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a b s t r a c t

Polyurethane (PU) is a promising polymer to support bone–matrix producing cells due to its

durability and mechanical resistance. In this study two types of medical grade poly-ether

urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU–HA) composites were investigated

for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying

concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were

electrospun to attain scaffolds with randomly orientated non-woven fibres.

Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30

DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1

respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical

properties of the resulting composites were evaluated by FTIR and physical properties by

SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5

osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs

were seeded on the scaffolds to test their biocompatibility and ability to support

mineralised matrix production over a 28 day culture period. Cell viability was assayed by

MTT and calcium and collagen deposition by Sirius red and alizarin red respectively.

SEM images of both electrospun PU scaffolds and PU–HA composite scaffolds showed

differences in fibre morphology with changes in solvent combinations and size of HA particles.

Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds

fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and

thicker diameters. Mechanical testing demonstrated that the Young's Modulus and yield

strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in

PU–HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR

characterisation confirmed the presence of HA in all composite scaffolds.
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Although all scaffolds supported proliferation of both cell types and deposition of calcified

matrix, PU–HA composite fibres containing nano-HA enabled the highest cell viability and

collagen deposition. These scaffolds have the potential to support bone matrix formation for

bone tissue engineering.

& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Bone tissue engineering aims at improving musculoskeletal
health by providing a living bone graft substitute to fill and
aid in the repair of bone defects caused by trauma, disease, or
congenital malformations or to augment bone stock around
an implant site. While small bone defects heal sponta-
neously, critical size defects do not heal during a lifetime
(Gogolewski and Gorna, 2007). Bone tissue engineering
involves the use of materials to either induce formation of
bone from the surrounding tissue or to act as a carrier or
template for implanted bone cells. Bone regeneration
requires four components: a morphogenetic signal, respon-
sive host cells, a suitable carrier to serve as scaffolding for the
growth of host cells and a viable and well vascularised host
bed (Croteau et al., 1999; Burg et al., 2000). The scaffold
provides a three dimensional porous structure that facilitates
cell attachment, growth and matrix deposition.

Orthopaedic implant materials were initially selected for
structural restoration based on their biomechanical proper-
ties (termed ‘first generation implants’). Later bone implant
materials were engineered to be bioactive or bioresorbable to
enhance tissue growth (‘second generation’), a development
which coincided with the development of tissue engineering
scaffolds as cell supports for multiple tissue types. Currently,
bone implant materials are designed to induce bone forma-
tion (Bose et al., 2012) and many bone graft substitute
materials are also used as experimental scaffolds to support
cells for bone tissue engineering.

An ideal scaffold should possess a suitable surface chem-
istry that supports cell attachment, proliferation, migration
and growth. Additionally, it should serve as a biocompatible
template for osteoprogenitor cell growth and aid in the
differentiation of mesenchymal stem cells into osteoblasts,
as well as supporting the production, organisation and
maintenance of an extracellular matrix (Gogolewski, 2007;
Gorna and Gogolewski, 2003). In addition to being biocompa-
tible, scaffolds are required to be composed of highly inter-
connected macro and micro-porous networks to facilitate cell
migration and nutrient distribution.

Several polymers of both natural and synthetic origin can
be used for bone tissue engineering; however polyurethanes
are of particular interest due to the flexibility associated with
their versatile chemistry (Guelcher, 2008). This makes it
possible to customise scaffolds in order to attain desirable
chemical, physical and mechanical properties such as
durability, elasticity and fatigue resistance, by altering the
choice and quantity of the starting materials (Zdrahala and
Zdrahala, 1999). Biocompatible and biodegradable polyur-
ethanes have been investigated as scaffolds for tissue

engineering applications for almost thirty years (Guelcher
et al., 2004), and also as heart valves, stents, intra-aortic
balloons and pacing lead insulators, amongst others (Grad
et al., 2003).

The microphase separation between the hard and soft
segments enables polyurethane to withstand physical stres-
ses and therefore it possesses desirable mechanical proper-
ties useful for dynamic bone tissue engineering (Wen
et al., 1997). For example, we have demonstrated that cyclic
mechanical conditioning of osteoprogenitor cells in a PU
scaffold upregulates bone formation (Sittichockechaiwut
et al., 2009; Sittichockechaiwut et al., 2010; Delaine-Smith
and Reilly, 2011). PU has several advantages as a scaffold for
cells that will be subjected to mechanical conditioning, as its
high yield strain and fatigue life enable it to undergo repeated
cycles of mechanical strain, without changing its mechanical
properties. Additionally, the use of elastomeric scaffolds as
alternatives to bone grafts, prevents generation of shear
forces at the interface between native bone and the substi-
tute; thus enhancing intimate contact with bone and
enabling the proliferation of osteogenic cells and bone regen-
eration (Gorna and Gogolewski, 2003).

Composite scaffolds range from stable to degradable, and
most of those used in tissue engineering/regenerative med-
icine are biodegradable polymers reinforced with ceramic
particles. Bonfield first proposed the concept of polymer–
ceramic combination materials, mimicking the ductile and
brittle properties of the collagen and mineral components of
bone respectively, in 1988, which was later commercialised
with the trade name, HAPEX™ (Bonfield, 1988a, 1988b).
Mechanically, polymers are noted for their extensive defor-
mation and high toughness whilst ceramics, such as hydro-
xyapatites (HA), are noted for their high compressive strength
but brittle failure. Combining polyurethane with hydroxya-
patite has been shown by a number of researchers to improve
the mechanical properties of the resulting composite, as long
as a strong interfacial bond strength is established between
the ceramic phase and the polymer matrix (Attawia et al.,
1995; Boccaccini and Maquet, 2003; Bonzani et al., 2007;
Martinez-Valencia et al., 2011).

Previous research has been undertaken on the synthesis of
PU with varying additives such as ascorbic acid (Zhang et al.,
2003) HA (Gorna and Gogolewski, 2003), and β-tri-calcium
phosphate (Adhikari et al., 2008; Yoshii et al., 2012). Others
have investigated fabrication techniques for PU scaffolds
including Thermally Induced Phase Separation (TIPS) (Tsui
and Gogolewski, 2009) and Solvent Casting/Particulate Leach-
ing (Gorna and Gogolewski, 2006; Heijkants et al., 2006;
Kucinska-Lipka et al., 2013; Boissard et al., 2009). However,
to date little work has been undertaken on electrospinning of
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polyurethane composites for bone tissue engineering
applications.

Electrospinning is an efficient, simple and relatively easy
polymer fabrication technique that produces nano and micro
diameter polymer fibres, with the advantage that it can be
performed with different polymers in both solution and melt
states. Such thin fibres provide high surface area to volume
ratios, high porosity, flexibility in surface functionalities,
superior mechanical performance and membrane technology
(Demir et al., 2002). In the field of biomaterials and tissue
engineering, electrospinning has been utilised for producing
scaffolds that mimic the morphological characteristics and
biological function of the natural extracellular matrix, by
providing
an optimal template for cell attachment, proliferation and
growth (Carlberg et al., 2009; Huang et al., 2003). Several
different polymers such as polyurethanes, poly(ε -caprolac-
tone), poly(lactic acid), poly(glycolic acid) and their co-
polymers have been successfully spun for musculoskeletal,
nerve, skin, vascular and drug delivery applications (Bashur
et al., 2009; Clarke et al., 2008; Nirmala et al., 2011). Electro-
spinning may be an ideal technique for bone tissue
engineering where repair of a thin defect is required, for
example a cleft palate repair (Bye et al., 2013), or electrospun
sheets may be layered or rolled for larger defects (McMahon
et al., 2011).

Demir et al. (2002) studied the effect of electrical field,
temperature and conductivity on electrospun polyurethane–
urea fibres and reported that the morphology of electrospun
fibres is strongly correlated with viscosity, equivalent con-
centration and temperature. In their study, they reported that
solution temperature, a key parameter that affects fibre
morphology and spinning ability was essential to spin poly-
mer concentrations beyond 12.8 wt%. Khan et al. (2008) and
Mi et al. (2014) electrospun polyurethane composites with
micro and nano sized hydroxyapatite for dental and bone
tissue engineering applications, respectively. In their studies,
Khan et al. developed a novel composite material by chemi-
cally binding the HA particles to the diisocyanate component
of the polyurethane backbone through solvent polymerisa-
tion, whilst Mi et al. studied the effect of polymer properties
and particle size on electrospun PU–HA scaffold and reported
reduced tensile properties with the inclusion of micro HA

(mHA) and nano HA (nHA) particles, although the reduction
was more significant with the inclusion of mHA.

The aim of this study was to identify polyurethane solutions
that would create consistent microfibrous mats without beads
and irregularities at room temperature and to examine the effect
of incorporating HA particles into these scaffolds. Our hypothesis
was that HA would reinforce the mechanical properties of
polymers and improve the bioactive properties compared to
polymer-only scaffolds. Our long-term aim is to create a range of
scaffolds supportive of bone cell and matrix growth that can
withstand mechanical conditioning in vitro and mechanical
loading in vivo. In this study, we investigated the effect of
dimethylformamide (DMF) and tetrahydrofuran (THF) solvent
combinations on the fibre morphology and mechanical proper-
ties of electrospun thermoplastic polyether-urethane polymers
Z3A1 and Z9A1. We also investigated the effect of including nano
and micro size HA particles on fibre morphology, mechanical
properties, biocompatibility, extracellular and calcified matrix
production over a 28 day period using MLO-A5 osteoblastic
mouse cells and human embryonic mesenchymal progenitor
cells (hES-MPs).

2. Materials and methods

2.1. Polyurethane (PU) solutions

Two aromatic medical grade polyether–urethanes Z3A1 (Mn—
143,566 Mw—272,857) and Z9A1 (Mn—100KD Mw—197KD),
composed of 4,40-diphenylmethane diisocyanate, polyether
diol, and 1,4 Butane diol were obtained from Biomer Technol-
ogy, UK and dissolved in dimethylformamide (DMF) and
Tetrahydrofuran (THF) solvents (Sigma Aldrich, UK). 15 wt%
Z3A1 pellets or 27% Z9A1 pellets were dissolved in 100% DMF,
70/30 DMF/THF (v/v) or 50/50 (v/v) DMF/THF. These solutions
will be denoted as Z3-100, Z3-70, Z3-50, Z9-100, Z9-70, and
Z9-50 respectively (Table 1).

2.2. PU–HA composite solutions

For composite scaffolds, 15 wt% Z3A1 in 70/30 DMF/THF
(Z3-PU) PU solutions were doped with either sintered micro
HA (o5 mm, Captals S, Plasma Biotal, UK) or nano-sized HA

Table 1 – Parameters used in preparing electrospun scaffolds.

Name PU
(wt%)

HA
(wt%)

Volumetric
ratio of DMF (%)

Volumetric
ratio of THF (%)

Spin speed (rpm) Diameter of
rotating drum (cm)

Z9-100 27 0 100 0 150 6
Z9-70 27 0 70 30 150 6
Z9-50 27 0 50 50 150 6
Z3-100 15 0 100 0 150 6
Z3-70 15 0 70 30 150 6
Z3-50 15 0 50 50 150 6
Z9-PU 25 0 70 30 150 6
Z9-mHA 25 5 70 30 150 6
Z9-nHA 25 5 70 30 150 6
Z3-PU 15 0 70 30 300 8
Z3-mHA 15 5 70 30 300 8
Z3-nHA 15 5 70 30 300 8
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(o200 nm, Sigma Aldrich, UK) particles in a ratio of 3:1, PU:
HA and will be denoted Z3-mHA or Z3-nHA, respectively
(Table 1). For Z9A1 composites, 25 wt% Z9A1 in 70/30 DMF/
THF (Z9-PU) was doped with HA particles in a ratio of 5:1 PU:
HA and denoted as Z9-mHA and Z9-nHA. Note that this
concentration of PU in the Z9A1 (no HA) group is lower than
that used in the non-composite formulations described
above, This is because the 27 wt% PU solutions were too
viscous to enable adequate distribution of HA particles. In all
preparations, solutions were stirred with magnetic beads on
the UC151 ceramic plate stirrer at rotation speed of 500 rpm
for 24 h at room temperature.

2.3. Electrospinning

Solutions were placed into four 5 ml syringes with 20 gauge luer
stub adaptors and electrospun at a voltage of þ16.5 kV, a flow
rate of 3 ml/h and a tip to collector distance of 20 cm, at room
temperature. A mat of randomly orientated polymeric fibres
was collected on a sheet of aluminium foil wrapped around a
grounded metallic mandrel, rotating at rate of 150 rpm for all
scaffolds with the exception of Z3-PU, Z3-mHA and Z3-nHA
which were electrospun at a rotation speed of 300 rpm. After
electrospinning, the aluminium foil was removed and dried in a
vacuum oven at a negative pressure of 1020mbar for 12 h to
evaporate any remaining solvent.

2.4. Scanning electron microscopy (SEM)

SEM was used to examine morphological and topographical
details of electrospun scaffolds. Prior to imaging, samples
were mounted onto aluminium stubs using double-sided
carbon adhesive tabs (12 mm) (Agar Scientific, UK) and
sputter-coated with gold powder. Coated scaffolds were
imaged with secondary electrons at an accelerating voltage
of 20 kV, a spot size of 3.0 and a magnification of 1250� .

2.5. Mechanical testing

The mechanical properties of fabricated scaffolds were ana-
lysed in tension on a materials testing machine (ElectroForce
3200, Bose, USA). Rectangular samples with average dimen-
sions of 5 mm�20 mm were measured with vernier callipers,
mounted between two grips to give a guage length of 6 mm
and subjected to tensile strain at a rate of 1 Hz up to 100%
strain. Deformation was measured by the movement of the
cross-head and load measured using a 22 N load cell, the
resulting load/deformation curves were converted into stress/
strain curves by dividing by the sample bulk cross-sectional
area. Young's modulus was calculated as change in stress
divided by change in strain in the linear portion of the curve,
yield was defined as the point at which the load deformation
curve deviated from the straight line and yield strength was
defined as the stress at yield.

2.6. Fourier transform infrared spectroscopy (FTIR)

Chemical structural characterisation of the composites was
carried out using a Fourier Transform Infrared spectrometer
(FTIR) (Thermo Fisher Scientific Inc., USA) equipped with a

Photo-Acoustic (PAS) sampling cell, which allows analysis of
neat samples without the need for sample preparation. The
PAS cell was purged with helium gas. All spectra were recorded
at 4 cm�1 resolution, accumulating over a total of 256 scans.
The spectral data was acquired and processed using the
OMNIC7.4™ software.

2.7. Cell culture

All reagents were obtained from Sigma-Aldrich (UK) unless
otherwise stated. Prior to cell culture, electrospun scaffolds
were cut with the Epilog Mini 40 W Laser cutter (Epiloglaser,
USA) with vector settings at a speed of 80% and a laser power
of 6% into disks with a diameter of 1.6 cm and sterilised with
0.1% peracetic acid for 3 h at room temperature. The scaffolds
were washed with PBS. Using stainless steel rings, MLO-A5 at
passage 33 and hES-MP cells at passage 3 were seeded at
1.0�105 cells per scaffold and incubated at 37 1C in a humi-
dified environment with 5% CO2. The rings were removed
after 24 h and Dulbeccos Modified Eagles Medium (DMEM)
(Biosera, UK), supplemented with 10% foetal calf serum (FCS),
1% L-glutamine (L-G), 1% penicillin and streptomycin (P/S),
0.25% fungizone (F), 50 μg/ml ascorbic acid-2-phosphate and
5 mM βGP added to the scaffolds; media was changed every 2
days during the 28-day culture period. Media used for hES-MP
cells was also supplemented with 100 nM of dexamethosone
to stimulate osteoblastic differentiation.

2.8. MTT cell viability

MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide) colorimetric assay was used to investigate cell
viability 1, 4, 7, 14, 21 and 28 days after seeding. For each
assay, cell-seeded scaffolds were rinsed with PBS and MTT
solution at 0.5 mg/ml was added to each well and incubated
for a period of 40 min. The yellow MTT dye was reduced by
the mitochondrial reductase enzyme in living cells to purple
formazan after the incubation period; the formazan was
destained with 2 ml of 0.125% acidified isopropanol and
its absorbance read with the spectrophotometer at 562 nm
reference 630 nm.

2.9. DAPI and phalloidin staining

Four days after cell seeding, Z3-70 and Z9-70 scaffolds seeded
with MLO- A5 cells were stained with DAPI (40, 6-diamidino-2-
phenylindole dihydrochloride) nuclear stain and phalloidin
fluorescent conjugate cytoskeleton stains to visualise cell
attachment and cell morphology. The cells on the scaffolds
were fixed with 3.7% formaldehyde for 20min, washed with
PBS and permeablized with 1% Triton X-100 in PBS. The
scaffolds were then washed with PBS, 1% Bovine Serum
Albumin (BSA) was added as a blocking agent and then 1%
Phallodin was added. Scaffolds were then washed with PBS
and stained with 0.1 μg/ml of DAPI. Finally, scaffolds were
washed with PBS and visualised with a fluorescent image
analyser (AXON Instruments ImageXpress 5000A, USA).
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2.10. Collagen staining

Sirius red which binds to collagen was used to detect collagen
at days 14, 21 and 28. The Sirius red (Direct red dye from
Sigma-Aldrich, UK) solution was prepared by dissolving 1mg/ml
in saturated picric acid. Cell-seeded scaffolds were washed with
PBS and fixed with 3.7% formaldehyde for 20min, then washed
with distilled water. 1mg/ml Sirius red solution was added
to each well and samples were agitated on a platform rocker
at 30 rpm. After 18 h excess Sirius red solution was removed
and the scaffolds washed with distilled water. Samples were
allowed to air dry for 30min and photographic images taken for
qualitative analysis. For quantitative analysis, 0.2 M of NaOH and
methanol at 1:1 was used to destain Sirius red on a platform
rocker at 30 rpm for 24 h; the absorbance of the eluate was read
with the spectrophotometer at 490 nm.

2.11. Calcium staining

Alizarin red (AR) staining was used to detect extracellular
calcium deposition on days 14, 21 and 28 of culture. 1% w/v of
alizarin Red S (Sigma-Aldrich, UK) powder in distilled water
was used to stain MLO-A5 and hES-MPs seeded scaffolds for
two hours under dynamic rocking at 30 rpm. Prior to staining,
scaffolds were washed and fixed with 3.7% formaldehyde as
per the procedure described for collagen staining. Excess AR
solution was removed after staining and samples washed 3
times with distilled water. For quantitative analysis, 5% v/v
perchloric acid in distilled water was used to destain AR on a
platform rocker at 30 rpm for 24 h. The absorbance of the
eluate was read with the spectrophotometer at 405 nm.

2.12. Histology

Histological samples were taken as complete transverse-
sections across the centre of electrospun scaffolds. Samples
were fixed with 3.7% formaldehyde, soaked in 1% sucrose
solution and embedded in OCTTM compound media prior
to sectioning. Samples were cryo-sectioned at 15 μm and
stained with Haematoxylin and Eosin. Stained sections were
imaged with a light microscope with 20� objective.

2.13. Statistical analysis

All data are reported as mean7standard deviation. Comparison
of sample means of fibre diameter and mechanical analysis was
performed by one-way analysis of variance using GraphPad
Prism 6 software, whilst MTT cell viability, calcium and collagen
absorbance data were analysed by two-ways repeated measures
analysis of variance. Differences between two groups were
defined as statistically significant if pr0.05 as determined by
the Tukey's multiple comparisons post hoc test.

3. Results and discussion

Bone, the major load bearing tissue of the human body is
subjected to varying degrees of loading and unloading on
a daily basis. Hence, designing a scaffold for bone tissue
engineering requires a material that is mechanically

compatible, that should be able to undergo varying degrees
of deformation without rupturing. Polyurethane remains a
popular choice amongst polymers for its advantageous prop-
erties of biocompatibility, biodegradability, mechanical flex-
ibility and versatile chemistry allowing it to be tailor-made
for specific applications.

3.1. PU scaffolds

Microphase segregation, a key characteristic of thermoplastic
polyurethane elastomers occurs as a result of the thermody-
namic incompatibility of the hard and soft segments of PU and
is known to play a key role in the mechanical properties of PU.
Factors known to affect the degree of separation include
segment polarity, hydrogen bonding responsible for hard/soft
segment interaction, overall sample constitution and molecular
weight. Thermoplastic elastomers with different molecular
weights Z9A1 and Z3A1 but identical chemical structures and
composed of 4,40-diphenylmethane diisocyanate, polyether
diol, and 1,4 butane diol were dissolved in graded concentra-
tions of DMF and THF to study the effect of solvent combination
on electrospun fibre morphology and mechanical properties.
DMF and THF are popular solvents used in dissolving and
synthesising polyurethane (Khil et al., 2003; Tsui and
Gogolewski, 2009). These solvents differ in polarity, evaporation
rate, and conductivities, which are key parameters that affect
electrospinning and microphase segregation.

Scaffolds fabricated from solution containing 100% DMF had
more nano-diameter fibres and beads than other solvent
combinations of DMF and THF for both types of PU (Fig. 1).
Reducing the amount of DMF, by replacing with THF eliminated
the presence of beads and resulted in fibres with a more
uniform morphology for Z9A1 scaffolds, and a combination of
nano and micro fibres for Z3A1 scaffolds. For both types of PU,
scaffolds made from solutions containing 50% THF solvent had
fibres with significantly larger diameters to those fabricated
from 100% DMF and 70/30 DMF/THF combinations. We cannot
directly compare the effects of molecular weight (Z3A1 versus
Z9A1) in this study as spinning parameters were also slightly
different between these two sets of scaffolds. However in
general, Z3A1 dissolved faster and more uniformly than Z9A1
prior to electrospinning, presented with a more uniform visc-
osity and was easier to fabricate. Armentano et al. (2010)
reported that the solvent choice used in fabricating polymer
films influences several scaffold properties, including the het-
erogeneity of the surface structure, reorientation or mobility of
the surface crystal segment, as well as swelling and deforma-
tion. In our study, differences in electrospun morphology which
resulted from changing the amount of DMF contained in
solution is supported by the work of Oprea, (2005) who studied
the effect of N-methyl-2-pyrrolidone (NMP), DMF, toluene and
ethyl acetate on the properties of polymer films, and reported
differences in morphology and mechanical properties of films
fabricated from solutions containing NMP and DMF solvents.
They suggested that NMP was a better solvent than DMF for
developing polyurethane films. Wannatong et al., (2004) also
studied the effect of five different solvents on electrsospun
polystyrene (PS) and reported that DMF was the best solvent for
preparing beadless PS scaffolds. This is in contrast to what was
observed in our study, but these different results could be due
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to differences in concentration of solutions, molecular weights
and polymer choice, as PU and PS have different chemical and
physical properties.

3.2. PU–HA composites

Mimicking the ductile properties of collagen and the
strength of the mineralised phase of bone with PU

and HA particles combined in micro or nano composites
has been proposed for bone substitute materials for a
number of reasons. The elastomeric nature of PU serves
as a matrix, reinforced by the HA particles. Nano HA
and micro HA differ in several ways including surface area
and the degree of crystallinity which both affect overall
sample constitution. By including both particle types
in separate solutions, we were able to assess the effect

Fig. 1 – SEM images of electrospun (A) Z9A1 and (B) Z3A1 scaffolds synthesised with different combinations of DMF & THF
(scale bar¼20 μm), and (below) a histogram of the fibre diamter (n¼40).
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of particle size on fibre morphology and mechanical
properties.

Note that the PU scaffolds without HA for this set of
experiments were spun from a 70/30 solution of DMF/THF
because this enabled the best fibre morphology (without
beads), however the processing conditions for Z9-PU and
Z3-PU are slightly different from those used in the Z9-70
and Z3-70 groups (Table 1) so these are not expected to have
identical morphological and mechanical properties.

Electrospun 25 wt% Z9A1 and 15 wt% Z3A1 dissolved in 70/30
DMF/THF solvents showed relatively uniform fibre diameter
distributions. However, the inclusion of mHA and nHA particles
resulted in changes to fibre morphology. For both types of PU,
nHA particles with a higher surface area and smaller particle
size, blended well with PU and resulted in more uniform fibres
compared to composite scaffolds containing mHA particles,
which presented with a beaded morphology and generally
reduced fibre diameters (Fig. 2) but with some particularly large

Fig. 2 – SEM images of electrospun (A) Z9A1 and (B) Z3A1 PU (left column), mHA (middle column) and nHA (right column)
composite scaffolds (scale bar¼20 μm), and (below) a histogram of the fibre diamter (n¼40). Note that the axes for each
histogram are to different scales reflecting the varibility in fibre size between scaffold compositions and the histogram for
Z9-mHA excludes a single 35 μm fibre which is included in the mean values presented in Table 3.
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fibres. It is likely that the particularly large fibres contain large
chunks of mHA leading to a bimodal distribution of fibre size and
large standard deviation (Table 2). There was a single extremely
large fibre of 35 mm in the field of view examined which was not
included in the frequency plot (Fig. 2A) as it would have made it
difficult to visualise the rest of the data but this is included in the
fibre average diameter data (Table 2).

Reduction in fibre diameter with the inclusion of mHA
particles to create composites was also observed by Nirmala
et al. (2011) who electrospun nanofibrous polyurethane with
micro Calcium Chloride particles and by Mi et al. (2014) who
suggested that that mHA particles may have stretched the
polymer jets while the fibres were being deposited. The effect
of more fibres at a lower diameter and a few fibres at a much
larger diameter caused by the inclusion of mHA is much
less marked when the Z3A1 polymer is used, this may be
explained by smaller molecular weight and polymer chain
length of Z3A1 compared to Z9A1 and lower viscosity.

It has been reported that the higher surface area of nHA
compared to mHA enables better bonding between the nano-
sized HA particles and PU enabling greater reinforcement of
the polymer matrix and ultimately, enhancing mechanical
and functional properties of nanocomposites compared to
conventional microcomposites (Armentano et al., 2010). This
probably explains why the nHA fibres are much more con-
sistent in their size and morphology as the particles would be
better distributed within, and bound to, their polymer matrix.

3.3. FTIR characterisation

The polar nature of PU and HA makes FTIR characterisation,
which elicits differences in dipole moments, an ideal char-
acterisation technique for analysing the chemical composition
of composite scaffolds. The FTIR spectrum of polyurethane
is presented in Fig. 3A, and the combined spectra of PU–HA
composites are presented in Fig. 3B and C

For PU, the peak at 3325 cm�1 is attributed to the stretch-
ing v(N–H). The peak at 3121 cm�1 was the overtone of
1533 cm�1 and 3039 cm�1 attributed to the v(C–H) in benzene
ring. The peaks at 2940, 2857 and 2795 cm�1 were CH2 peaks
of the polyether. The peak at 2940 cm�1 was the asymmetric
stretching peak of CH2 and the peak at 2857 cm�1 was the
symmetric stretching of CH2. The carbonyl absorption region
was observed in between 1730 and 1700 cm�1, the carbonyl

absorption band classified into two peaks. The peak due to
bonded C¼O stretching was at 1701 cm�1 and the free C¼O
stretching appeared at 1730 cm�1. The peak at 1597 cm�1 was
assigned to v(C¼C) in the benzene ring and 1533 cm�1 was
the amide II δ (N–H)þv(C¼N). 1478 cm�1 was the weak CH2

peak and the 1413 cm�1 attributed to the strong v(C–C) in
benzene ring. The peak at 1310 cm�1 was assigned to amide
III δ(N–H)þv(C¼N), β(C–H) peak and δ(N–H)þv(C¼N) appeared
at 1225 cm�1. The region between 1103 and 916 cm�1 was
the v(CH2–O–CH2) of ether peak and 1018 cm�1 was the weak
β(C–H) in benzene ring. The peak at 817 cm�1 was the γ(C–H)
from butane diol. These observations were similar to those
reported by Khan et al. (2008) in their study of polyurethane
composites for dental restoration applications.

Fig. 3B shows the combined spectra of Z3-PU, Z3-mHA and
Z3-nHA at common scale, with emphasis on the hydroxyl,
carbonyl, phosphate and bending phosphate groups whilst
Fig. 3C shows the combined spectra in greater detail for a
wave number region of 1800�450 cm�1. The characteristic
peak of stretching O–H was observed at 3570 cm�1 (Rehman
and Bonfield, 1997). The bands at 1060, 961, 603 and 571 cm�1

were assigned to vibration of the phosphate group, PO4. The
peak at 1078 cm�1 was the triply degenerated vibration v3,
and 961 cm�1 was the non-degenerated symmetric stretching
mode v1, of the P–O bond of the phosphate group. The peaks
at 603 and 571 cm�1 were assigned to a triple degenerated
bending mode v4, of the O–P–O bond. The peak at 633 cm�1

was due to the phosphate v4 bending. The stretching O–H and
P–O (stretching and bending) peaks were not present in the
polyurethane spectrum. After mixing the micro and nano
hydroxyapatite in polyurethane, the appearance of charac-
teristic peaks of HA were observed and it was noted from the
shifting and appearance of new peaks in the region of 1100–
916 cm�1 that nano-HA with a higher surface area and more
crystalline structure was mixed better than micro-HA and
affected the shifting of peaks v3 P–O from 1078 cm�1 for
Z3-mHA to 1060 cm�1 for Z3-nHA. It has been mentioned in
the literature that the width and intensity of peaks in FTIR
spectrum have explicit dependence on the particle size.
As particle size increases, the width of the peak decreases
and intensity increases. The restoring force of nano particles
created by surface polarisation charge is responsible for the
frequency difference. The difference in the frequency of
vibrational modes is attributed to dipolar interactions,

Table 2 – Morphological and mechanical properties of Z9A1 and Z3A1 scaffolds with different solvent combinations
(mean7S.D., n¼40 for fibre measurements and 6 for all other measurements).

Electrospun Scaffolds Fibre diameter (μm) Thickness (mm) Young's modulus (MPa) Yield strength (MPa)

Z9-100 2.0673.09c 0.2770.02 60.09710.1b,c 2.1370.55c

Z9-70 1.5470.96c 0.2970.06 25.8974.54a 1.7370.79
Z9-50 3.4770.89a,b 0.3670.04 30.1170.78a 1.2770.29a

Z3-100 1.2571.56b,c 0.0670.01 18.5472.31b,c 1.5670.34b,c

Z3-70 1.9370.85a,c 0.1870.03 7.6170.76ac 0.7170.03a

Z3-50 2.8271.29a,b 0.1070.01 3.3871.25a,b 0.5070.04a

a Significantly different from scaffolds made from 100% DMF, at pr0.05.
b Significantly different from scaffolds made from 70/30 DMF/THF, at pr0.05.
c Significantly different from scaffolds made from 50/50 DMF/THF, at pr0.05.
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Table 3 – Morphological and mechanical properties of Z9A1 and Z3A1 scaffolds with different types of HA, (mean7S.D.,
n¼40 for fibre measurements and 6 for all other measurements).

Electrospun Scaffolds Fibre diameter (μm) Thickness (mm) Young's modulus (MPa) Yield strength (MPa)

Z9-PU 2.0170.80 0.3670.01 9.567 3.03b 0.6170.18b

Z9-mHA 2.8676.01 0.3070.01 88.69720.20a,c 3.0270.80a,c

Z9-nHA 2.9571.60 0.4270.02 10.2172.99b 0.7970.16b

Z3-PU 2.1870.51c 0.4370.09 2.4270.21b,c 0.2970.04b,c

Z3-mHA 2.6171.45c 0.3170.01 4.7770.29a,c 0.4670.03a

Z3-nHA 1.5670.63a,b 0.0970.01 3.0970.30a,b 0.5270.09c

a Significantly different from PU scaffolds, at pr0.05.
b Significantly different from scaffolds made with mHA, at pr0.05.
c Significantly different from scaffolds made with nHA, at pr0.05.

Fig. 3 – FTIR spectra of Z3A1 composites (A) stacked FTIR spectra of Electrospun Z3-PU, Z3-mHA and Z3-nHA. (B) Combined
FTIR spectra of Z3-PU, Z3-mHA and Z3-nHA at Common Scale with Hydroxyl, Carbonyl, Phosphate and bending Phosphate
groups highlighted as n, β, π and Φ, respectively. (C) Combined spectra of Z3-PU, Z3-mHA and Z3-nHA at common scale for a
wavenumber region of 1800�450 cm�1.
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interfacial effects, surface amorphousness, surface free
energy etc. (Mo et al., 1993; Martin, 1996; Bobovich, 1988).

3.4. Mechanical analysis of PU scaffolds

In general, Z9A1 scaffolds were stronger than Z3A1 scaffolds
and presented with higher mechanical properties for all
combinations of DMF and THF solvents. With identical
chemical structures, differences in the mechanical properties
of Z9A1 and Z3A1 probably resulted from the differences in
molecular weights, which would have affected the interac-
tion between the hard and soft segments, causing differences
in the microphase segregation.

Decreasing the proportion of DMF in the solvent reduced
Young's Modulus and strength of Z9A1 and Z3A1 scaffolds.
Z9-100 (100% DMF) showed a brittle stress-strain profile with
plastic deformation occurring at 30% strain (Fig. 4A). Z9-100
also had the highest Young's Modulus and yield strength,
significantly higher than those of Z9-50 for both properties,
however, only Young's Modulus was significantly higher than
that of Z9-70 scaffolds (Table 2).

A similar pattern was observed with the Z3 groups
(Fig. 4B). Values of Young's Modulus for Z3-100, Z3-70 and
Z3-50 were significantly reduced with less DMF in the elec-
trospinning solvent (Table 1). For both polymers these differ-
ences in mechanical properties are likely to be the result of
differences in fibre morphology (Fig. 1) which in turn may
have resulted from differences in the solvent properties of
DMF and THF. Beads present in scaffolds fabricated with
100% DMF solvent (Fig. 1) probably created short regions of

large fibre cross-sectional area, which would have caused
there to be a greater amount of material relative to void space
within the sample, which would in turn create an overall
stronger scaffold but with a reduced ability to undergo strain.

3.5. Mechanical analysis of PU–HA composites

Mechanical properties of composites are controlled by several
micro-structural factors such as the properties of the matrix,
the properties and distribution of fillers, interfacial bonding
strength, and processing methods. The interface strength
between PU and HA particles greatly affects the effectiveness
of load transfer from the polymer matrix to micro and
nanocomposites. For composite scaffolds, inclusion of HA
particles improved the tensile properties of both Z9A1 and
Z3A1 scaffolds, Young's Modulus and yield strength of com-
posite scaffolds were significantly higher than those of plain
PU scaffolds, for both Z9A1 and Z3A1. SEM images of electro-
spun composites (Fig. 2) show that nHA, with its smaller size
and higher surface area, properly integrated with the PU
fibres compared to mHA which can be seen sticking out of
the fibres and creating lumps and beads. Better mixing of
nHA particles with PU as compared to mHA particles was
also confirmed with FTIR for Z3-composites. We therefore
expected that the nano-composites would be stiffer and
stronger than the micro-composites However, for Z9A1,
both yield strength and Young's Modulus of mHA scaffolds
were significantly higher than those of Z9-nHA scaffolds.
Interestingly, the yield strength of Z3-nHA scaffolds was
higher than that of Z3-mHA, although not statistically

Fig. 4 – Example stress/strain curves of fabricated scaffolds, (A) effect of solvent combination on Z9A1 scaffolds, (B) effect of
solvent combination on Z3A1 scaffolds, (C) effect of HA particles on Z9A1 scaffolds, (D) effect of HA particles on Z3A1 scaffolds.
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significant. These differences in behaviour between Z9A1 and
Z3A1 composite scaffolds could have resulted from the
difference in the PU:HA ratio between Z9A1 (5:1) and Z3A1
(3:1) and the molecular weight of the polymers. Z9A1 is of
higher molecular weight and produces scaffolds that are high
in Young's modulus and strength but more brittle, the
addition of HA further increases the brittleness of the
electrospun scaffold. In contrast, Z3 is of lower molecular
weight and more flexible and the addition of HA, albeit at a
higher concentration that for Z9, has a smaller effect
on the properties of the electrospun scaffold. Molecular
weight and concentration and size of HA would all have
resulted in differences in interactions between solvents,
macromolecular chains of the polymer and the HA particles.
These difference in interactions have been reported to affect
microphase separation between the hard and soft segment
of PU, hence ultimately affecting its mechanical properties
(Oprea, 2005).

3.6. Cell viability on PU Scaffolds

The MLO-A5 mouse cell line has characteristics of a post-
osteoblast and pre-osteocyte cell type, and rapidly mineralises
in sheets rather than nodules. These cells have been used to
extensively study the osteoblast to osteocyte differentiation
process, bone mineralisation and the effects of mechanical
loading on biomineralization (Sittichockechaiwut et al., 2009,

Rosser and Bonewald, 2012). MLO-A5 cells were seeded on Z9A1
and Z3A1 PU scaffolds fabricated from solutions containing
varying combinations of DMF/THF solvents.

In general, cells were viable on all scaffolds during the 14
day culture period. Cells had similar viability on all Z9A1 on
day 1, indicating that, there were no differences in the cell's
ability to attach to scaffolds. Viability increased steadily from
day 1 to day 4 with similar values on Z9-100 and Z9-70
scaffolds between day 4 and day 7. On day 14 of culture, there
was no significant difference between MTT absorbance on
Z9-70 and Z9-100, however, cell viability on Z9-50 scaffolds
was significantly lower than that of Z9-100 and Z9-70
(pr0.05) (Fig. 5A). This could have been the result of mor-
phological differences in fibre diameter, as Z9-50 fibre diameters
were significantly larger than Z9-70 and Z9-100 scaffolds.

For Z3A1 scaffolds, there was a steady increase in cell
viability on all Z3-100, Z3-70 and Z3-50 scaffolds during the
culture period (Fig. 5B). There was however, no significant
difference between all groups of scaffolds, except that Z3-50
supported lower cell viability on day 4 (pr0.05). The ability of
electrospun scaffolds to mimic the natural three-dimensional
environment of the in vivo extracellular matrix whilst provid-
ing structural support with high surface to volume ratio makes
excellent structures for tissue engineering applications. It has
been reported that cells assume a more spindle-shaped
morphology with increasing fibre diameters and rather orient
parallel to fibres with aligned meshes (Bashur et al., 2009,

Fig. 5 – MTT absorbance for MLO-A5 cells seeded on (A) Z9A1 PU scaffolds, (B) Z3A1 PU scaffolds (mean7S.D. n¼6) for
statistical analysis see text. (C) and (D) Fluorescent micrographs of DAPI (blue¼nucleus) and phalloidin (red¼actin) staining of
MLO-A5 Cells on Z9-70 (C) and Z3-70 (D) scaffolds on day 4, scale bar at 100 μm. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Delaine-Smith et al., 2014). DAPI (nucleus) and Phalloidin
(actin cytoskeleton) staining over a seven day period con-
firmed the MTT data indicating increasing numbers of cells
attached to the scaffolds over time (data not shown). Fig. 5
shows representative micrographs of cell attachment on day 4
indicating that cells are well spread across the scaffolds with
an elongated morphology for Z9-70 (Fig. 5C) and Z3-70 (Fig. 5D)
scaffolds.

3.7. Cell viability on composite scaffolds

Hydroxyapatite (Ca10(PO4)6(OH)2), HA is well established as a
synthetic material for bone replacement due to its chemical
resemblance to the inorganic component of bone and tooth,
and has been widely used a biocompatible material in many
areas of medicine. HA is known to promote faster bone
regeneration and direct bonding to regenerated bone without
intermediate connective tissue (Patel et al., 2002).

For composite scaffolds, Z3A1 scaffolds consistently pre-
sented with a more uniform combination of nano and micro
fibre diameters and were less brittle than Z9A1 composites,
therefore Z3A1 was used to examine the effect on cell behaviour
of including HA in the scaffold. MLO-A5 cells seeded on Z3-nHA
scaffolds had the highest cell viability at all-time points after
day 1, being 22% higher by day 28 (Fig. 6A), this implies that cell
proliferation rate was higher on these scaffolds as MTT absor-
bance at day 1 was the same for all groups. This is similar to the
effects of nHA observed in previous studies (Rezwan et al., 2006;
Bianco et al., 2009; Mi et al., 2014) and probably resulted from the
bioactive nature of HA coupled with the higher surface area and
crystallinity of nHA particles. A high HA surface area facilitates
a strong interaction between the polymer and ceramic phase,
and allows protein attachment. For example, it has been
reported that initial calcium absorption to nanoceramic surfaces
enhanced binding of vitronectin, that subsequently promoted
osteoblastic adhesion and proliferation (Webster et al., 2001). It
might be expected that mHA would also elicit cell viabilities as
high as those attained by the nano-composites but that was not
observed for MLO-A5 in this study. This may have been due to
the lower porosity that was observed with the inclusion of mHA
particles, which could have hindered cell proliferation, migration,
and nutrient transfer.

To investigate the ability of these composites to support
progenitor cells, hES-MPs, embryonic derived mesenchymal
progenitor cells were also seeded on Z3A1 electrospun scaf-
folds in osteogenic media (Fig. 6B). hES-MPs have been used
in several studies as a model cell for bone tissue engineering
(Karlsson et al., 2009). In the presence of osteogenic supple-
ments, hES-MP cells have been shown to differentiate
towards the osteogenic lineage in vitro (Delaine-Smith et al.,
2012). Such mesenchymal progenitor cells also may have
advantages over autologous bone marrow derived mesench-
ymal stem cells for clinical tissue engineering as they are
readily available in large numbers and would avoid the
extraction and expansion steps needed to tissue engineer
bone from a patient's own cells.

As shown in Fig. 6B, there was an increase in hES-MP cell
viability over all time-points on Z3A1 scaffolds however, in
contrast to MLO-A5 cells; there was no significant difference
between Z3-nHA, Z3-mHA and Z3-PU scaffolds in their ability
to support cell proliferation. There is no obvious reason for
this different effect of nHA on cell proliferation of the two
types it but may be related to their different stages in the
osteogenic differentiation pathways.

3.8. Collagen and calcium staining and histology

The ultimate test of a scaffold's ability to support bone tissue
engineering is its ability to support bone-like extracellular
matrix deposition. Collagen and calcified matrix staining
using Sirius red and alizarin red, respectively were used to
study extracellular matrix production and mineralisation on
days 14, 21 and 28 of culture. Collagen production by MLO-A5
cells on Z3 scaffolds was highest for Z3-nHA scaffolds at all-
time points (Fig. 7A) with the highest deposition measured on
day 28, significantly higher than that produced on Z3-mHA
and Z3-PU scaffolds. This is the same scaffold that supported
the highest number of viable MLO-A5 cells. A similar pattern
was observed with hES-MP cells (Fig. 7B).

Interestingly, calcium production elicited results opposite to
those attained for collagen production. Alizarin red absorbance
on of cell-seeded Z3–PU scaffolds was higher for both MLO-A5
(Fig. 7C) and hES-MP cells (Fig. 7d) than for HA composite
scaffolds (after substraction of the background absorbance).
However, unsurprisingly, alizarin red strongly stained the blank

Fig. 6 – MTT absorbance on Z3A1 composite scaffolds (mean7S.D. n¼6). (A) MLO-A5 cells on Z3 PU, Z3-mHA and Z3-nHA
scaffolds, (B) hES-MP cells on Z3 PU, Z3-mHA and Z3-nHA scaffolds. For statistical analysis see text.
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(no cells) control scaffolds that contained HA. As this is a single
blank and not the same sample on which cells are seeded, any
variability in HA content between scaffold samples would have
made it more difficult to distinguish between the scaffold HA
and cell-deposited HA. It would be interesting to image miner-
alisation in the same scaffold over time using a technique such
as mCT scanning or Xylenol orange to determine if there was
truly less cell deposited calcium in composite scaffolds.

Histological sections were taken to examine how far MLO-A5
and hES-MP cells penetrated into the Z3 PU and composite
scaffolds by day 14 of culture, having been seeded at the surface
(Fig. 8). In general, MLO-A5 cells were densely distributed on the
surface of all scaffolds as compared to hES-MP cells which
exhibited thinner coverage in Z3-PU and Z3-mHA scaffolds and
were more loosely dispersed throughout the scaffold interior.
hES-MPs cells cultured on Z3-nHA scaffolds appeared to pene-
trate to the greatest depth and were found in more locations
compared to all other groups, although no cells were seen at the
bottom of the scaffold at this time-point. The lack of cell
penetration into the scaffold may have resulted from the low
porosity, pore size and interconnectivity of scaffolds associated
with the closely packed arrangement of the fibres. It is interest-
ing that hES-MPs appear to penetrate deeper than MLO-A5s,
which may be related cell size or differences in attachment and
migration cell surface molecules. This observation has also been
reported extensively in the literature as a major limitation of

traditional electrospun sheets (Bergmeister et al., 2013; Leong
et al., 2010). It would therefore be advantageous to increase the
porosity of electrospun scaffolds by opening up spaces between
the fibres. Electrospinning with a cryogenic mandrel, controlling
fibre deposition with air-flow impedance and electrospinning
with porogens, amongst others, have reported to enhance
scaffold porosity and cell penetration (McClure et al., 2012). It is
also possible to increase porosity by co-spinning polymer solu-
tions with a very fast degrading or water-soluble polymer
(Milleret et al., 2011), and using mechanical techniques such as
ultrasonication (Lee et al., 2011) and static stretch to force fibres
apart and thus facilitate greater cell penetration, nutrient diffu-
sion and transport of metabolic products.

4. Conclusions

Choice of solvents, on their own or in combination, strongly
influences the final properties of solution, hence fibre mor-
phology during the electrospinning process. Two types of
thermoplastic polyurethane Z9A1 and Z3A1 were electrospun
from solutions made with varying combinations of DMF and
THF solvents. For both types of PU reducing the amount of
DMF contained in the solution, increased fibre diameter,
resulting in fibres with a more uniform morphology, and also
eliminating the beads which were found in the scaffolds
fabricated from 100% DMF solvent.

Fig. 7 – Collagen and calcium Staining on Z3-PU, Z3-mHA and Z3-nHA scaffolds on D14, D21 and D28 (mean7S.D. n¼6).
(A) sirius red absorbance of MLO-A5 cells, (B) sirius red absorbance of hES-MP cells, (C) alizarin red absorbance of MLO-A5 cells
(D) alizarin red absorbance of hES-MP cells. npr0.05, nnr0.01, nnnnr0.0001. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In addition, reducing the DMF solvent content led to lower
tensile properties of electrospun scaffolds, whilst incorporation
of nano and micro HA particles in both Z9-PU and Z3-PU
solutions reinforced the mechanical properties of electrospun
composites. Young's Modulus and yield strength values of
composites were higher than that of PU scaffolds; these differ-
ences were significantly higher with mHA composites compared
to nHA composites but nHA composites exhibited smoother
fibres, less variability in fibre size and better dispersion of the HA.
Furthermore, FTIR spectral data confirmed the presence of HA
particulates in fabricated composites.

Finally, MLO-A5 cell viability was highest for scaffolds
fabricated with 70/30 DMF/THF solvent across most time
points for both types of PU, whilst cell viabilities for both
MLO-A5 and hES-MP cells, were highest with Z3-nHA scaf-
folds which also produced the highest deposition of collagen
across all time points. Calcium deposition was supported
in all scaffolds. Therefore, we have developed a range of
scaffolds which have the potential to support bone matrix
formation for bone tissue engineering, providing varying
material properties which can be tailored depending on the
stage of cell differentiation and final application.
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