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Introduction 2

Abstract: Linear and quadratic-programming perceptrons for regression are new poten-
tial function methods for nonlinear function approximation. Potential function percep-
trons, which have been proposed by Aizerman and colleages in the early 1960s, work in
the following way: in the first stage the patterns from the training set are mapped into
a very high dimensional linearisation space by performing a high dimensional non-linear
expansion of training vectors into the so-called linearisation space. In this space the
perceptron’s decision function is determined.

In the algorithms proposed in this work a non-linear prediction function is constructed
using linear- or quadratic-programming routines to optimize the convex cost function.
In Linear Programming Machines the L1 loss function is minimised, while Quadratic
Programming Machines allow the minimisation of the L2 cost function, or a mixture of
both the L1 and L2 noise models. Regularisation is implicitly performed by the expansion
into linearisation space (by choosing a suitable kernel function), additionally weight decay
regularisation is available. First experimental results for one-dimensional curve-fitting
using linear programming machines demonstrate the performance of the new method.

Introduction

In the early 1960s Aizerman and colleages [1] have proposed a universal framework called
the method of potential functions which allows, under some circumstances, linear algo-
rithms to be applied to machine learning tasks where the relationship between the input
patterns (called the training set) and the target values is non-linear!. All that is required
from the linear algorithm is that a scalar-product (or a Euclidian distance) must be avail-
able in some sense [4]. By replacing dot products by positive semidefinite functions, the
so called potential functions, in the algorithm automatically the following two steps are
performed:

o expand two patterns into a very high dimensional representation [u, v] — [¥(u), ¥(v));

o compute the scalar product (1(u), % (v)) of two patterns in this high dimensional
linearisation space.

An intrinsic property of linear perceptrons allows the linear decision function to be rep-
resented as a weighted expansion of dot products, therefore any linear perceptron can
be run in the non-linear linearisation space (further information can be found in [1] [5]).
Kernel Rosenblatt perceptrons [1] [17], Kernel Adalines [5], and support vector machines
[22] are some examples for potential function perceptrons.

In these algorithms the weight vector of the perceptron is expanded as a weighted sum of
training patterns where the weights on the expansion patterns (called multipliers) are, in

1Non-linear is used here in the sense that the target function to be learned cannot be expressed as
a linear combination of training patterns. However the target function can be expressed as a linear
combination of training patterns after mapping the patterns into the linearisation space.
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nearly any case, not equal. In contrast in Hebbian perceptron learning?, one of the earli-
est learning methods inspired by biologically plausible processes, the weight vector of the
perceptron is an equally weighted sum of normalized training patterns. It is known that
in correlation based learning such as Hebbian learning, only correlated patterns can be
associated correctly. It is also possible to derive a non-linear version of Hebbian learning
perceptrons using potential functions. An adaption of this algorithm has been studied
by Specht [20] and has been called the probabilistic neural network (PNN). The prop-
erties of correlation based learning, which have been studied in the context of Hebbian
learning [16], carry over to all potential function algorithms, because these methods are
based on correlations in the linearisation space. Depending on the type and properties of
the mapping to the linearisation space, defined by the potential function kernel, linearly
dependent patterns can exist in the linearisation space (further informations can be found
in [5]).

This document is structured as follows: In the first section Minnick’s and Muroga’s linear
programming perceptron is reviewed [11] [13]. In the next section linear programming
machines (LPM) and quadratic programming machines (QPM) for pattern classification
[3] [4] are discussed. In the third section LPM’s and QPM'’s for linear and non-linear
regression are proposed; different noise-models are considered.

Finally first experimental results using linear programming machines for regression (LPM-
R) are given.

Linear Models for Pattern Classification

To classify a set of labeled training patterns z; € R",i € {1..I} by a linear function
f(z) = (w, ) a linear program of the following form can be solved:

!
min: Y s
i=1
subject. to: yi{w,z;) +s; >t Vie {l.l}
s; >0 Vie{l1.l} (1)

The aim is to find a weight vector, w, such that the prediction of the model, sign(f(z)),
matches the given class label y; € {+1,—1} of as many patterns, z;, as possible (that is
sign(f(z;)) = y; for most 7). For those patterns, z;, which cannot be classified correctly
the associated slack variable, s;, is minimized.

This algorithm was studied in the early 1960s by Minnick and Muroga et al. [11] [13].
For the constant, t, any nonnegative number can be chosen. To avoid the solution
w; = 0 Vi € {1..I} constant, t, should be greater than zero, e.g. ¢ = 1. A bias pa-
rameter can be introduced into the decision function by replacing the first constraint in
(1) by a constraint of the form y;(b+ (w,z;)) +s; >t Vi € {1..1}.

2referring to the pattern associator model as described in [16]
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In order to minimize the L2 (MSE) cost function one can use quadratic programming to
minimse the cost function ¥ = ¥7}_, s? subject to the constraints of (1). Also a mixture
of L1 and L1 loss is possible just by minimizing a combined, but still quadratic, cost
function ¥ = m; -\_ s? + ma YL, s; subject to the constraints given in (1). Constants
my and my allow a tradeoff the two noise-models in the cost function.

Non-Linear Models for Pattern Classification

3.1 Linear Programming Machines (LPM)

A nonlinear version of these algorithms (called the linear programming machine, and the
quadratic programming machine, respectively) has been derived by replacing the linear
decision function, in the first constraint of (1), f(z;) = b+ (w,z;) = b+ X4, ai(z, z3),
by a potential decision function:

flzi) = b+ ((w), 9 )‘bJer’z (;, 2:) (2)

where K is a nonlinear positive semidefinite potential function. Alternatively one can
replace the f; in the formulation above each by a,y; , a; > 0Vi € {1..1}.

It is interesting to note that the evaluations of functional K(z;,z;) = h(i,5) Vi,j €
{1..1} can be fixed before the optimization process because both the training patterns
and function K is available a priori. One example of a potential kernel is the radial

l}

basis function K (u,v,0) = ezxp( iﬁg&—u’:ﬂfﬁ) This kernel, which has been used in the
computer experiments below, has a parameter o, which specifies the kernel width. For a
discussion on the choice and design of potential function kernels see [1]; where it has been
discussed how to run Rosenblatt perceptrons to learn non-linear relationships between
training patterns and their target values using potential kernel functions.

Linear programming machines for pattern classification were proposed for the first time
in [3]. There it is discussed how overfitting can be avoided using a weight decay regulari-
sation technique by penalizing additionally the sum of multipliers « in the cost function.
This penalizer represents L1 regularisation on the multipliers a.

"Two parameters are chosen in advance, that is the the kernel parameter and the C param-
eter which specifies the degree of weight decay regularisation. Methods of model selection
can be applied to find optimal values for the two constants. The LPM’s solution is found
by solving the following linear program:

! !
Z si+C Z ;
£ —

subject to : y;(b+ a1h(i, 1) + aoh(s,2)... + ath(i, 1)) + s; > t Vi € {1..1}
>0 ; 520 Vie{l.l} (3)
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3.2 Quadratic Programming Machines (QPM)

4

It is possible to use different methods for complexity regularisation, e.g. a weight decay
regularizer which penalizes the L2 norm of the vector of the multipliers c.
This can be expressed by the following cost function:

l l l l .
Y:mQZS?—FmIZSi—i—anai—{-nQZa? (4)
i=1 i=1 =1 i=1

For the case that the constant m; is zero, the cost function Y represents L1 error min-
imization with a quadratic penalty on the vector of multipliers c. The mixture of the
penalizers (both for the empirical error measures and regularizers) is adjusted by choosing
values for constants my,ns and my, my. Since now quadratic programming is required to
minimize the function Y, subject to the constraints given above in (3), the method will
be called the guadratic programming machine [4]. The decision function of the algorithm
is given by (2).

Linear and Non-Linear Models for Regression

4.1 Linear Regression using Linear Programming

In the following it is shown that the problem of estimating an unknown function, given
some training patterns z;, i € {1..1}, and “labels” y;, i € R, can be solved by linear
programming.

Again the slack variables, that is the discrepancy between a pattern’s true label, y;, and
the model’s prediction, f(z;), are minimized in the L1 norm using linear programming.
Two cases are possible, either (a) f(z;) > yi, or (b) f(z;) < yi. Therefore, in regression,
two slack variables, an “upper” slack and a “lower” slack, are required for each pattern.
It is clear that, for each pattern, only one of the two variables can be greater than zero,
depending on which case, (a) or (b), is satisfied. The linear program which must be solved
for linear regression is given by:

I l
min: Y s+ s
i=1 i=1

subject to : b+ (w,z;) —yi+s;F =0 Vie{l1.l} (a)
b+ (=1)* (b+ (w,z)) +y; +8°=0 Vie {1.0} (b)
s st >0 Vie {l.[} (5)

Note that in this algorithm a linear decision function of the form f(z) = b+ (w, x) is used
for prediction.

4.2 LP Machines for Regression (LPM-R)

The algorithm above can be generalised such that regression of non-linear signals is pos-
sible. In each constraint of the algorithm above a linear function, the prediction function,
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is used. If the linear decision function is replaced by its nonlinear equivalent (2) then the
non-linear algorithm can be derived. Again it is crucial to understand that this can be
done only because in the linear decision function, f(z;) = b+ (w, z;) = b+ X5, Bi(zi, 75),
the dot products can be replaced by potential functions. For all training points, z;, the
potential can be computed by calculating the correlation matrix in the linearisation space
M;; = h(i,j) = K(z;,2;). Therefore the, so far linear, constraints in the algorithm can
be replaced by the constraints which stem from the non-linear decision function. The
non-linear version of the algorithm is given by:

t l

min : ZS;”J-}-ZS?
i=1

i=1
subject to : b+ Bih(1,4) + Boh(2,9)... + Bih(l,i) —y; + ;7 =0 Vie {1.[}
b+ (—1) * (Bih(1,i) + Boh(2,9)... + Bih(1,1)) + yi + 51 =0 Vi € {1..1}
s st >0 Vie {1.1} (6)

So far the algorithm minimizes the L1 error on the training set. To avoid overfitting effects
the smoothing parameter (the kernel width) of the potential function must be adjusted
by choosing parameter 0. Another method for complexity regularisation is weight decay,
as used in the kernel Adaline. Since the current algorithm is a method of batch-learning
early stopping is not possible, however it is possible to force the weight vector to have
small components by adding the following constraints to formulation (6):

G;<C |, ﬁi >—-C Vi€ {].l} (7)

Since the mapping from the row-space of the kernel correlation matrix to the feature
space (and back) is fixed weight decay regularisation on the multipliers § automatically
implies weight decay regularisation for the weight vector, w, which resides in an infinite
dimensional feature space (given the fact that the radial basis potential function defined
above is used). Experimental results with the kernel Adaline [6] have demonstrated that
this type of regularizer enhances the performance of kernel perceptron based methods for
regression.

If different patterns are associated with a different cost (as is usual in many applications,
e.g. in the medical domain where type I and type II errors may be of a different cost) a
confidence factor c;; 0 < ¢; < 1, for each pattern can be introduced. Constraint (7) can
be replaced by:

G;i<Ce¢ , Bi>—Cc¢ Vi€ {1l} (8)

to take the different cost (and risk) of individual patterns in the algorithms into account.
Alternatively the cost function of the algorithms can be modified such that the loss of in-
dividual patterns is weighted directly by their associated cost, which leads to the following
cost function:

l l
Y=m Y csi+ma ) cis; (9)
i=1 i=1
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Another modification of the algorithm is to introduce epsilon-insensitive loss; this loss
function has been proposed in the context of support vector machines [22]. In the LPM-R
algorithm an insensitive zone for the loss function is obtained by replacing the first two
constraints in (6) by:

b+ Bih(1,1) + Boh(2,9)... + Bih(L,i) —y; + st =€ Vie {1.0}
b+ (=1) * (Bih(1,1) + Boh(2,1)... + Bih(L,1)) + yi + si° =€ Vi {1..1} (10)

where constant, €, defines the insensitive interval for the loss function.

In the final algorithm, which is called LPM-R, weight decay regularisation as discussed
above, and epsilon insensitive loss is available. If desired the insensitive zone of the loss
function can be deactivated by choosing € = 0. The type of practical application, with its
underlying noise model, defines which loss function is most suitable for a given task.

4.3 QP Machines for Regression (QPM-R)

In the LPM-R algorithm an L1 loss function is used, but also the L2 loss function can be
minimized if quadratic programming is available. The regression method for quadratic
and linear loss will be called QPM-R. Again two constants m; and ms can be used (4) to
adjust the degree to which the different noise models should take part in the cost function.
Methods for model selection can be applied to determine these parameters. Algorithm
QPM-R uses the following cost function and constraints:

! ! 1 !
min: my Y sit +my Yy, sl + my Z(S?p)Q + ma 2(550)2
i=1 =1 f=1

= i=1
subject to : b+ Bih(1,7) + Boh(2,9)... + Bih(l,5) — yi + 5;F =€ Vie {1.l[}
b+ (—1) % (Bih(1,3) + Boh(2,0)... + Bih(1,4)) + yi + si° =€ Vie {1.1}
s s >0,6<Cxc, B;>—Cxc Vie{l.l} (11)

1!

Weight decay regularisation and an insensitive zone is available, as described above for
the algorithm LPM-R. If parameter mn; is zero the algorithm implements a kernel Ada-
line using batch-learning; if parameter ms is zero the algorithm minimizes the same cost
function as in the LPM-R algorithm.

Note that the formulation for affine decision functions using a bias term, b, in the decision
function is different to the one used in the kernel Adaline. In the latter approaches for
sequential learning the bias parameter is specified by augmenting the training patterns
in the linearisation space, z — [1/(z) 1]¢, which leads to the constraint b = Zgzl B3;. More
information about this can be found in the Appendix.

5 Computer Experiments

The experiments presented in this section are to serve only as a proof of concept of the
algorithms discussed above. Two small examples for non-linear one-dimensional curve
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fitting have been prepared to demonstrate some properties of the method. For all exper-
iments radial basis function potential kernels and the algorithm LPM-R has been used.

In the first task 28 points generated by the function: f(z) = sin(0.8z) are learned; there
is no additional noise in this signal. The diagrams in figure (1) demonstrate that, for too
large choices of o, underfitting effects can be observed. As pointed out in [1], the kernel
parameter can serve as a method of capacity control. '

15— - -
#* R 15 e}
; ¥ &
4 E]
i 4 i | + x_iforall
: : i ; | | tued(x)=05—sin(08* x)
1" i 3 E = * | —— LPM-R1(x)
i / 4 i : ! sigma =0
; .. : i i i C=30
i »
05-
& £ 3
05" *
e e *
4+ x_iforally !
fruef(x)=05—sinD8 * x) » 0- . A
LPM-R {(x) 1 %
Pt sigma=1 f o
0: ]
c=30 i \ 3
-05
F
-
05 h SN R S
5 i 15 20 25 30
0 5 o 5 20 25 30
5 15 —_—
4=
[
05
0=
. o ¥ tdoralt 4 ) o - x_iforalti
~05L - son H true 1{x) = 0.5 — sin{0.8 " x) Lo . frue {{x) = 0.5 - sIn(D.B " x)
i LPM-RA(x) ! B . LPM-R f(x}
sigma = 100 | H 1 | sigma = 1000
C=30 ! ! . C=30
4 . - ] - L s et W 3
0 5 10 15 20 25 30 1] 5 10 15 20 25 30

Figure 1 Curve fitting using one dimensional data (x-axis) and their target values and
predictions (y-axis). In the four cases illustrated above parameters were chosen in the
following way: C = 30,e = 0 in each case, while the value of ¢ has been changed in
each case; 0 = 1 and o = 10 for the top left and top right diagrams, and ¢ = 100, and
o = 1000 for the bottom left and bottom right plot. In the diagrams the true signal
is plotted by the dotted line, the training samples are marked each by a star, and the
predicted (estimated) signal is indicated by a solid line.

In the second task patterns from the same signal used above have been distorted with
uniform noise. A pattern generator of the following form has been used: f(z) = 0.5 —
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rand() 4+ 0.5 — sin(0.8z). The function rand() returns a random number from a uniform
distribution in the interval [0, 1].

The diagrams in figure (2) demonstrate the effect of the choice of the kernel parameter.
Compare the top left and top right plot in the diagram. While in the left plot (& =1,
C = 1) overfitting has occured, in the right plot a much smoother function has been
learned (o0 =10, C' =1).

Now compare the top right and bottom left diagram in figure (2); in the latter case the
value for the parameter C has been altered (C' = 0.01). It can be observed that this leads
to a smoother prediction function. .

Finally consider the bottom right plot. Here the value of C' has been adjusted back to 1,
however the setting for € has been changed (¢ = 0.75). It can be observed that this also
leads to a smoother decision function, compared to the top right plot in the figure.

2r T = T T e 27 =7 T i
- x_iforal
15+ ! true f(x) ! i J‘
1 : LPM-R f(x} |
sigma = 1 N
J c=1 i | - xiforalli i !
14 i | - — . 1+ i 2 1 true f{x) H -
| LPM-R f(x)
sigma=10
i i C=1
05+ ez e = b u =
or o0
-0 5- 2 -05
A =2 - "
0 5 10 15 20 25 30 Q 5 10 15 20 25 30
z E—— ——— — =
15+ 1.5
| S ; = L+ xitorali
- x_iforali t true f(xi
1. 2 E i tiue {(x) : i i 5 & : LPM-R f(x) Fror3
| LPM-Ri(x) | i : I sigma=8 .
‘ sigma =10 i i i c=1 i
| c=001 ! ! - : i epsilon=075 |
0.5 — R R ;o b
; H
i ;
o- -+ 0 -
-05- ik B .
-1 | S—
o 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2 One dimensional function approximation using the LPM-R algorithm. The
signal has been distorted with uniform noise. The diagrams show the effects of choosing
different values for o (top left and top right plot), the effect of choosing parameter C
(bottom left plot), and the effect of choosing € (bottom right plot) in each case.
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Conclusion

Algorithms for pattern classification using linear decision functions by linear program-
ming have been studied by Minnick [11], Muroga et al. [13], Smith [19], Bennett and
Mangasarian [2].

In this work algorithms for pattern classification and regression of non-linear target-
functions are proposed, related work on the ideas developed in this article has been pub-
lished in [3] [4].

A different method for regression of non-linear target functions, related to support vector
machines, been published by Vapnik and Weston [25].

Their method is different to the approach proposed here because:

¢ in the algorithms above L1 regularisation on the weight vector is used, it is dis-
cussed how mixtures of noise models can be realized. In contrast in support vector
regression, the L2 norm of the weight vector is minimized, subject to one single
noise model.

¢ in the regression algorithms above the L1 norm of the weight vector is minimized
by early stopping constraints in the positive and negative quadrant.

¢ in the algorithms above (and also in the kernel Adaline) only / + 1 parameters 3
are chosen during learning to characterize the prediction function. In contrast in
support vector machines 2/ + 1 parameters are used in their learning scheme to
parameterize the prediction function.

¢ in the algorithms presented above two positive slack variables are used for each
training pattern to model the loss of the linear regression in the linearisation space
in a novel way. In contrast in Vapnik’'s and Weston'’s algorithms for regression one
slack variable and two multipliers are used for each slack variable.

This work shows that, in order to minimize the L1 loss function in a potential function
regression machine, linear programming is sufficient, while for squared loss quadratic
programming is required. It is known from support vector learning that constrained
quadratic programming may be subject to technical and practical problems. The kernel
Adaline presents an alternative to MSE regression, the algorithm is a numerically more
robust alternative to support vector machines [6].

It is the author’s belief that both regularisation, by the potential kernel and by weight
decay, and the convexity of the potential function perceptron’s cost function, can explain
the good performance of these class of potential algorithms.

Acknowledgments: The financial support from the EPSRC and the University of
Sheffield, Dept. of AC&SE is gratefully acknowledged.
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Appendix

In the algorithms given above it has been discussed that an affine function, both linear
and non-linear, can be found by introducing the bias parameter b. In the formulations
given above b is determined by the optimization routine, such that the cost functional y
is minimized subject to some constraints.

Another common approach for bias is to augment the training patterns of a perceptron
z* — [z 1!, and then to use the linear learning technique. After learning a weight vector
w* = [w b]t is obtained where the last component of vector w* is the bias parameter. In
Rosenblatt perceptrons® constraint w = L, Bo(z;) is always satisfied; therefore

l l
fa®) =3 B(a}), ¢(z")) = gﬁff(ﬂ; z¥) =

{ l l l

ZK+1(.’L‘3,I‘): K(Z'E,IE)—PZ/B:ZK(.T“I)-}'I) (Al)

i=1 i=1 =1 =1

where K,i(u,v) = [K(u,v) + 1]. Equation (Al) shows that, if one uses augmented
patterns, constraint b = Y°!_, 3 is automatically satisfied. It is possible to implement
this formulation for bias into the algorithms given above, and also into support vector
machines. All that is required is to add this constraint into the constraints for the linear or
quadratic program which is solved in the algorithms above. For instance in the algorithm
LPM-R the resulting linear program, which implements the “augmented” bias, is given
by:

subject to : i+ P+ ..i=0b

b+ Bih(1,4) + Bah(2,4)... + Bib(l,7) —yi + 5;7 =0 Vi€ {1.l}

b+ (=1) * (B1h(1,1) + Boh(2,9)... + Bih(1,1)) + y; + 51 =0 Vi€ {1.1}

s 8P >0 Vie {1.1}
The “augmented” bias can also be realised in the following way: An algorithm without
any bias, which performs in a linearisation space, is used but the potential kernel K (u,v)
is replaced by a kernel of the form K, (u,v). By doing this, constraint b = >t ByY(z)
will be satisfied. After learning the parameters using the potential algorithm, decision

function (A1) is used for prediction.

3the constraint is also satisfied in the LPM and QPM algorithms discussed above, as well as in support
vector machines
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