 29 Brown Fm. are silt-rich; however their origin, evolution, and distribution of many components 30 (sediment waves, crevasse lobe) share commonalities with mud-rich external levées. An idealised 31 model of the stratigraphic evolution and depositional architecture of external levées is presented, 32 and variations can be attributed to allogenic (e.g. sediment supply) and autogenic (e.g. channel 33 migration) factors. This study provides a reference point to encourage further investigation and 34 testing via numerical and physical experiments, and mapping of high resolution seismic and outcrop 35 datasets.

36 INTRODUCTION

37 Submarine levées are often readily identifiable in subsurface seismic and seabed datasets as 38 constructional features that taper away from submarine channel systems and can be kilometres-39 wide and 10s to 100s of metres thick (e.g. Buffington, 1952; Normark et al., 1980; McHargue and 40 Webb, 1986; Flood and Piper, 1997; Hiscott et al., 1997; Clemenceau et al. 2000; Migeon et al., 2000; 41 2001; 2004; Babonneau et al. 2002; 2010; Piper and Normark, 2001; Mayall and O'Byrne, 2002; 42 Skene et al., 2002; Deptuck et al., 2003; 2007; Posamentier, 2003; Posamentier and Kolla, 2003; Schwenk et al., 2005; Wynn et al., 2007; Carmichael et al., 2009; Nakajima and Kneller 2013). There 43 44 is a physiographic difference between external levées (also referred to as 'high-levées' (Piper et al., 45 1999) or 'master-bounding levées' (Posamentier, 2003; Kane et al., 2007)) and internal levées (also 46 referred to as 'inner levées' (Hübscher et al., 1997; Babonneau et al. 2004; 2010); and 'confined 47 levées' (Piper et al., 1999; Kane et al., 2007)) sensu Kane and Hodgson (2011). External levées that 48 bound channel-belts are built by deposition from the low density upper part of density stratified 49 turbidity currents that overspill erosional or constructional confinement of the related submarine 50 channel system (e.g. Cronin et al., 2000; Hickson and Lowe, 2002; Beaubouef 2004; Kane et al., 2007; Kane and Hodgson, 2011). External levées are generally mud- and silt-rich, although sand-rich 51 52 external levées (Mayall and O'Byrne, 2002), sand-rich components within external levées (Hiscott et 53 al., 1997), and levées with clay to pebble grain-size ranges (Dykstra et al. 2012) have been 54 documented.

An overall fining- and thinning-upward trend in an external levée succession is commonly reported, which is interpreted to be due to increasing confinement and reducing overspill of turbidity currents through time (e.g. Hiscott et al., 1997; Peakall et al., 2000; Posamentier, 2003; Schwenk et al., 2005). Sand-rich deposits have been found toward the bases of external levées in both modern and ancient examples (Damuth et al., 1988; Clemenceau et al., 2000), which have been interpreted to be deposits from crevasse and avulsion processes and/or earlier frontal lobes that have been overlain

61 by younger levée deposits as the parent channel lengthened (Flood et al., 1995; Flood and Piper, 62 1997; Kane and Hodgson, 2011). The large-scale architecture and main components of external 63 levées, including sediment waves and crevasse deposits, have been documented from seismic and 64 seabed datasets, however the distribution of sedimentary facies remains poorly constrained. Where 65 the distribution of grain-size and bed thicknesses has been constrained channel proximal to channel 66 distal trends have been identified, i.e. beds are thinner, finer and indicative of lower energy further away from the channel (DeVries and Lindholm, 1994; Piper and Normark, 1997; Beaubouef, 2004; 67 68 Kane et al., 2007; Kane and Hodgson, 2011). Currently, however, there is no comprehensive 69 assessment of the sub-seismic characteristics and components of external levées. In part, this is 70 because exhumed examples tend to be described from single outcrops, the palaeogeographic 71 context is not always well constrained, and cores and well logs are rarely positioned to intersect 72 these fine-grained features.

73 Here, however, multiple examples of exhumed silt-rich external levées of the Permian-aged Fort 74 Brown Formation, Laingsburg depocentre, Karoo Basin, South Africa are described in detail. Regional 75 mapping (Di Celma et al. 2011; Brunt et al. 2013a) allows the position of external levée successions 76 on the palaeoslope and their relationship to the parent channel system to be constrained. The 77 multiple outcrop examples are augmented by several fully cored research boreholes that intersect 78 external levées. This unique integrated core and outcrop dataset allows the following objectives to 79 be addressed: i) to describe the depositional architecture and components of multiple external levée 80 successions; ii) to document the distribution of sedimentary facies, and the components of external 81 levées; iii) to discuss the origin and sub-seismic evolution of external levées; and iv) to compare silt-82 rich external levées with their mud-rich counterparts. The significance of this study is that it 83 syntheses for the first time the origin, sedimentary process evolution, and depositional architecture 84 of multiple silt-rich external levée, which are a major component of continental slope stratigraphic 85 record.

86

SEDIMENTOLOGY AND KEY ARCHITECTURAL COMPONENTS OF 88 EXTERNAL LEVÉES

89 Process sedimentology of a levée

90 External levées are built by sediment-laden flows that undergo two main processes of overbanking; 91 i) flow stripping and ii) overspill (Peakall et al., 2000; Kane et al. 2010). Flow stripping was originally 92 described as a process whereby large-to-medium magnitude stratified flows split into two main 93 components as the flow navigates a channel bend; the coarser fraction of the flow remains confined 94 by the channel, whereas the upper finer grained fraction escapes confinement, depositing beyond 95 the levée crest (Piper and Normark, 1983; Bowen et al., 1984; Leeder, 1999; Peakall et al., 2000). 96 Overspill is the process that occurs when a turbidity current is thicker than the depth of channel 97 confinement, allowing part of the flow to escape beyond the crest of the external levée (Hay et al., 98 1982; Clark and Pickering, 1996; Hübscher et al., 1997).

99 When individual flows escape from channel confinement they undergo expansion, resulting in rapid 100 deposition. The bulk of the sediment within the flow is deposited in channel-proximal areas with 101 individual beds thinning and fining away from the channel. Levées taper in thickness away from the 102 channel because of this channel-proximal to channel-distal relationship, which controls the 103 distribution of sedimentary facies and sand within a levée.

104 Components of an external levée

105 The characteristics of external levées vary depending on grain-size range, stratal relationship to the 106 channel, conduit history etc., which are discussed in more detail below; however there are some 107 general features that are common to most systems and have been described in the literature. Figure 108 1 illustrates the broad scale geometry and common characteristics of an external levée as described

109 from reflection seismic and sidescan sonar datasets (e.g. Clemenceau et al., 2000; Migeon et al., 110 2000; 2001; 2004; Skene et al., 2002; Deptuck et al., 2003; 2007; Babonneau et al., 2010) and 111 outcrop observations (Hickson and Lowe, 2002; Browne and Slatt, 2002; Beaubouef, 2004; Kane et al., 2007; Figueiredo et al., 2010; Campion et al., 2011; Kane and Hodgson, 2011; Khan and Arnott, 112 113 2011). Kane and Hodgson (2011) provided a scheme to sub-divide external levées about the external 114 levée crest, which is the highest point of the external levée and is aligned sub-parallel to the channel 115 belt. Levée crests might be constructional where there is stratigraphic continuity with the conduit-fill 116 and separate strata that dip towards the channel from strata that dip away from the channel, or 117 form cut crests where erosion and/or remobilisation results in lateral stratigraphic discontinuity 118 (Kane and Hodgson, 2011). The inner external levée refers to the area channel-proximal to the levée 119 crest (Kane et al., 2007; Kane and Hodgson, 2011). The deposits are more sand prone due to their 120 proximal location and are also prone to instability and mass movement toward the channel conduit.

The outer external levée refers to the area outboard of the levée crest (Kane et al., 2007; Kane and
Hodgson, 2011), where overall the deposits are thinner and finer grained compared to inner external
levée areas with rare soft-sediment deformation (Kane et al., 2007; 2010).

Here, this broad scale subdivision of an external levée relative to the levée crest is modified toaccount for proximity to the channel through time and space.

126 GEOLOGICAL SETTING AND STRATIGRAPHY

The study area lies within the Laingsburg depocentre, SW Karoo Basin, South Africa (Figs. 2 and 3), which is interpreted to be part of the fill of a retroarc basin (e.g. Cole, 1992; Visser, 1993; Veevers et al., 1994) where subsidence was initially load-driven through dynamic subduction and later dominated by flexural loading of a retro-arc thrust belt during the Triassic (Tankard et al., 2009). The progradational basin-floor to upper-slope succession shown in Figure 3 (A and B), is over 1.4 km thick (Flint et al., 2011) and crops out along a series of east-west trending, eastward plunging, post

133 depositional anticlines and synclines, near the town of Laingsburg, Western Cape, South Africa. 134 Deep-water deposition began with the distal basin-floor Collingham and Vischkuil Formations (Van 135 der Merwe et al., 2009; 2010). These deposits are overlain by basin-floor and base-of-slope fan 136 systems of the Laingsburg Formation (Units A and B; e.g., Sixsmith et al., 2004; Brunt et al., 2013a; 137 Fig. 3A). The overlying muddy slope succession of the Fort Brown Formation, the focus of this study, 138 is punctuated by sandstone rich Units C-G, which comprise slope channel-levée systems (Grecula et al. 2003; Figueiredo et al. 2010; Hodgson et al. 2011; Di Celma et al. 2011; Fig. 3A), which crop out as 139 140 a series of prominent ridges separated by recessive mudstone units. The deep-water succession is 141 late Permian in age (Fildani et al. 2009).

A long-lived sediment entry point is interpreted SW of the closure of the Baviaans syncline that was active during the deposition of Units B, C and D (Di Celma et al. 2011; Hodgson et al. 2011; Brunt et al. 2013a). During the deposition of Unit E the main input point was along strike to the north with incisional channels identified in the Zoutkloof and Heuningberg areas (Figueiredo et al. 2010; 2013).

146 Unit C is the lowermost sandstone-prone unit of the Fort Brown Formation, and it includes two 147 regional mudstones that separate the succession into sand-prone Sub-units C1, C2, and C3 (Di Celma 148 et al., 2011). Each sub-unit is interpreted as a lowstand systems tract, with Unit C forming a lowstand 149 sequence set that, combined with the overlying 25 m thick regional mudstone (separating Units C 150 and D), forms a composite sequence (Flint et al., 2011). Di Celma et al. (2011) mapped and described 151 a basinward progradational trend from Sub-unit C1 to C2, with a landward stepping/retrogradational 152 component during the deposition of Sub-unit C3, suggesting a waxing then waning of overall flow energy and volume throughout Unit C time. In proximal areas of the Baviaans syncline Sub-unit C2 153 comprises an external levée-confined channelised system that incises through C1 and removes 30 m 154 155 of the underlying mudstone between Unit B and Sub-unit C1 (Hodgson et al., 2011; Di Celma et al., 156 2011).

In proximal areas of the Baviaans syncline, Unit D, which is interpreted as a second lowstand sequence set (Flint et al., 2011), crops out as a 2 km apparent width, >100 m thick, entrenched slope valley fill. The fill of the slope valley is bounded by a composite erosion surface and external levées; a 70 m (maximum) thick western levée and a 30 m (maximum) thick eastern levée (Hodgson et al., 2011). Down-dip, Unit D becomes less entrenched, and confined by external levées (Brunt et al., 2013b) before transitioning to unconfined terminal lobe deposits over a distance of >80 km.

Unit E and Unit F with their overlying regional mudstones (E-F mudstone and F-G mudstone) each comprise a lowstand sequence set of a composite sequence, with each lowstand sequence set comprising three sequences (Sub-units E1, E2 and E3, and Sub-units F1, F2, F3; Flint et al., 2011; Figueiredo et al., 2010).

By area and volume, the thin-bedded sandstone- and siltstone-prone heterolithics interpreted as external levée deposits form the major constituent of lithostratigraphic units in the Fort Brown Fm. (Figueiredo et al. 2010).

170 METHODOLOGY AND DATASET

171 Field-based sedimentological and stratigraphic observations include 37 measured sections (1.6 km 172 cumulative thickness logged at 1:50), 23 sections on the southern limb of the Heuningberg anticline 173 and 14 sections on the southern limb of the Baviaans syncline (Fig. 3). External levée deposits have 174 been described and interpreted in detail (logged at 1:10) from three cored research boreholes (Bav 1A, Bav 2 and Bav 6), drilled behind outcrops of the informally named CD Ridge (Hodgson et al., 175 176 2011) allowing for subsurface correlation and calibration. The geometry of external levées has been 177 constrained using the regionally mapped mudstones as datums (Figueiredo et al., 2010; Di Celma et 178 al., 2011; Hodgson et al., 2011).

179 SEDIMENTARY FACIES ASSOCIATIONS

Sedimentary facies identified in the Fort Brown Fm. have been described in detail previously (Figueiredo et al. 2010; Di Celma et al. 2011; Hodgson et al. 2011; Morris et al. in press). Here, we focus on the external levée successions, where seven main sedimentary facies associations have been identified: Lf1 – Siltstone-prone thin-bedded heterolithics; Lf2 – Sandstone-prone thin-bedded heterolithics; Lf3 – Sandstone-prone thick bedded heterolithics; Lf4 – Structured sandstone; Lf5 – Thick siltstone bedsets; Lf6 – Siltstone and mudstone couplets; and Lf7 – Deformed deposits.

186 Description and interpretations of these facies associations are illustrated in Table 1.

187 CD RIDGE – EXTERNAL LEVÉE ARCHITECTURE

188 On the southern limb of the Baviaans syncline, Sub-unit C2 (Figs. 4 and 5) crops out at the CD Ridge, 189 as a submarine channel system confined by external levées. The full lateral extent of the C2 channel 190 complex set is not preserved as Unit D locally incises through the entire Unit C stratigraphy forming 191 an entrenched slope valley, with an apparent width of ~2 km and >100 m deep. The architecture of 192 the Sub-unit C2 channel complex set and Unit D entrenched slope valley fill was captured through 193 field observations and mapping by Hodgson et al. (2011). Six fully cored research boreholes were 194 later drilled on the CD Ridge. Bav 1A and Bav 2 captured the proximal external levée of Unit D 195 whereas Bav 6 captured C2-aged distal external levée deposits.

196 Unit D external levée – CD Ridge

197 The CD Ridge outcrop is a rare example where the conjugate external levées of a slope valley are 198 preserved in cross-section (Fig. 4). The unique dataset of outcrop and behind outcrop research 199 boreholes enables detailed characterisation of the sedimentary facies and grain-size distribution, 200 stratal relationships and relation to the genetically related channel to be defined within a well 201 constrained geometric framework.

202 Geometry

External levées are characterised by a wedge-shaped geometry, thinning and tapering away from their parent channel (Skene et al., 2002; Kane et al., 2007; 2010; Birman et al., 2009; Nakajima and Kneller, 2013). The wedge-shaped geometry has been documented in outcrop (Kane and Hodgson, 206 2011) and reflection seismic studies (McHargue and Webb, 1986; Kolla and Coumes, 1987; Clemenceau et al., 2000; Babonneau et al. 2002; Posamentier, 2003; Posamentier and Kolla, 2003).

208 The correlation panels in Figures 4 and 5 show the cross-sectional geometry of the Unit C and D 209 external levées. This geometry is constrained through regional mapping of underlying sand-prone datums (BC interfan for Unit C and Sub-unit C3 for Unit D). There is no evidence of truncated beds or
basal erosion at outcrop, so the wedge geometry is depositional in nature. It has not been possible
to calculate accurately the mathematical description of the shapes of the wedge, following Nakijima
and Kneller (2013) as the top of the Unit D external levee is poorly constrained.

214 Palaeocurrents

The palaeocurrent roses show the data collected from measurement of ripple lamination in the external levées of Unit D (Fig. 5). The proximal external levée shows a dispersive pattern (variation over 180°) with palaeocurrents trends towards the NW and the ENE are recorded in the lowermost 10 m of the lower proximal external levée. The more distal levées of both D and C2 show a uniform, narrow distribution of palaeocurrents towards the E.

220 The more dispersive distribution of palaeocurrents in the lower proximal external levée is likely to be 221 a function of sampling and limitations of the outcrop, as there is a higher frequency occurrences of 222 ripple and climbing ripple lamination in the lower proximal external levée compared to the more 223 siltstone-rich upper proximal external levée. The decreasing sandstone content in the upper levée 224 results in poorer quality outcrop from which to measure palaeoflow indicators. The narrow 225 distribution of palaeocurrents in the distal external levée, which are at a slight angle to the general 226 trend of the channels, is likely be a function of the dataset limitations, as measurements have been 227 taken across one 2D (slightly oblique) cross-section through an individual levée from channel 228 proximal to distal, and no other parts of the levée have been sampled for palaeocurrents. It is also 229 possible that some topographical control at the time of deposition may have affected where and 230 how the flows dispersed.

231 External levée asymmetry

232 The mechanisms that lead to external levée asymmetry are best understood using experimental 233 techniques. There have been many studies that document flow behaviour and depositional 234 characteristics within and outside channels (Peakall et al. 2007; Kane et al. 2008; 2009; 2010; Straub 235 et al. 2008a; 2008b; Amos et al., 2010). Experimental investigations using straight and sinuous 236 channels have shown that straight channels produce axi-symmetrical levées whereas asymmetric 237 levées are associated with sinuous channels with higher/thicker outer bend levées and smaller inner 238 bend levées (Straub et al., 2008a; 2008b). Observations of modern day channel systems indicate that 239 the Coriolis Effect will deflect flows, preferentially building higher external levées on the right-hand 240 side in the northern hemisphere and left-hand side in the southern hemisphere (Komar, 1969; 241 Bowen et al., 1984; Kolla and Coumes, 1987; Skene 1998; Posamentier and Kolla, 2003; Cossu et al., 242 2010; Peakall et al. 2012). The impact of the Coriolis Effect has been documented in flume tank 243 experiments where the tanks are able to rotate in order to account for the Coriolis Effect (e.g. Cossu 244 et al. 2010, Wells and Cossu 2013). Asymmetry in grain-size profiles is also recorded in external levées with the outer bend levée being coarser grained than the inner bend levée attributed to 245 246 super-elevation of overspilling flows as they navigate channel bends (Peakall et al., 2007; Straub et 247 al., 2008b; Kane et al., 2010; Amos et al., 2010).

248 The correlation panel in Figure 5 shows that the Unit D external levées are asymmetric, with a 249 maximum thickness of 70 m on the western side of the D slope valley and 30 m on the eastern side. 250 Hodgson et al. (2011) reported that the Unit D slope valley also preserves an asymmetric fill with remnants of channel elements and channel complexes preserved within the slope valley recording 251 an initial westward stacking, and a younger aggradational stacking pattern towards the western 252 253 edge of the valley. This prolonged, westward stacking pattern is interpreted to have resulted in 254 preferential overspill to the west and the construction of a higher western external levée. This effect 255 may have been accentuated by a long lasting bend in the slope valley, and/or the influence of the 256 Coriolis Effect that led to more overspill and flow stripping onto the western levée. In the late 257 Permian, the western levée would have been the palaeo-north levée in a mid-latitude (60° South) 258 setting (e.g. Faure and Cole, 1999), which is an ideal situation for the influence of the Coriolis Effect 259 and the construction of a larger levée.

260 Depositional environments of external levées

Using the distribution of sedimentary facies, bed thicknesses and downlap patterns, the external levée is subdivided into lower proximal external levée (Fig. 6), upper proximal external levée (Fig. 7) and distal external levée (Fig 8). Upper and lower proximal external levée in part incorporates inner external levée (Kane and Hodgson 2011) whereas distal external levée only relates to the outer external levée (Kane and Hodgson 2011).

266 Proximal external levée

Within the western proximal external levée of Unit D on the CD Ridge an abrupt facies change takes place across a thin fining- and thinning-upward unit to a siltstone-prone succession (Fig. 5 and 6) at 25 m above the base. This change allows division of the proximal external levée into two sections based on facies characteristics; lower proximal external levée and upper proximal external levée, although the change is likely to be time transgressive along the length of an external levée.

272 Lower proximal external levée

Description: In the lower proximal external levée succession in core from borehole Bav 1A, the lowermost 25 m of Unit D comprises thicker bedded (0.1-0.4 m) very fine sandstone and coarse siltstone beds dominated by Lf3 and Lf4 (Fig. 6C and D). Decimetre-scale erosion surfaces are present and the dominant sedimentary features are aggradational sinusoidal bedforms and stossside preserved climbing ripple cross-lamination. Individual beds can be walked out for over 450 m laterally as they thin, fine (to Lf1) and downlap onto the underlying mudstone. 279 *Interpretation:* The highly aggradational nature and unidirectional palaeocurrents towards the NW 280 indicate rapid deposition from turbidity currents. This is interpreted as a response to rapid flow 281 expansion downstream from channel mouths and/or from overspill adjacent to confinement. The 282 presence of small scale erosion surfaces suggests that flows were occasionally of a high enough 283 viscosity and velocity to rework the top of beds.

284 Upper proximal external levée

Above the 20-25 m position in both core and at outcrop, the entire levée becomes finer grained (~5-10% very fine-grained sandstone) and thinner bedded, dominated by Lf5 (Fig. 6E and 6F). Sinusoidal and aggradational bedforms are observed, mud drapes and bioturbation are more abundant, and erosion is rare, as the beds thin and fine upwards through the upper proximal external levée.

Interpretation: The fine grained and thin-bedded upper proximal levée succession indicates that only the upper dilute parts of flows could spill onto the levée as the height between the base of the flow and the levée crest increased through erosion and/or construction of the levée. The decreasing occurrence of erosion surfaces combined with the aggradational facies suggests that the turbidity currents were highly depositional and non-erosive as they escaped confinement and rapidly lost capacity.

295 Distal external levée

Unit D distal external levée (captured through field observations) is dominated by Lf1 and Lf2 (Fig. 7),
beds are thin (0.01-0.15 m), however stoss-side preserved ripple cross-lamination and sinusoidal
lamination is still present. Beds are laterally continuous but outcrop quality makes it difficult to
follow individual thin beds more than 50 m laterally. Within the distal external levée deposits of Unit
D, there is gradual thinning and fining upward pattern at outcrop.

The Sub-unit C2 distal external levée captured in Bav 6 (Fig. 8) is a thin-bedded (1-5 cm) succession
 dominated by current ripple laminae, mudstone drapes and associated low intensity bioturbation

with 10-12% sandstone (Fig. 8). The lowermost metre of the levée (Fig 7A and 7C) is characterised by
Lf1 before becoming Lf2 dominated. Overall, the 22 m thick unit fines and thins upward as shown by
both the core and gamma ray logs in Figure 8.

Interpretation: The lateral facies change from the proximal to distal Unit D external levée succession
 is a consequence of flow expansion and loss of competence, resulting in deposition of the coarsest
 fraction of the flow in channel proximal locations.

309 Sedimentary facies and grain-size distribution

310 Detailed facies analysis of external levées has been carried out using both outcrop and core datasets 311 to constrain the strike distribution of sedimentary facies. Figure 9 shows a synthesis of the facies 312 distribution through a cross-section of an idealised external levée that has been constructed using 313 data and observations from several external levée successions in sub-units C2, F2 and Unit D (using 314 the facies recorded in Table 1). The eastern external levée of Unit D can be traced for 8 km where it 315 thins and fines from 22 m adjacent to the D-cut to <0.5 m. Over this strike distance the sandstone 316 content decreases from 50% to 7% whereas beds thin from an average of ~15 cm to 5 cm (Fig. 10). A 317 strikingly similar decay rate in sandstone content from the levée crest is recorded from the 318 conjugate western Unit D external levée (Fig. 10). Sandstone content decrease from the levée crest 319 follows an exponential decay rate. An exponential decrease in sandstone percentage has also been 320 recorded in the external levées in the Cretaceous Rosario Fm. (Kane et al. 2007). Although outcrop 321 limitations preclude accurate analysis of bed thickness decay rates these are more gradual than the 322 decrease in sandstone percentage away from the levée crest. This indicates that sand is 323 preferentially deposited close to the levée crest.

324 Stratal relationship to surrounding stratigraphy (downlap)

325 In many 2D seismic cross sections through external levées, individual reflectors are observed to 326 downlap onto underlying strata away from genetically related channels (e.g. Lopez, 2001). In 327 external levées of the Fort Brown Formation, this downlap pattern is also observed as individual 328 beds thin and fine laterally and downlap onto the underlying mudstones. This is documented in Unit 329 D (Fig. 5) and Sub-unit F2 (Fig. 11), where sandstone beds have been walked out and correlated for 330 up to 700 m obliquely across strike from their genetically related channel system. Individual beds show lateral facies changes where beds thin and fine away from the channel, with stoss-side 331 332 preserved bedforms passing into low-angle (<10°) climbing ripple cross lamination and current ripple 333 lamination.

BEDFORMS AND OTHER ARCHITECTURAL ELEMENTS

335 Sediment waves

336 Distribution and significance

337 Sediment waves are large-scale bedforms commonly found on the outer bend external levées where 338 flow stripping processes are dominant, as well as areas of the continental rise and slope (Normark et 339 al., 1980; Nakajima et al., 1998; Migeon et al., 2000; 2001; 2004; Lewis and Pantin, 2002; Wynn and 340 Stow, 2002; Droz et al., 2003; Posamentier and Kolla, 2003; Deptuck et al., 2007; Campion et al., 341 2011). Wave crests are generally oriented perpendicular to the down-levée slope flow direction, generally parallel to the channel and they nearly always migrate upslope, opposite to the flow 342 direction of the turbidity currents that build them (Wynn et al., 2002; Posamentier and Kolla, 2003). 343 344 Sediment waves are typically composed of turbidite silts with occasional mm to cm thick beds of 345 sand (Normark et al., 2002; Wynn and Stow, 2002); wavelengths range between 0.2-7 km and 346 heights between 10-60 m but they can reach up to 100 m (Normark et al., 1980; Migeon et al., 2000;

2001; 2004). Sediment waves associated with channel-levées are considered to be sand-rich relative
to sediment waves occurring on abyssal plains, upper submarine slopes and unchannelised slopes
(Migeon et al., 2000), although few examples have been described from outcrop due to their scale
and fine-grained nature (see Campion et al., 2011 for a notable exception).

351 Sub-unit E2: sediment waves at outcrop?

352 Sub-unit E2 comprises a series of very fine sandstone beds in a succession dominated by thin-353 bedded (1-5 cm) siltstones. The sandstone beds thicken and step towards the west to form a 354 shingled stacking pattern (Fig. 12). Individual beds can be walked out for 100 m and become thicker 355 (from 10-to-80 cm) and more amalgamated towards the west. The sandstone beds, where they are 356 not amalgamated, are interbedded with coarse-to-very coarse grained siltstone. The sandstone beds 357 contain climbing ripple cross-lamination, sinusoidal bedforms, stoss-side preserved climbing ripple 358 cross-lamination and parallel lamination. The palaeocurrent distribution measured from ripples 359 within the sandstone rich beds indicates a dominant SE direction within a very narrow range (Fig. 360 12D). This is opposite to the shingle and thickening direction (towards the NW).

361 Interpretation

362 The thick-bedded heteroliths (Lf3) and structured sandstone facies (Lf4) are characterised by dm-363 scale sinusoidal stoss-side preserved bedforms and low-to-high angle (10-25°) climbing ripple 364 lamination, locally with stoss-side preservation. These sedimentary structures are indicative of 365 deposition by continued unidirectional, non-uniform flows (Allen 1973; Kneller 1995) with high rates 366 of sediment fallout, attributed to rapid flow expansion and deposition from moderate-to-low 367 concentration turbidity currents as flows moved from confined to unconfined settings. The presence 368 of the shingled and thickening bedsets at this locality (Fig. 12), which are stacked in the opposite 369 direction to the palaeocurrents (Fig. 12D), suggest that this deposit is likely part of the upstream 370 facing and migrating sand prone area of a sediment wave (Fig. 13). This interpretation is supported 371 by an E2 channel to the southwest (Figueiredo et al., 2010), however, the silt-prone nature of the

large bedform precludes confident interpretation. Posamentier and Kolla (2003) suggested that the
presence of sediment wave fields on an external levée may result in an uneven sand distribution
through thicker sand deposits becoming trapped on the steeper upstream facing sides of the wave
(Fig. 13).

376 Crevasse lobes and channels

377 Crevasse lobes are deposits that form where sand-prone turbidity currents breach an existing external levée, and are commonly found beyond the outer bend of a sinuous channel (Damuth et al., 378 379 1988; Posamentier and Kolla, 2003; Fildani and Normark, 2004; Armitage et al., 2012; Brunt et al., 380 2013b; Maier et al., 2013). As the flows escape from confinement they undergo expansion, reducing 381 carrying capacity and resulting in rapid deposition. Commonly, the flows form sheets as they spread 382 laterally over large areas. Posamentier and Kolla, (2003) documented an example from the Gulf of Mexico covering 50 km². Continued breaching of the levée may lead to avulsion (Damuth et al., 383 384 1988; Armitage et al., 2012) and development of a crevasse channel as documented in Unit D by 385 Brunt et al. (2013b).

386 Crevasse lobes:

Description: Anomalously thick (1-10 m) tabular packages of sandstone (outcrop width ranging from 100-2000 m) occur locally within an overall thinly bedded siltstone prone external levée successions. An example is presented within Unit D at Slagtersfontein (Fig. 2) where a 55 m-thick external levée succession overlies a 40 m-thick terminal lobe succession (Fig. 14). The external levée is punctuated by several sandstone packages (0.5 to 4 m in thickness), that comprise 30% of the succession (Fig. 14). The sandstone packages are up to one kilometre in width, but are mostly 100 - 200 m wide.

A tripartite structure is identified in individual beds of sandstone packages (Fig. 15): (1) The basal contact is sharp, with minor erosion, overlain by contorted or disaggregated thinly bedded sandstone / siltstone; (2) the middle section normally comprises structureless sandstone beds, although cross bedding and ripple cross lamination is also common, and (3) a sharp to gradational
boundary separates the middle from upper section, which is typically finer grained and darker due to
a more argillaceous composition and the inclusion of mudstone clasts and/or organic fragments (Fig.
15).

400 Crevasse lobes:

401 Interpretation: The tabular sandstone packages found within thin-bedded external levée deposits 402 are interpreted as crevasse lobes. When several packages are found together, such as at 403 Slagtersfontein, they form a crevasse lobe complex, which suggests a long lived spill point (Fig. 14). 404 Thin crevasse lobes or individual beds may represent a single levée breach event (Fig. 15). The basal 405 surface and contorted bedding represent part of the external levée that becomes remobilised during 406 failure. The overlying sand is deposited from the heads of within-channel turbulent currents that 407 spill through the levée breach. Rapid flow expansion leads to a drop in the sediment carrying 408 capacity and consequently rapid sedimentation (Hiscott, 1994; Kneller, 1995). Structureless 409 sandstones are the likely result of this capacity driven sedimentation (Kneller, 1995); however the common occurrence of climbing ripples and cross bedding within crevasse lobes suggests 410 411 maintenance of flow capacity, perhaps through flow acceleration due to the gradient of the external 412 levée. The upper division is interpreted to form through becoming charged with finer-grained 413 sediment during the levée breach forming a cohesive tail to the flow, and a deposit that shares affinities with a linked debrite (Haughton et al. 2009). Terlaky and Arnott (Accepted Article) have 414 described matrix-rich sandstone beds that they interpreted as deposits of upflow avulsion. associate 415 416 with interpreted avulsion splays, and erosion of levees.

417 DISCUSSION

418 Stratigraphic evolution of an idealised external levée succession

419 The synthesis of observations and interpretations from multiple external levée successions in the 420 Fort Brown Fm. permits an idealised stratigraphic evolution to be developed. Figures 16 and 17 421 illustrate the main architectural elements and their common stratigraphic and geographic 422 distribution in external levées. Commonly, levée initiation is marked by a basal sand-rich facies with 423 sedimentary structures that indicate rapid deposition from unconfined sand-rich flows. These 424 successions are interpreted to be partially preserved frontal lobes (or frontal splays) and refers to 425 deposits from unconfined flows that form sand-rich units with high amplitude continuous reflection 426 seismic character basinward of levéed channels (Flood and Piper, 1997; Posamentier and Kolla, 427 2003). A frontal lobe may not be present due to a lack of accommodation, and they are more commonly identified farther down the slope. Commonly in the Fort Brown Fm., frontal lobes have 428 429 been partly removed by basinward propagation of genetically-related channels systems, as 430 interpreted in Unit B (Brunt et al. 2013b), Unit C (Kane and Hodgson 2011; Hodgson et al. 2011), Unit 431 D (Brunt et al. 2013a) and Units E and F (Figueiredo et al. 2010; Brunt et al., 2013a, b). Similar 432 evolutionary trends where basal frontal lobes are partially eroded by a genetically-related channel 433 and overlain by external levées have been described in the subsurface (Flood and Piper, 1997; Lopez, 434 2001; Babonneau et al., 2002; Fonnesu, 2003; Ferry et al., 2005; Bastia and Radhakrishna, 2010; and Maier et al., 2013) and outcrop (Gardner et al., 2003; Beaubouef, 2004). The feeder channel can cut 435 through the frontal lobe anywhere from the axis, resulting in a forward stepping frontal lobe 436 437 stacking pattern, to the fringe, producing a laterally offset stacking pattern (see Morris et al. in 438 press).

Flow stripping and overspill processes build levées that increase flow confinement resulting inchannel propagation. The consequence is preferential filtering of the finer and more dilute parts of

441 stratified flows and the initiation of external levées. Further progradation of the channel will 442 increase flow confinement through a combination of both levée construction and erosion, and 443 therefore, increasingly dilute parts of stratified flows overspill, and individual beds recorded in the levée become thinner and finer grained. This study of exhumed external levées supports lower 444 445 resolution observations on their depositional architecture from seismic datasets and confirms that 446 the wedge shaped geometry is controlled by downlap of beds that fine and thin away from the 447 channel (Fig. 5, 11, 16). Asymmetry of levée geometry and architecture is controlled by in-channel 448 processes such as channel sinuosity and stacking patterns, which also influences the distribution of sediment waves and crevasse lobes (Fig. 16, 17). 449

Average sedimentation rate on the external levée will decrease as confinement increases; it will be lowest around the time of highest confinement, and will increase again during aggradation of the channel system as confinement decreases. During the abandonment of the channel-levée system, either through aggradation of the entire system or up-dip avulsion, there is a reduction in the rate of sediment supplied to the external levée. Unit D at the CD Ridge is an example of an underfilled slope valley, recorded as a 25 m thick mudstone directly overlying the preserved remnants of the active fill, interpreted to have been deposited during the abandonment of the whole system.

457 External levées as a record of channel migration

458 External levée successions typically thin and fine upward due to increased flow confinement through 459 time as the height between levée crest and channel base increases (Hiscott et al., 1997; Lopez, 2001; 460 see D in Fig.6 and C2 in Fig. 8). However the amount of overspill from a flow is influenced by many 461 parameters such as flow magnitude, channel curvature and the straight-line distance between the 462 parent channel and the levée crest. Nonetheless, as external levées record sedimentation from multiple channel elements and channel complexes they could provide a more complete record of 463 the evolution of the system, such as channel migration patterns, and number of channel complexes 464 465 than the complicated stratigraphy preserved within the channel systems. For example, during a 466 period of lateral stepping one external levée will become increasingly proximal to the active channel 467 as the other external levée becomes more distal. Thicker and coarser beds will be deposited on the 468 levée that the active channel is stepping toward, and a coarsening and thickening upward package 469 may be recorded. In the case of the Unit D slope valley on the CD Ridge, the prolonged westward 470 migration of individual channel elements and channel complexes resulted in asymmetric levée 471 heights, with the larger, more sand rich external levée constructed on the western edge of the valley 472 (Fig. 4, 5). This may have been accentuated by the influence of the Coriolis Effect. Coarsening and 473 thickening upward packages are not identified, although preservation potential would be low as 474 westward migration of the channels led to erosion of the proximal external levée. Even if a 475 coarsening-and-thickening upward pattern was identified this could be interpreted as the result of 476 waxing sediment supply through time rather than a record of channel migration in the main conduit.

The stratal relationship of the external levées to the adjacent channelized fill is also important to consider if external levée successions are be used as records of channel evolution. This approach has more potential where (part of) the external levée succession can be demonstrated to aggrade at a similar rate to the channel building a constructional crest and, therefore, making the channel-fill and the levée time-equivalent. Clearly, the approach will not work where external levées that have been cut by a younger channel system meaning that the bulk of the levée is not genetically related to the adjacent channel-fill.

484 External levée hierarchy

485 Hierarchies of component architectural elements in a range of siliciclastic settings have been 486 developed that use bounding surfaces, stacking patterns and depositional geometries to aid 487 comparison of scales and processes across different systems (e.g. Mutti and Normark, 1987; Miall, 488 1988; Clark and Pickering, 1996; Sprague et al., 2002; Prélat et al. 2009). External levées are 489 constructed by numerous flows that partially escape from slope channel systems, which comprise 490 channel elements, channel complexes and channel complex sets (e.g. Sprague et al., 2002; Di Celma 491 et al., 2011). At the CD Ridge, both Unit C2 and Unit D have composite basal erosion surfaces with 492 multiple remnant channel complexes preserved within a composite erosion surface (Hodgson et al., 493 2011); as a result the external levée successions of Unit C and D preserve a cryptic depositional 494 record of the evolution of component channel elements, channel complexes, and channel complex 495 sets. Logically, therefore, a hierarchy of architectural elements in external levées that include levée 496 elements, levée complexes and levée complex sets should be present. However, there are several 497 factors that make the identification of a hierarchy in external levée successions challenging 498 compared to other systems. For example, there are a lack of abrupt stratigraphic facies changes and 499 mappable bounding surfaces that are used in channel hierarchy schemes, and the aggradational 500 stacking of elements with similar geometries in contrast to compensational stacking and avulsion 501 surfaces used in lobe hierarchy schemes. In addition, the thickness and geometry of a single deposit 502 on an external levée is dependent on the distance from the parent channel, the slope of the levée, 503 the curvature of a channel bend, the height of levée crest to channel base, and the flow magnitude 504 (thickness and grain-size range). These parameters will be slightly different after every flow event 505 meaning that discrete package of similar sedimentary facies, or clear bed thickness trends at 506 different scales, are unlikely to develop unless the system is close to an equilibrium state.

507 Despite these difficulties, identification of a hierarchy in external levées would provide a direct 508 correlation between levées and their associated channel elements, channel complexes and channel 509 complex sets. As there is a more complete depositional record of channel-levée system evolution, 510 this would permit an assessment of the degree of sediment bypass into the deeper basin during 511 different stratigraphic intervals. Given the number of beds in an external levée succession, a 512 statistical approach to bed thickness patterns in channel-levée systems where the number of 513 channel complexes is known may help to identify a hierarchy of levée elements.

514 **Crevasse lobes – where and when?**

515 The geographical distribution of crevasse lobes in Unit D of the Fort Brown Fm. indicates that 516 breaches in an external levée are more commonly recorded in basinward localities. In Unit D, 517 crevasse lobes have not been observed in up-dip areas such as the CD Ridge. This is interpreted to be 518 because a deep confining surface of the D slope valley coupled with the high external levées limited 519 the potential for sand-prone flows to breaches in the external levée. The crevasse lobe complex 520 described in Unit D at Slagtersfontein occurs 50 km down dip of the CD Ridge (Figs. 2 and 14). 521 Therefore, the longitudinal increase in crevasse lobes and channels is likely related to the basinward 522 reduction in relief between the external levée crest and channel base (Fig. 17). Decreasing downdip confinement may not be wholly responsible for the presence of crevasse deposits. The combined 523 524 effects of increased channel sinuosity and channel aggradation increase the likelihood for breaches 525 in an external levée and the deposition of crevasse lobes. Peakall et al. (2000) stated that bends in 526 submarine channels develop at slower rates compared to their fluvial counterparts, suggesting that 527 sinuosity increases with time and maturity (e.g. Maier et al., 2013). Therefore crevasse lobes are 528 more likely to occur and be preserved when a mature and sinuous channel-levée system has been established. 529

A breach in the external levée and formation of a crevasse lobe may lead to the development of a crevasse channel, such as documented within Unit D at Geelbek by Brunt et al. (2013a), and be the precursor to a channel avulsion events (e.g. Fildani and Normark, 2004; Armitage et al., 2012). If crevasse processes precede avulsion events they are more likely to occur in basinward areas, and in the upper stratigraphy of an external levée succession, when levée crest to channel depth height is
low and when a degree of stable sinuosity has been established.

536 **Comparison to other systems**

537 A spectrum of external levée dimensions and geometries have been described in the literature (e.g. 538 Skene et al.2002; Nakajima and Kneller, 2013), and range from mud-rich (e.g. Flood and Piper, 1997) 539 to sand-rich (e.g. Mayall and O'Byrne, 2002). The external levées from the Fort Brown Fm. described 540 herein are silt-rich and contain only minor amounts of clay in the form of drapes in distal external 541 levée successions. This is likely to result in significant differences in the architecture and stratigraphic 542 relationship to the genetically-related channel systems, compared to mud-rich systems. A critical 543 difference is that mud-rich external levées are likely to have more cohesive strength and are 544 therefore more difficult for flows to erode. Characteristically, mud-rich external levées, such as in 545 the Amazon and Indus systems, can construct significant morphological features that reach >100 m 546 in height (Kolla and Coumes, 1983; 1987; McHargue and Webb, 1986; Carmichael et al., 2009), and 547 commonly confine highly aggradation channel systems that can be active 10s of metres above the 548 regional slope (Normark et al., 1997; Lopez, 2001). Silt-rich levées are more easily eroded meaning 549 that wider channel belts can form by lateral stepping of component channels. Also, silt-rich levées 550 are unlikely to build such significant relief above the regional slope meaning that their bathymetric 551 influence on younger systems is less pronounced. Nonetheless, many of the key component features 552 and the origin and evolution are common to both mud-rich and silt-rich external levées.

553

554 CONCLUSIONS

555 This study utilises a unique dataset that integrates research boreholes with extensive outcrops 556 where sustained field mapping allows the palaeogeographic context of different stratigraphic units 557 to be well constrained. This has permitted a comprehensive description of multiple exhumed silt-rich 558 submarine external levées in which the internal facies relationships have been constrained and all 559 the major components have been identified, including sediment waves and crevasse lobes. As the 560 palaeogeographic position and the orientation of the external levée to the parent channel systems 561 are well constrained the distribution of sand, sedimentary facies and sand distributions are related to position on the palaeoslope, the distance from the parent channel system, confinement of the 562 563 channel and the magnitude of turbidity currents. Sedimentary facies of the external levées are 564 dominated by tractional structures including aggradational dm-scale sinusoidal stoss-side preserved 565 bedforms, low-to-high angle climbing ripple lamination and stoss-side preserved current ripple 566 laminae. These facies indicate high rates of sediment fallout, attributed to rapid flow expansion and 567 deposition from turbidity currents escaping from confinement, where the highest volumes of sand 568 are deposited closer to the confinement with an exponential decrease in sand percentage recorded 569 perpendicular from the levées crest. The documented downlap of beds that fine and thin away from 570 the channels onto underlying muds reflects commonly identified seismic architecture observed in 571 the subsurface. This geometry suggests progradation, which typically results in coarsening- and thickening upwards. However, in the construction of an external levée there is a key morphometric 572 573 feedback where the widely documented fining and thinning upwards trend is attributed to 574 increasing confinement of individual flows and/or the waning of the system as it begins to backstep. Perturbations to this trend can develop depending on the evolution of the parent channel system 575 (e.g. Kane et al. 2007). 576

Locally preserved basal sand-rich deposits are interpreted to record the preservation of a frontal lobe deposited prior to the lengthening of the channel. This suggests that where there is useable accommodation external levées initiate through formation of a frontal lobe, followed by propagation of the channel and increased flow confinement and the development of an external levée by flow overspill. A down-slope increase in the number of crevasse lobe deposits is related to the lower relief between channel base and levée crest, and increased sinuosity. This distribution reflects the propensity of channel avulsion in downdip areas.

The distinctive aggradational sedimentary facies of the external levées, dominated by climbing ripple laminae and sinusoidal bedforms identified at outcrop could aid the identification of external levée successions in less well constrained outcrop, and in core and seismic datasets. This is significant as external levée deposits, although perceived to be composed of mud and silts can preserve sandstone-prone units with good laterally connectivity, and therefore have the potential to form, or contribute to, hydrocarbon reservoirs.

590 ACKNOWLEDGEMENTS

591 The authors gratefully acknowledge the local farmers for permission to conduct the field 592 investigations, and De Ville Wickens is acknowledged for logistical support. Ashley Clarke, Miquel 593 Poyatos-More, Giuseppe Malgesini and Koen Van Toorenenburg are gratefully acknowledged for 594 their help and support in the field. The SLOPE Phase 3 Project consortia sponsors (Anadarko, BP, BHP 595 Billiton, Chevron, ConocoPhillips, ExxonMobil, Gaz de France-Suez, Maersk, Murphy, Petrobras, 596 Schlumberger, Shell, Statoil, Total, Tullow, VNG Norge and Woodside) are acknowledged for financial support and for technical discussions. Reviewers Mason Dykstra, Ian A Kane, and Kenneth Skene, 597 and Associate editor Peter Talling, are thanked for their prompt and constructive comments that 598 599 improved the clarity of this manuscript.

600

601 **REFERENCES**

- Allen, J.R.L. (1973) A classification of climbing-ripple cross-lamination, *J. Geol. Soc. London*, **129**, 537541.
- Amos, K.J., Peakall, J., Bradbury, R.W., Roberts, M., Keevil, G and Gupta, S. (2010) The influence of
 bend amplitude and planform morphology on flow and sedimentation in submarine channels. *Mar. Petrol. Geol.*, 27, 1431-1447.
- Armitage, D.A., McHargue, T., Fildani, A. and Graham, S.A. (2012) Postavulsion channel evolution:
 Niger Delta continental slope: *AAPG Bull.*, 96, 823-843.
- Babonneau, N., Savoye, B., Cremer, M. and Klein, B. (2002) Morphology and architecture of the
 present canyon and channel system of the Zaire deep-sea fan. *Mar. Petrol. Geol.*, **19**, 445-467.
- Babonneau, N., Savoye, B., Cremer, M. and Bez, M. (2004) Multiple terraces within the deep incised
 Zaire Valley (Zaïango Project): are they confined levees? In: Confined Turbidite Systems (Eds S.A.
 Lomas and P. Joseph). J. Geol. Soc., Spec. Pub., 222, 91-114.
- Babonneau, N., Savoye, B., Cremer, M. and Bez, M. (2010) Sedimentary architecture in meanders of
 a submarine channel: detailed study of the present Congo turbidite channel (Zaïango Project). *J. Sed. Res.*, 80, 852-866.
- Bastia, R., Das, S. and Radhakrishna, M. (2010) Pre- and post-collisional depositional history in the
 upper and middle Bengal fan and evaluation of deepwater reservoir potential along the northeast
 Continental Margin of India. *Mar. Petrol. Geol.*, 27, 2051-2061.
- Beaubouef, R.T. (2004) Deep-water leveed-channel complexes of the Cerro Toro Formation, Upper
 Cretaceous, southern Chile. *AAPG Bull.*, 88, 1471-1500.

- 622 **Birman, V.K., Meiburg, E.** and **Kneller, B.C.** (2009) The shape of submarine levees: exponential or 623 power law? *J. Fluid Mech.*, 619, 367-376.
- Bowen, A.J., Normark, W.R., and Piper, D.J.W. (1984) Modelling of turbidity currents on Navy
 Submarine Fan, California Continental Borderland. *Sedimentology*, **31**, 169-186
- 626 Browne, G.H. and Slatt, R.M. (2002) Outcrop characterization of a late Miocene slope fan system,
- 627 Mt. Messenger Formation, New Zealand. AAPG Bull.,86, 841-862.
- 628 Brunt, R.L., Di Celma, C.N., Hodgson, D.M., Flint, S.S., Kavanagh, J.P., and Van der Merwe, W.C.
- 629 (2013a) Driving a channel through a levee when the levee is high: An outcrop example of submarine
- 630 down-dip entrenchment. *Mar. Petrol. Geol.*, **41**, 134-145.
- 631 Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C.N., Prélat, A and Grecula, M.
- 632 (2013b) Confined to unconfined: Anatomy of a base of slope succession, Karoo Basin, South Africa.
- 633 Mar. Petrol. Geol., **41**, 206-221.
- Buffington, E.C. (1952) Submarine 'natural levees'. J. Geol., 60, 473-479.
- 635 **Campion, K.M., Dixon, B.T.** and **Scott, E.D.** (2011) Sediment waves and depositional implications for
- 636 fine-grained rocks in the Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Chile. *Mar. Petrol.*637 *Geol.*, 28, 761-784.
- 638 Carmichael, S.M., Akhter, S., Bennett, J.K., Fatimi, M.A., Hosein, K., Jones, R.W., Longacre, M.B.,
- 639 Osborne, M.J. and Tozer, R.S.J. (2009) Geology and Hydrocarbon potential of the offshore Indus
- 640 Basin, Pakistan. *Petrol. Geosci.*, **15**, 107-116.
- 641 Clark, J.D., and Pickering, K.T. (1996) Architectural elements and growth patterns of submarine
 642 channels; applications to hydrocarbon exploration, *AAPG Bull.*, **80**, 194-221.
- 643 Clemenceau, G.R., Colbert, J. and Edens, D. (2000) Production results from Levee-overbank turbidite
- sands at Ram/Powell Field, Deepwater Gulf of Mexico. In: Deepwater Reservoirs of the World (Eds P.

Weimer, R.M. Slatt, J. Coleman, N.C. Rosen, H. Nelson, A.H. Bouma, M.J. Styzen, D.T. Lawrence)
 GCSSEPM 20th Annual Conference, pp. 241-251.

647 Cossu, R., Wells, M.G., and Wåhlin, A.K. (2010) Influence of the Coriolis force on the velocity
648 structure of gravity currents in straight submarine channel systems. *J. Geophys. Res.*, **115**, C11016

649 Cole, D.I. (1992) Evolution and development of the Karoo Basin. In Inversion tectonics of the Cape

650 Fold Belt. Karoo and Cretaceous Basins of southern Africa (Eds M.J. De Wit, M.J. and I.G.D.

651 Ransome), A.A. Balkema, Rotterdam, p.87-99.

652 **Cronin, B.T., Hurst, A., Celik, H.** and **Türkmen, I.** (2000) Superb exposure of a channel, levee and 653 overbank complex in an ancient deep-water slope environment. *Sed. Geol.*, **132**, 205-216.

Damuth, J.E., Flood, R.D., Kowsmann, R.O., Belderson, R.H. and Gorini, M.A. (1988) Anatomy and
growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and
high-resolution seismic studies. *AAPG Bull.*, **72**, 885-911.

657 **Deptuck, M.E., Steffens, G.S., Barton, M,** and **Pirmez, C.** (2003) Architecture and evolution of upper

fan channel belts on the Niger Delta slope and in the Arabian Sea. *Mar. Petrol. Geol.*, **20**, 649-676.

Deptuck, M.E., Sylvester, Z., Pirmez, C. and O'Byrne, C. (2007) Migration-aggradation history and 3D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western
Niger Delta slope. *Mar. Petrol. Geol.*, 24, 406-433.

DeVries, M.B., and Lindholm, R.M. (1994). Internal architecture of a channel-levee complex, Cerro
 Toro Formation, southern Chile. In: *Submarine fans and turbidite systems: Gulf Coast Section SEPM*

15th Annual Research Conference (Eds. P. Weimer, A.H. Bouma, and B.F. Perkins) pp. 105-114.

Di Celma, C.N., Brunt, R.L., Hodgson, D.M., Flint, S.S., and Kavanagh, J.P. (2011) Spatial and
temporal evolution of a Permian submarine slope channel-levee system, Karoo Basin, South Africa. *J. Sed. Res.*, 81, 579-599.

Droz, L., Marsset, T., Ondréas, H., Lopez, M., Savoye, B. and Spy-Anderson, F.-L. (2003).
Architecture of an active mud-rich turbidite system: the Zaire Fan (Congo-Angola margin southeast
Atlantic). Results from Zaiango 1 and 2 cruises. *AAPG. Bull.*, 87 (7), 1145-1168.

Dykstra, M., Kneller, B. and Milana, J.-P. (2012) Bed-thickness and grain-size trends in a small-scale
 proglacial channel–levée system; the Carboniferous Jejenes Formation, Western Argentina:
 implications for turbidity current flow processes. Sedimentology, 59, 605–622.

Faure, K. and Cole, D. (1999) Geochemical evidence for lacustrine microbial blooms in the vast
Permian Main Karoo, Paraná, Falkland Islands and Huab basins of southwestern Gondwana.
Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 189–213,

Ferry, J.-N., Parize, O., Mulder, T. and Raillard, S. (2005) Sedimentary architecture and growth of
turbidite systems in distal part of a median fan; example of the Upper Miocene sedimentary
sequence of the Lower Congo basin. *Geodin. Acta*, 18, 145-152.

Figueiredo, J.J.P., Hodgson, D.M., Flint, S.S., and Kavanagh, J.P. (2010) Depositional environments
and sequence stratigraphy of an exhumed Permian mudstone-dominated submarine slope
succession, Karoo Basin, South Africa. *J. Sed. Res.*, 80, 97-118.

Figueiredo, J.J.P., Hodgson, D.M., Flint, S.S., and Kavanagh, J.P. (2013) Architecture of a channel
complex formed and filled during long-term degradation and entrenchment on the upper submarine
slope, Unit F, Fort Brown Fm., SW Karoo Basin, South Africa. *Mar. Petrol. Geol.*, 41, 104-116.

Fildani, A. and Normark, W.R. (2004) Late Quaternary evolution of channel and lobe complexes of
Monterey Fan. *Mar. Geol.*, 206, 199-223.

Fildani, A., Weislogel, A, Drinkwater, N.J., McHargue, T., Tankard, A., Wooden, J., Hodgson, D.M.
and Flint, S.S. (2009) U-Pb zircon ages from the southwestern Karoo basin, South Africa—
Implications for the Permian-Triassic boundary. *Geology*. 37, 719-722.

- Flint, S.S., Hodgson, D.M., Sprague, A.R., Brunt, R.L., Van der Merwe, W.C., Figueiredo, J., Prélat,
 A., Box, D., Di Celma, C., and Kavanagh, J.P. (2011) Depositional architecture and sequence
 stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. *Mar. Petrol. Geol.*, 28, 658-674.
- Flood, R. D. and Piper, D. J. W. (1997). Amazon fan sedimentation: the relationship to equatorial
 climate change, continental denudation, and sea-level fluctuations. In: *Proceedings of the Ocean Drilling Programme, Scientific Results, Leg 155.* (Eds R.D. Flood, D.J.W. Piper, A. Klaus, L.C. Peterson),
 Ocean Drilling Programme, College Station, TX, pp. 653-678.
- Flood, R. D., Piper, D. J. W. Klaus, A. and Shipboard Scientific Party (1995). Proceedings of the
 Ocean Drilling Programme, Initial report, Volume 155, College Station, Texas, Ocean Drilling
 Programme, pp. 1233.
- Fonnesu, F. (2003) 3D seismic images of a low-sinuosity slope channel and related depositional lobe
 (West Africa deep-offshore). *Mar. Petrol. Geol.*, 20, 615-629.
- Gardner, M.H., Borer, J.M., Melick, J.J., Mavilla, N., Dechesne, M., and Wagerle, R.N. (2003)
 Stratigraphic process-response model for submarine channels and related features from studies of
 Permian Brushy Canyon outcrops, West Texas. *Mar. Petrol. Geol.*, 20, p. 757-787.
- Grecula, M., Flint, S.S., Wickens, H.D., and Johnson, S.D. (2003) Upward-thickening patterns and
 lateral continuity of Permian sand-rich turbidite channel fills, Laingsburg Karoo, South Africa:
 Sedimentology, 50, 831-853.
- Haughton, P.D.W., Davis, C., McCaffrey, W.D., and Barker, S.P. (2009) Hybrid sediment gravity flow
 deposits classification, origin and significance: *Marine and Petroleum Geology*, 26, 1900–1918.
- Hay, A.E., Burling, R.W., and Murray, J.W. (1982) Remote acoustic detection of turbidity current
 surge, *Science*, 217, 833-835

Hickson, T.A. and Lowe, D.R. (2002) Facies architecture of a submarine fan channel-levee complex:
the Juniper Ridge Conglomerate, Coalinga, California. *Sedimentology*. 49, 335-362.

Hiscott, R.N. (1994) Loss of capacity, not competence, as the fundamental process governing deposition
from turbidity currents: *J. Sed. Res., Section A: Sedimentary Petrology and Processes*, 64, 209-214.

718 Hiscott, R.N., Hall, F.R. and Pirmez, C. (1997) Turbidity current overspill form the Amazon Channel:

texture of the silt/sand load, palaeoflow from anisotropy of magnetic susceptibility, and implications

for flow processes. In: *Proceedings of the Ocean Drilling Programme, Scientific Results, Leg* 155. (Eds

R.D. Flood, D.J.W. Piper, A. Klaus, L.C. Peterson), Ocean Drilling Programme, College Station, TX, pp.
53-78.

Hodgson, D.M., Di Celma, C.N., Brunt, R.L., and Flint, S.S. (2011) Submarine slope degradation and
aggradation and the stratigraphic evolution of channel-levee systems. *J. Geol. Soc. London*, 168, 625628.

Hübscher, C., Speiβ, V., Breitzke., and Weber, ME. (1997) The youngest channel-levee system on
the Bengal Fan, results from digital sediment echosounder data, *Mar. Geol.*, 141, 125-145.

Kane, I.A., Kneller, B.C., Dykstra, M., Kassem, A. and McCaffrey, W.D. (2007) Anatomy of a
submarine channel-levee: an example from Upper Cretaceous slope sediments, Rosario Formation,
Baja California, Mexico. *Mar. Petrol. Geol.*, 24, 540-563.

Kane, I.A., McCaffrey, W.D. and Peakall, J. (2008) Controls on sinuosity evolution within submarine
channels. *Geology*, 36, 287-290.

Kane, I.A., Dykstra, M., Kneller, B.C., Tremblay, S. and McCaffrey, W.D. (2009) Architecture of a
coarse grained channel-levee system: the Rosario Formation, Baja California, Mexico.
Sedimentology, 56, 2207-2234.

Kane, I.A., McCaffrey, W.D., Peakall, J. and Kneller, B.C. (2010) Submarine channel levee shape and
 sediment waves from physical experiments. *Sed. Geol.*, 223, 75-85.

Kane, I.A. and Hodgson, D.M. (2011) Sedimentological criteria to differentiate submarine channel
levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja
California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa. *Mar. Petrol. Geol.*, 28,
807–823.

Khan, Z.A. and Arnott, R.W.C. (2011) Stratal attributes and evolution of asymmetric inner- and
outer-bend levee deposits associated with an ancient deep-water channel-levee complex within the
Isaac Formation, southern Canada. *Mar. Petrol. Geol.*, 28, 824-842.

Komar, P.D. (1973) Continuity of turbidity current flow and systematic variations in deep-sea
channel morphology. *Geol. Soc. Am. Bull.*, 84, 3329-3338.

Kolla, V. and Coumes, F. (1987) Morphology, internal structure, seismic stratigraphy and sedimentation
of the Indus Fan. *AAPG Bull.*, **71**, 650-677.

Kneller, B.C. (1995) Beyond the turbidite paradigm: Physical models for deposition of turbidites and their
 implications for reservoir prediction: Characterisation of Deep Marine Clastic Systems, *J. Geol. Soc. London Spec. Paper*, 94, 29-46.

Leeder, M.R. (1999) Sedimentology and Sedimentary Basins; From Turbulence to Tectonics, Oxford,
UK, Blackwell, 483p.

Lewis, K.B., and Pantin, H.M. (2002) Channel axis, overbank and drift sediment waves in the
 southern Hikurangi Trough, New Zealand. *Mar. Geol.*, **192**, 123-151.

Lopez, M. (2001) Architecture and depositional pattern of the Quaternary deep-sea fan of the
Amazon. *Mar. Petrol. Geol.*, 18, 479-486.

Maier, K.L., Fildani, A., Paull, C.K., McHargue, T.R., Graham, S.A. and Caress, D.W. (2013) Deep-sea
channel evolution and stratigraphic architecture from inception to abandonment from highresolution Autonomous Underwater Vehicle surveys offshore central California. *Sedimentology*, 60,
935-960.

Mayall, M., and O'Byrne, C. (2002) Reservoir prediction and Development Challenges in Turbidite
 slope Channels, *in* Reservoir Prediction and Development Challenges in Turbidite Slope Channels:
 OTC Conference Proceedings, Contribution No. 14029.

McHargue, T.R. and Webb, J.E. (1986) Internal geometry, seismic facies, and petroleum potential of
 canyons and inner fan channels of the Indus submarine fan. *AAPG Bull.*, **70**, 161-180.

Miall, A.D. (1988) Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies.
 AAPG Bull., 72, 682-697.

Migeon, S., Savoye, B., and Faugeres, J.-C. (2000) Quaternary development of migrating sediment
waves in the Var deep-sea fan: distribution, growth pattern, and implication for levee evolution. *Sed. Geol.*, 133, 265-293.

Migeon, S., Savoye, B., Zanellac, E., Mulder, T., Faugeres, J.-C. and Weber, O. (2001) Detailed
seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge
(SE France): significance for sediment transport and deposition and for the mechanisms of sedimentwave construction. *Mar. Petrol. Geol.*, 18, 179-208.

Migeon, S., Savoye, B., Babonneau, N. and Spy-Anderson, F.-L. (2004) Processes of sediment-wave
 construction along the present Zaire deep-sea meandering channel: role of meanders and flow
 stripping. J. Sed. Res., 74, 580-598.

Morris, E.A., Hodgson, D.M., Flint, S.S. and Brunt, R.L. Sedimentology and architecture of lower
 slope frontal lobe complexes from outcrop and subsurface datasets. *J. Sed. Res.* [in press].

Mutti, E. and Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems:
problem and concept. In: *Marine Clastic Sedimentology. Concepts and Case Studies*. (Eds Leggett, J.K.
and Zuffa, G.G.) Graham and Trotman, London, pp. 1–38.

Nakajima, T. and Kneller, B.C. (2013) Quantitative analysis of the geometry of submarine levees.
 Sedimentology, 60, 877-910.

- Nakajima, T., Satoh, M. and Okamura, Y. (1998) Channel-levee complexes, terminal deep-sea fan
 and sediment wave fields associated with the Toyama Deep-Sea Channel system in the Japan Sea. *Mar. Geol.*, 147, 25-41.
- Normark, W.R., Hess, G.R., Stow, D.A.V. and Bowen, A.J. (1980) Sediment waves on the Monterey
 Fan levee: a preliminary physical interpretation. *Mar. Geol.*, **37**, 1-18.
- Normark, W.R., Piper, D.J.W., Posamentier, H.W., Pirmez, C. and Migeon, S. (2002) Variability in
 form and growth of sediment waves on turbidite channel levees. *Mar. Geol.*, **192**, 23-58.
- 793 Peakall, J., McCaffrey, B., and Kneller, B. (2000) A Process Model for the Evolution, Morphology, and
- Architecture of Sinuous Submarine Channels. J. Sed. Res., **70**, 434-448.
- Peakall, J., Amos, K.J., Keevil, G.M., Bradbury, P.W. and Gupta, S. (2007) Flow processes and
 sedimentation in submarine channel bends. *Mar. Petrol. Geol.*, 24, 470-486.
- Peakall J., Kane I.A., Masson D.G., Keevil G., McCaffrey W. and Corney, R. (2012) <u>Global (latitudinal)</u>
 variation in submarine channel sinuosity, *Geology*, 40, 11-14.
- Piper, D.J.W., and Normark, W.R. (1997) Fine-grained turbidites of the Amazon fan: Facies
 characterization and interpretation. In: *Proceedings of the Ocean Drilling Programme, Scientific Results, Leg 155.* (Eds R.D. Flood, D.J.W. Piper, A. Klaus, L.C. Peterson), Ocean Drilling Programme,
- 802 College Station, TX, pp. 79-108.

803 Piper, D.J.W., and Normark, W.R. (1983) Turbidite depositional patterns and flow characterisitcs,
804 Navy Submarine Fan, California Borderland, *Sedimentology*, **30**, 681-694.

Piper, D.J.W., Hiscott, R.N. and Normark, W.R. (1999) Outcrop-scale acoustic facies analysis and
latest Quaternary development of Hueneme and Dume submarine fans, offshore California.
Sedimentology. 46, 47-78.

Piper, D.J.W., and Normark, W.R. (2001) Sandy fans – from Amazon to Hueneme and beyond, *AAPG Bull.*, 85, 1407-1438.

Posamentier, H.W. (2003) Depositional elements associated with a basin floor channel-levee
system: case study from the Gulf of Mexico. *Mar. Petrol. Geol.*, 20, 677-690.

Posamentier, H.W., and Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional
elements in deep-water settings. *J. Sed. Res.*, 73, 367-388.

Prélat, A., Hodgson, D.M., and Flint, S.S. (2009) Evolution, architecture and hierarchy of distributary
deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South
Africa. *Sedimentology*, 56, 2132-U25.

Schwenk, T., Spieß, V., Breitzke, M., and Hübscher, C. (2005) The architecture and evolution of the
Middle Bengal Fan in vicinity of the active channel–levee system imaged by high-resolution seismic
data. *Mar.Petrol. Geol.*, 22, 637-656.

Sixsmith, P.J., Flint, S.S., Wickens, H.D., and Johnson, S.D. (2004) Anatomy and Stratigraphic
Development of a Basin Floor Turbidite System in the Laingsburg Formation, Main Karoo Basin,
South Africa. J. Sed. Res., 74, 239-254.

Skene, K.I. (1998) Architecture of submarine channel levees. Unpublished PhD thesis, Dalhousie
University, pp. 780

- Skene, K.I., Piper, D.J.W. and Hill, P.S. (2002) Quantitative analysis of variations in depositional
 sequence thickness from submarine channel levees. *Sedimentology*, 49, 1411-1430.
- Sorby, H.C. (1859) On the structure produced by the currents during the deposition of stratified
 rocks, *The Geologist*, 2, 137-147.
- Sorby, H.C. (1908), On the Application of Quantitative Methods to the Study of the Structure and
 History of Rocks: *Q. J. Geol. Soc. London*, 64, 171-232.
- Sprague, A.R., Sullivan, M.D., Campion, K.M., Jensen, G.N., Goulding, F.J., Sickafoose, D.K., and
 Jennette, D.C. (2002) The physical stratigraphy of deep-water strata: a hierarchical approach to the
 analysis of genetically related stratigraphic elements for improved reservoir prediction. In: *AAPG Annual Meeting Abstracts, Houston, Texas,* p. 10-13.
- Straub, K.M., Mohrig, D., McElroy, B., Buttles, J. and Pirmez, C. (2008a) Interactions between
 turibidity currents and topography in aggrading sinuous submarine channels: A laboratory study. *Geol. Soc. Am. Bull.*, 120, 368-385.
- Straub, K.M., Mohrig, D. and Buttles, J. (2008b) Turbidity current flow out of channels and its
 contribution to constructing the continental slope. *SEG Annual Meeting*, pp. 2767-2771.
- Tankard, A., Welsink, H., Aukes, P., Newton, R., and Stettler, E. (2009) Tectonic evolution of the
 Cape and Karoo basins of South Africa. *Mar. Petrol. Geol.*, 26, 1379-1412.
- Taylor, A.M., and Goldring, R. (1993) Description and analysis of bioturbation and ichnofabric J. *Geol. Soc. London*, 150, 141-148.
- Terlaky, V. and Arnott, R.W.C. (in press) Matrix-rich and associated matrix-poor sandstones:
 avulsion splays in slope and basin-floor strata. Sedimentology, Accepted Article, doi:
 10.1111/sed.12096

- Van der Merwe, W.C., Flint, S.S., and Hodgson, D.M. (2010) Sequence stratigraphy of an
 argillaceous, deepwater basin-plain succession: Vischkuil Formation (Permian), Karoo Basin, South
 Africa. *Mar. Petrol. Geol.*, 27, 321-333.
- Van der Merwe, W.C., Hodgson, D.M., and Flint, S.S. (2009) Widespread syn-sedimentary
 deformation on a muddy deep-water basin-floor: The vischkuil formation (Permian), Karoo Basin,
 South Africa. *Basin Res.*, 21, 389-406.
- Veevers, J.J., Cole, D.I., and Cowan, E.J. (1994) Southern Africa: Karoo Basin and Cape Fold Belt. In:
 Permian-Triassic Pangean Basins and fold belts along the Panthalassan Margin of Gondwanaland
 (Eds J.J. Veevers and C.M. Powell), *Geol. Soc. Am. Mem.*, **184**, 223-279.
- Visser, J.N.J. (1993) Sea-level changes in a back-arc-foreland transition: the late CarboniferousPermian Karoo Basin of South Africa. *Sed. Geol.*, 83, 115-131.
- Wells, M. and Cossu, R. (2013) The possible role of Coriolis forces in structuring large-scale sinuous
 patterns of submarine channel-levee systems. Phil. Trans. R. Soc. A. 371, 20120366.
- Wynn, R.B., Cronin, B.T., and Peakall, J. (2007) Sinuous deep-water channels: Genesis, geometry
 and architecture: *Mar. Petrol. Geol.*, 24, 341-387.
- Wynn, R.B., Piper, D.J.W., and Gee, M.J.R. (2002) Generation and migration of coarse-grained
 sediment waves in turbidity current channels and channel-lobe transition zones: *Mar. Geol.*, 192, 5978.
- Wynn, R.B., and Stow, D.A.V. (2002) Classification and characterisation of deep-water sediment
 waves, *Mar. Geol.*, 192, 7-22.
- 867

868

869 **Figure captions**

870 Fig. 1. Cartoon of an external levée and slope valley-fill that highlights the nomenclature used and

the key components identified and characterised in this study. These features are not discrete areas

on the levée, however, this subdivision allows individual components of the levée to be examined.

873 Heavier stipple indicates relatively higher amount of sand.

Fig. 2. Location map that highlights the study area near the town of Laingsburg, Western Cape, South
Africa (inset maps). The pale grey area marks the outcrops of the Laingsburg Formation and the
darker grey shows the outcrop pattern of the Fort Brown Formation. The boxed areas show the
geographic position of figures referenced throughout the paper.

878 Fig. 3. (A) Stratigraphic column showing the generalised stratigraphy of the Ecca Group. (B) 879 Expanded stratigraphic column showing the units described in this study (Units C-F of the Fort Brown 880 Formation) are highlighted. Vertical scale is in kilometres. (C) Expanded location map showing the 881 geographical distribution of the data. The white and black dots represent sedimentary log positions; 882 the red and black dots highlight the positions of the Bav 1a, Bav 2 and Bav 6 research boreholes. The 883 green, blue, red and orange lines highlight the positions of the correlation panels constructed in this 884 study. The green, blue and orange boxes correspond to the stratigraphic intervals highlighted on the 885 stratigraphic column of (B).

Fig. 4. Inset map (top right) showing the location of the CD Ridge outcrop, south limb of the Baviaans
syncline. Annotated aerial photograph (top left) that illustrates the location of the Unit D incision
through Unit C stratigraphy. The CD Ridge correlation panel (bottom) of Hodgson et al. (2011)
captures the Unit D entrenched slope valley. The locations of the cored research boreholes drilled as
part of this study are shown on both the aerial photograph and the correlation panel.

Fig. 5. A) CD Ridge panel constructed using outcrop logs (this study), the box highlights the expanded panels of B. Rose diagrams showing palaeocurrent measurements collected from each of the panels; i) palaeocurrents from the Unit D western external levée, ii) palaeocurrents from the Unit D eastern external levée, and iii) palaeocurrents from the Sub-unit C2 eastern external levée. B) Expanded correlation panel showing the western Unit D external levée where several beds that have been walked out and downlap onto the underlying mudstone.

897 Fig. 6. (A) Gamma ray log and (B) Sedimentary log of the Unit D proximal external levée from 898 research borehole Bav 1a. (C) Representative outcrop facies photographs of the lowermost 25 m of 899 the Unit D external levée, on the CD Ridge, part of the lower proximal external levée. (Di-Diii) Core 900 facies photographs from the lower proximal external levée of Unit D. (E) Annotated core 901 photographs from the lower proximal external levée with sedimentary structures highlighted. (F) 902 Representative outcrop facies photographs of the upper proximal external levée of Unit D on the CD 903 Ridge (Gi-Giii) Core facies photographs from the upper proximal external levée of Unit D. (H) 904 Annotated core facies photographs from the upper proximal external levée with the sedimentary 905 structures highlighted. (Rucksack, notebook, pencil and grain size card for scale).

906 Fig. 7. (A) Sedimentary log through the eastern Unit D distal external levée at the Paardekraal river

907 section (UTM: 476839, 6323945). (B-L) Outcrop facies photos showing the thin bedded deposits,

908 typical of Lf1 and Lf2, found within distal areas of the external levée deposit (notebook (20.5 cm),

909 pencil (15 cm) and measuring tape (27 cm shown) for scale).

Fig. 8. (A) Gamma ray log and B) Sedimentary log through Sub-unit C2 collected from the Bav 6 core.
(C-F) Core facies photographs, locations indicated by the boxes on the sedimentary log within the 22
m thick C2 external levée succession. (G and H) Outcrop facies photographs from the C2 external
levée at the Paardekraal river section (UTM: 476827, 6323820).

Fig. 9. Cartoon through an external levée showing the distribution of the dominant facies
associations observed within the Unit D external levée from channel proximal to channel distal
locations. The gradational boundaries illustrate that boundaries between dominant facies are
transitional.

Fig. 10. Cartoon illustrating the distribution of sandstone within the Unit D external levée from
channel proximal to channel distal locations. Inset graph showing the % sandstone for conjugate
external levée against distance from the levée crest with an exponential best fit line. From this
dataset, there is a non-linear relationship between distance from the channel and percentage
sandstone content of the levée. Downlap arrows are inferred timelines.

Fig. 11. Correlation panel through part of the Sub-unit F2 proximal external levée on the southern
limb of the Heuningberg anticline (see Fig. 3). This panel shows individual beds that have been
correlated and walked out, which downlap onto the underlying mudstone, away from the parent
channel to the south.

Fig. 12. (A) Photo panel showing the shingled sandstone beds that form part of interpreted sediment
waves on the proximal external levée of Sub-unit E2 cropping out on the south limb of the
Heuningberg anticline (see Fig. 3). (B) Trace of the upstream accreting beds (to NW) shown on the
photopanel of A). C) Correlation panel of correlated sedimentary logs (D) Palaeocurrent rose
showing a dominant palaeocurrent direction towards the southeast.

Fig. 13. (A) Cartoon of sediment waves outboard of the levée crest, showing the broad scale
geometries, aggrading upslope in the opposite direction to the flow direction (adapted from Migeon
et al., 2000). (B) Inset schematic of sediment waves, showing where sand becomes trapped on the
upstream facing limb of the wave, allowing for shingling and migration upslope, in the opposite
direction to turbidity current flow.

Fig. 14. Correlation panel constructed from logged sections measured at the eastern margin of the
Slagtersfontein channel complex. Terminal lobes at the base of Unit D are overlain by external levée
deposits, which incorporate a number of crevasse lobes, which are variable in geometry and
thickness. The succession is incised by a late-stage channel that cuts down from high within Unit D.

Fig. 15. Photograph of a single crevasse lobe bed demonstrating the tripartite divisions. The lower
part consists of a thin band of disorganised fragments of levée; the middle part is clean sandstone
and ranges in character from structureless to well-developed tractional bedforms. The upper part is
argillaceous and often contains mud clasts or dispersed organic matter such as plant fragments.

Fig. 16. Block diagram showing the spatial relationship of the main features and nomenclature usedto describe channel-levée systems.

Fig. 17. Cartoon section parallel to a levée crest that shows the down-dip of evolution of levées and
their stratal relationships to lobes; from small levées associated with entrenched channels, to levéeconfined channels, to the down-dip association of decreasing levée height and increasing
occurrences of crevasse lobes and channels, to the levée-lobe transition zone where lobe deposition
dominates.

Table 1: Table showing the seven main sedimentary facies associations identified in the externallevée successions of the Fort Brown Formation.