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Measuring vulnerability of road network considering the extent of serviceability of 
critical road links in urban areas 

Chandra Balijepalli1 and Olivia Oppong2 

Institute for Transport Studies, University of Leeds, Leeds LS2 9JT England 

Abstract 

Road networks are vulnerable to natural disasters such as floods, earthquakes and forest fires 
which can adversely affect the travel on the network that remains intact after an event. 
However, not all road links equally affect the travel conditions in a given network; typically 
some links are more critical to the network functioning than the others. It is noted that the 
majority of the existing indices designed to measure vulnerability offer a good measure of 
network-wide accessibility in sparse regional networks, but they rarely consider the extent of 
serviceability of critical links in dense urban road networks. This paper describes a number of 
vulnerability indices from the literature, applies them to the case of urban network of York 
and discusses the results. It proposes a new vulnerability index considering the serviceability 
of road links and illustrates its computation. Finally, this paper uses the results of the new 
vulnerability index and outlines a traffic diversion plan in the event of flooding in York using 
traffic network modelling techniques combined with Geographic Information Systems (GIS) 
application.    

Key words: Vulnerability, degraded network, serviceability, emergency response plan, traffic 
diversion plan, traffic network modelling, GIS 

1. Introduction 

Road networks are vulnerable to natural disasters such as floods, earthquakes and forest fires 
which can cause immense damage to the infrastructure resulting in adversely affected travel 
on the degraded network. Typically after the occurrence of an event some places become less 
accessible e.g. following a bridge collapse due to an earthquake in Kobe (Chang and Nojima, 
2001), structural damage after an earthquake in Haiti in 2010 (Bono and Gutierrez 2011) or 
after a heavy snow fall or even during/after a forest fire. Studying and analysing vulnerability 
of road networks will help in prioritising the planning, budgeting and maintenance of roads 
and also will be useful in preparing emergency response plans.  

It is noted, however, that not all road links of a network are equally critical to its functioning, 
that is, to say, some links have a greater impact on network flows than the rest. Therefore it is 
very important to analyse the vulnerability of a network considering the importance of the 
roads within. The importance of analysing vulnerability caught the attention of researchers 
especially in the past 6-10 years due to an evident increase in the frequency of natural 
disasters over the past decade or so (Taylor et al 2006). There is a good volume of literature 
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available on the vulnerability of road networks with some valuable research methods 
described. Some of the methods developed were based on accessibility measures (Taylor et al 
2006) which analysed the vulnerability in sparse regional networks. Some others have been 
based on network topological measures e.g. Latora and Marchiori (2001).  Then there are 
methods which consider the importance of the links and analyse the impact of complete 
disconnection (Jenelius et al 2006) and the consequences of geographical disparities (Jenelius 
2009). Whatever the approach, all methods focus on accessibility in sparse networks and rely 
on considering complete link failures to arrive at an indication of the vulnerability of the 
network.  In contrast, we are interested in studying the vulnerability of dense urban road 
networks which pose new challenges as accessibility alone may not be the central issue 
anymore (due to a large number of alternative routes being available), but it is the importance 
of the road link to the functioning of the network that will need greater attention. Moreover, 
in real life situations, after an event, roads may not always become completely unusable, but 
they may still be partially available for use. This then raises several questions – (i) whether 
the indices developed in the past are indeed suitable to the context of denser urban networks; 
(ii) if so do they consider the importance of the road links within; and, finally (iii) do they 
allow for analysing partially available roads as against completely damaged ones?  

In this paper, firstly, we set out to investigate the indices known from the literature and aim to 
answer the questions raised. Secondly, we introduce a new measure to analyse the 
vulnerability of a road network considering the importance of the roads. Road networks 
usually follow a scheme of hierarchy e.g. Motorways, A-roads, B-roads and C-roads in 
England (DfT 2012a) based on the significance of their functioning and in this paper we aim 
to capture the importance of the roads based on their hierarchy. We also aim to make the new 
measure flexible enough to consider both partially and fully damaged roads. This allows the 
new vulnerability measure applicable in practical real life situations and it also allows for 
many possible ‘what-if’ scenarios to be built and tested. 

Studying and analysing vulnerability will help in developing the mitigating measures. The 
analysis of vulnerability has far wider applications such as in planning and maintaining road 
networks, prioritising and budgeting, preparing for emergency response (Walker et al 2004). 
In this paper, as an example, we develop an outline plan to divert traffic in case of an urban 
network under flooding. The diversion plan prepared uses traffic assignment modelling 
technique together with Geographic Information System (GIS) and is aimed at maintaining 
connectivity as well as minimising the travel time on the degraded network.   

This paper is set out in six sections including this one. Section 2 reviews the literature 
identifying the relevant approaches to analysing vulnerability of road networks. Section 3 
introduces the new measure of vulnerability. Section 4 describes the case of York introducing 
the geography and flood prone roads in York. Section 4 also describes the steps involved in 
computing the vulnerability indices. Section 5 illustrates the indices and analyses the 
consequences of road failures. Section 5 also outlines a traffic diversion plan aimed at 
maintaining connectivity during floods as well as minimising the travel time on the degraded 
network. Section 6 concludes the research work reported in this paper.  
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2. Literature review 

This section defines the term vulnerability and then presents an overview of the network 
vulnerability indices before specifying them with mathematical notation in the later part of 
the section.  

2.1 Definition of vulnerability, serviceability and criticality 

Many authors suggest that there is no single definition suitable for vulnerability but it must be 
defined in the context of an event (Jenelius et al., 2006; Einarsson and Rausand, 1998; 
Holmgren, 2004; Berdica, 2002). Laurentius (1994) described vulnerability as “susceptibility 
for rare, big risks” while Holmgren (2004) defined it as “sensitivity to threats and hazards”.  

The term risk can be considered as containing two components – the probability of an event 
occurring and the consequences arising due to the event (Berdica 2002). It is well known that 
the probabilities are difficult to estimate as they are based on historic information which 
assumes the circumstances around an event remain the same at all times. On the other hand it 
is very important to be able to assess the consequences of an event as they affect daily life, 
business and economy.  In this paper we aim to focus on the consequences rather than the 
probabilities. 

Taylor et al (2006) considered the vulnerability from the point of view of reduced 
accessibility, which is very similar to the definition followed by Jenelius et al., (2006). In this 
paper we follow the definition of Berdica (2002), “vulnerability as the susceptibility to 
incidents that can result in considerable reductions in road network serviceability” which has 
been widely used since then. Berdica (2002) also defines similar term robustness as the 
“ability to cope with disturbing incidents” which relates to the term vulnerability by 
definition, i.e. a network which is less robust is considered as more vulnerable. Furthermore, 
serviceability of a link is defined as the possibility to use that link during a given period 
which then relates to the possibility of partial degradation of roads. Finally, if the 
consequences of a link being affected are great then the link is considered critical to the 
network.    

Based on the definitions, a number of vulnerability measures have been developed which are 
outlined in the next few paragraphs. 

2.2 Specification of vulnerability indices 

This section specifies a series of indicators to measure the vulnerability of road network, to 
facilitate investigating their suitability in case of an urban network set out in a later section.  

The literature on vulnerability indices can be broadly grouped into the distance-based and the 
cost-based approaches. Indices based on travel distance are relevant to sparse regional 
networks where if a link is blocked drivers may need to take longer detours to reach their 
destinations. On the contrary, in dense urban networks usually several alternative routes are 
available, and moreover, it is well known that drivers often prefer quicker routes which need 
not necessarily be shorter in distance terms. Hence the indices such as Hansen’s Index 
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(Taylor et al 1996) and the Efficiency Measure (Latora & Marchiori 2001) which are based 
purely on distance are considered unsuitable for measuring vulnerability of dense urban road 
networks and for this reason we omit them from further discussion in this paper.   

Now, consider a network of links serving Origin-Destination (OD) demand represented by 

 ,......., kqQ  where kq is the demand for a particular OD pair k. Let A be the set of links 

indexed a = 1,2,…A. The link travel times t are assumed to be function of link flows. Thus if 
xa denotes the flow on link a (a = 1,2,…A) with x the A-vector of flows across all links, then 
the travel time t on link a is denoted ta(x). Let N be the number of nodes on the network. 
With this basic notation we now specify the measures of vulnerability as defined by various 
authors.  

2.2.1 Travel cost-based vulnerability measures 

 M1: Change in generalised cost measure (Taylor et al., 2006) 

The generalised cost, a measure of disutility of travel usually measured in terms of a 
combination of distance travelled and time spent, is used as a measure of accessibility. The 
index Ta measures the change in generalised cost between when a link is intact and when the 
link is removed and is defined as follows; 

௔ܶ ൌ σ ௞οܿ௞௔௞ݍ          (1) 

where, οܿ௞௔ ൌ ܿ௞ െ	 ǁܿ௞௔ change in generalised cost for OD pair k when link a fails ܿ௞= least path cost for OD pair k  ǁܿ௞௔= least path cost for OD pair k when link a has failed 

 

M2: Network efficiency measure (Nagurney and Qiang, 2007) 

The Nagurney and Qiang transportation network efficiency measure  ߝ	ሺܩǡ ܳሻ for a given 
network of topology G and origin destination demand Q is defined as ߝ	ሺܩǡ ܳሻ ൌ 	σ ௤ೖ௖ೖ௞ ݊௞ൗ          (2) 

where, ݊௞ = number of OD pairs 

Eq (2) represents the average number of trips per unit cost and represents the efficiency of the 
network in terms of traffic to cost ratio. The higher the traffic handled per unit cost, the more 
efficient the network is.    
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M3: The importance measure (Jenelius et al., 2006) 

The importance measure assumes that all drivers are forced on a more expensive route when 
an event causes the disruption or closure of a link or a group of links. Their behaviour is 
described by the user equilibrium principle where the route choice is meant to minimise 
personal travel cost. Following from (1) the basis for the measure is the change in the cost of 
travel and this is defined as below. 

The importance of a ‘non – cut’ link a, which is where a link closure will only cause a finite 
increase in travel cost with regard to the whole network and is defined as 

ሺܽሻ	݁ܿ݊ܽݐݎ݋݌݉ܫ	 ൌ 	σ ௞σ	௞ο෢ܿ௞௔ݓ ௞௞ݓ  

           (3) where	 ݓ௞	 ൌ weight	assigned	to	OD	pair	k	that	reflects	its	significance ο෢ܿ௞௔ ൌ	െοܿ௞௔ 

In this paper the authors assume that the weight assigned to OD pair is equal to the demand 
for travel which provides the ‘social and economic’ context to the vulnerability index 
(Jenelius et al 2006) and it is this index that we report as indicator M3.  

M4: Network Robustness Index (Scott et al., 2006) 

The network robustness index (NRI) is defined as “the change in travel time cost associated 
with rerouting all traffic in the system should that segment become unstable”. This index is 
based on capacities of individual links and considers the rerouting options for the origin 
destination pair using the link. It then uses the travel time to measure the cost of rerouting the 
traffic should a link be completely removed. It assumes that the disruption will cause a 
complete closure of the link and that drivers follow user equilibrium in route choice. The 
system cost of travel for when all the links are intact is also calculated and the difference is 
the NRI.  

The system travel cost for the base case when all the links are intact denoted as C (an 
aggregate of flow-based link travel times) which is defined as 	ܥ ൌ σ ௦௦ݔ	௦ݐ           (4) 

Then the Network Robustness Index for link a	is defined as, NRIୟ	 ൌ	ܥሚ௔Ȃ C         (5) 

where, ܥሚ௔ = total cost of travel on the network when link a is removed 
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2.2.2 Critical review of cost-based vulnerability indices  

The set of indices M1 to M4 reflect the overall accessibility of a network as measured by 
either the change in generalised cost on the network, or in efficiency terms e.g. the demand 
(trips) per unit cost. They are all useful measures to reflect on the network-wide impact of a 
link closure. However, the measures M1- M3 seem too restrictive in implicitly assuming that 
all trips are routed through the least cost path for each OD pair which is appropriate for a 
sparse regional network wherein alternative routes usually are too long or may not even exist 
in some cases. On the other hand, in dense urban networks travel patterns are much more 
complex as each OD pair is usually served by more than one route. Usually drivers will be 
able to find an alternative route if a road link on their regular route is affected. That is to say 
that the extent to which the affected road can influence the travel on the rest of the road 
network due to possible traffic diversions plays a significant role in measuring the 
vulnerability in an urban network. Thus the modelling method needs to be based on multi-
path routing rather than the least cost-based routing. Furthermore, a given road may be 
partially available to service the traffic demand even after an event as opposed to a complete 
link failure as assumed by the measures in the literature. The least cost-based structure of the 
measures M1-M3 means it is very difficult to adopt them to model the effect of partial loss of 
road capacity. Finally, it is noted that M4 considers the effect of rerouting of traffic on the 
network, therefore it is free from the least cost path effect. We introduce a new measure of 
vulnerability based on a multi-path routing approach which considers the link flow, travel 
time akin to M4, but also taking into account the serviceability, hierarchy of each link as 
described further in Section 3.  

2.3 Review of traffic diversion plans  

Modelling the performance of a network under degraded conditions is essential in transport 
planning for developing mitigating measures. It helps the planners understand how the 
network can absorb disturbances, and also how to deal with and adapt so that the road 
network retains essentially the same function, structure and identity (Walker et al., 2004). In 
the face of network link failures, road users are either to make detours, change their mode and 
destination or reduce trip activities (Erath et al., 2009). In this paper we focus on rerouting of 
traffic rather than modal shift and destination choice. Many studies e.g. Zhou (2008) and Wei 
& Perugu (2009) use computer simulation technique to evaluate the traffic diversion plans 
which include traffic signal timing optimisation on diverted routes but exclude route choice 
of network traffic. Our approach differs from these studies and focuses on rerouting of traffic 
involving route choice of drivers.   

It is known that the route choice behaviour of drivers in such situations follows various 
equilibriums. These include stochastic user equilibrium; used to represent uncertainties 
(Asakura, 1999), user equilibrium (Scott et al., 2006) and Probit-based stochastic user 
equilibrium (Sumalee and Kurauchi, 2006). There is another behaviour known as the 
Probabilistic User Equilibrium (Lo and Tung, 2003) which is similar to the user equilibrium 
but is based on past experience with a variability in travel time and aims at minimising user 
travel cost. In this research we aim to minimise the overall travel time on the network by 
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following the system optimal principle (Wardrop 1952). We believe that this is a reasonable 
assumption because in a degraded network drivers are unlikely to have perfect knowledge of 
network travel times and hence tend to look for guidance on the routes to their destinations.  

3. The new vulnerability index 

This section introduces a new measure of vulnerability which considers the serviceability, 
hierarchy of road links. It also considers the possibility of detouring when a road link is 
partially or fully blocked due to an event.  

M5: Network Vulnerability Index 

The Network Vulnerability Index (NVI) takes into account the serviceability and importance 
of each road link on the network and is defined as below: 

ܫܸܰ ൌ 	σ ቈቆ௫೔್ ೐೑೚ೝ೐௥೔್ ೐೑೚ೝ೐ቇ ௜௕௘௙௢௥௘቉ݐ െ	ȁ஺ȁ௜ୀଵ σ ቈቆ௫೔ೌ ೑೟೐ೝ௥೔ೌ ೑೟೐ೝቇ ȁ஺ȁ௜ୀଵ	௜௔௙௧௘௥቉ݐ     (6) 

where, 

r i = serviceability of link i, that is the total available capacity of link i / standard hourly link 
capacity per lane for the given type of road ȁܣȁ = number of elements in set A i.e. the number of links on the network  

In equation (6) r i the serviceability of link i is calculated by dividing the total available 
capacity of the link with the standard hourly maximum flow rate (i.e. capacity) per lane for a 
given type of road. The total available capacity of a link is obtained by summing the capacity 
of all operational lanes available. The standard hourly flow rate per lane is adopted from the 
DfT’s Transport Analysis Guidance (DfT, 2012b) which depends on the hierarchy of a road 
and is taken as a surrogate to represent the importance of a link. The value of r reduces when 
a road link is affected by an event such as flood as the effective capacity available after the 
event is reduced. The above index means a higher loss of capacity on a major dual 
carriageway road carrying large volume of traffic is likely to have a greater significance to 
the value of M5. Equally a higher loss of capacity on a two lane undivided road will also 
affect the value of M5 significantly. The index also allows for partial degradation of a link 
i.e. some proportion of the initial capacity might be lost after an incident thus allowing the 
modellers a scope to build several possible ‘what-if’ scenarios. When a link fails completely, 
the affected link is removed from the network and the calculation of M5 is completed as 
before.    

4. Urban area of York: geography, road network, data needed and the 
methodology 

This section introduces the geography of York, identifies the important road links of the 
network, and then describes the steps involved in computing the vulnerability indices M1-
M5.  
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4.1 Geography of York 

The city of York, with an estimated population of about 198,081 (2011 census) lies on the 
confluence of the Rivers Ouse and Foss in the Vale of York in North Yorkshire in England 
(See Figure 1). The city and its surrounding areas are bounded by the Pennines and North 
York moors on the west and east respectively. The city and the Vale of York is known for its 
valuable agricultural land, rich history and buildings and attracts tourists annually with traffic 
volumes increasing significantly as compared to the national average. However, most of the 
city is located in floodplains. This combined with heavy rainfall events and snow melting 
from the Pennines makes York prone to perennial flooding from the Rivers Ouse and Foss 
even though the city has extensive flood defences. The city experienced its recent worst flood 
since 1625 in the year 2000, when River Ouse reached 5.5m above its normal level of 5m 
Above Ordinance Datum (AOD) and burst its banks ( (Dennis et al., 2003)). This came with 
disruptions to transport network, destruction of property and a huge blow to the local 
economy as the city came to a halt for almost three days. It is estimated that about 540 
properties were flooded, 320 seriously at risk and 18,700 hectares of agricultural land was 
affected. 
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Figure 1: Location of York showing density of wards and output areas 

Source: UK data service, 2001 census  

4.2  Road network 

The city centre is surrounded by an inner ring road (A1036), and seven major radial roads 
(e.g.A19 and A59, A1079 etc.) connect the city centre with the outer ring road (A64/A1237) 
and beyond thus providing access within, to and from the city to neighbouring towns and 
cities (See Figure 2). In order to identify critical road links, one can rigorously put every link 
of the network to a test e.g. as in El-Rashidy & Grant-Muller (2014), Scott et al (2006) which 
is computationally intensive especially in large-scale congested networks as described in 
Chen et al (2012). In contrast one can also learn from the history and use the information 
available to make informed decisions after putting them to further testing. The city of York 
got flooded several times in the past affecting different parts the transport network. The 
Environment Agency (2009) has compiled a list of roads (See Table 1) identifying them as 
prone to frequent flooding which we use as the starting point in our paper to illustrate the 
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consequences and thus identify the most critical road links in the network. Figure 2 identifies 
the flood prone road links.  

Table 1: Roads prone to flooding 

Road  Coded as Description 
Fulford Road R1 Fulford Road is a major A road in York and forms part of the A19 which 

runs from Seaton Burns in the north to Doncaster in the south.  It is also 
one of the main radial routes in the city and had an estimated annual traffic 
volume of about 7,352,000 vehicle kilometers (DfT, 2012c). It also has an 
estimated average daily flow of about 17061 vehicles per hour (DfT, 
2012c). 

Tower Street R2 Tower Street is located at the end of the Bishopgate street bridge and has 
both A and B classification. The A section forms part of the A1036 road 
and the B section, the B1227 road. 

Leeman Road R3 Leeman Road is located near Railway station. It links the Station Road 
with Water End and provides the access to the west from the train station. 

Huntington Road R4 Huntington Road is one of the minor roads that connects the ring road 
A1237 with the city centre. 

Naburn Road R5 Naburn Lane is a B road which forms part of the B1227 taking traffic from 
the city onto the A1 motorway. 

Monk Cross Link R6 This road is also a minor road, linking the A1237 and the radial route 
Malton road/A1036. It serves as a by-pass for traffic avoiding the 
interchange at intersection of the A1237/164 roads. 

Bishopthorpe Road R7 This road is an A-road that forms part of the A59 that runs from Wallasey 
in Merseyside to York. 

Skeldergate Road R8 This a local street that connects the Low Ousegate and Bishopgate St. 
bridges at the west side of River Ouse. 

Salisbury Terrace R9 This road connects to the Water End bridge and proves the east side 
connection to the railway station. 

Knavesmire R10 Knavesmire Road is a minor road that links the A1036 Tadcaster road and 
the Bishopthorpe road. 

 



11 
 

 

Figure 2: Road network and flood prone road links  

4.3 Data needed for computing vulnerability indices  

This section describes the model set up and the steps involved in computing the vulnerability 
indices. As noted earlier in section 2.2.2, urban networks are much more complex as the 
drivers have many alternative routes available to travel from an origin to a destination. More 
so as the route choice of drivers depends on the expected generalised cost of travel based on 
the travel time as well as the distance to their destination. Wardrop’s (1952) principle of user 
equilibrium, which states that the cost of travel on all used routes for each OD pair will be 
equal in a congested network, offers a useful benchmark to compare the costs between 
network intact and network degraded conditions. In order to solve for user equilibrium route 
choice of drivers, we have set up a network model using SATURN software (Van Vliet & 
Hall 2004) which requires two main input data items – (i) coded road network of York and 
(ii) a trip matrix of York representing the demand for travel between OD pairs. Entire road 
network of York has been coded as road links and junctions (Figure 3). Travel time on road 
links is assumed to vary with the flow level following the standard Bureau of Public Roads 
style speed – flow relationship. The city of York has been divided into 219 zones based on 
census wards and each zone is connected to the nearest road by a dummy link to allow the 
incoming /outgoing trips to/from the zone. The OD matrix thus has 219 zones to it, with a 
possible maximum of 219×219 OD pair combinations.     
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Figure 3: Modelled road network  

4.4 Method for computing vulnerability indices  

Computing the vulnerability indices M1, M2, M3 requires the knowledge of travel cost by the 
least cost path which can be obtained by ‘skimming’ (or simply adding) the link costs along 
the shortest path for each OD pair. But as the measures M4, M5 are based on multi-path 
approach, they require the knowledge of link flows and link travel times for all network links. 
Besides, M5 also requires the information on the number of lanes available for operations 
both when the network is intact and when it is degraded. The steps involved in computing 
M1-M3 and M4-M5 are listed separately as below: 

Procedure for computing the measures M1,M2,M3: 

1. Set up a network based model and assign the OD demand to shortest cost path. 
2. Produce the skim cost matrix. 
3. Repeat the steps 1,2 above with the network link degraded i.e. after removing the 

affected critical link. 
4. Apply the equations (1), (2), (3) to compute measures M1, M2, M3 respectively for 

the particular critical link removed. 
5. Repeat the steps 3, 4 from the above for each of the critical links. 
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Procedure for computing the measures M4,M5: 

1. Set up a network based model and assign the OD demand to multiple routes based on 
user equilibrium principle. 

2. Extract the link flows and link travel times from the assignment. 
3. Repeat the steps 1,2 above with the network link degraded i.e. after removing the 

affected critical link. 
4. Apply the equations (4)-(5), (6) to compute M4,M5 respectively for the particular 

critical link removed. 
5. Repeat the steps 3, 4 above for each of the critical links. 

 

4.5 Method for preparing a traffic diversion plan   

Steps involved in preparing a traffic diversion plan are outlined as below: 

1. Assign the traffic to the network when it is intact to establish the normal routing 
pattern. 

2. Identify the origin destination (OD) pairs which normally would use a critical link. 
This step is carried out by using the Select Link Analysis technique which enumerates 
all OD pairs that use a given link.  

3. Then remove the affected link and reassign the traffic to the remaining network. This 
step establishes the routes for all OD pairs if the affected link is not available.  

4. Identify those routes in Step 3 used by the OD pairs noted in Step 2. 
5. Compare the routes in Step 4 with those in Step 1 to identify where the diversions are 

necessary.   
 

5 Numerical results 

The main purpose of this section is to illustrate the indices M1-M5 described in sections 2,3 
with the urban network of York introduced earlier. Our modelling approach is similar to that 
of many others e.g. Jenelius et al (2006) and considers the demand to be inelastic i.e. the 
demand remains constant even if the OD costs change. This is a reasonable assumption when 
a single link fails at a time especially as we are considering the peak hour travel involving 
daily commuting, but when many links fail simultaneously, there may be an uncertainty 
associated with the traffic demand which may need an approach as described in Kurauchi et 
al (2009). However, in this paper we follow a deterministic approach and assume that the 
demand is fixed, which has the advantage of comparable total traffic flows across various 
scenarios involving different link failures and even across alternative vulnerability measures. 

5.1 Analysis of vulnerability with fully blocked roads 

The procedure described in Section 4.4 for computing the measures M1 to M5 was applied to 
the urban network York, which resulted in a series of values for indices which are spread 
widely in terms of their scale. For example, M1 is in the order of hundreds of thousands, and 
M2, M3 are less than ten while the others fall in the middle somewhere (See Table A1 in 
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Appendix A). In order to bring them to a similar scale and to build a sense of comparison, we 
have worked out percentage values of each index relative to its base case i.e. when the 
network is intact. The exact specification of the indices expressing each as a proportion 
relative to the respective base value is given in the Appendix B. While building the reference 
set, it is noted that the base value of each indicator needed is identical whichever link it 
pertains to (See Table A2 in Appendix C) because the base value refers to the entire network 
and not to any particular link within the network. Finally the proportionate values of indices 
M1 to M5 (See Table 2) considering failure of links R1 to R10 each in turn have been arrived 
at by applying the equations A1 to A5 shown in Appendix B.     

Table 2:  Proportionate values of vulnerability indices for critical roads (rank in 
brackets) 

Inde
x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

M1 
-64% 
(=1) 

-23% 
(=4) 

-32% 
(=2) 

-23% 
(=4) 

-11% 
(=8) 

-18% 
(=5) 

-30% 
(=3) 

-14% 
(=7) 

-16% 
(=6) 

-11% 
(=8) 

M2 
84% 
(=1) 

88% 
(=4) 

86% 
(=2) 

87% 
(=3) 

91% 
(=7) 

88% 
(=4) 

89% 
(=5) 

89% 
(=5) 

90% 
(=6) 

91% 
(=7) 

M3 
64% 
(=1) 

23% 
(=4) 

32% 
(=2) 

23% 
(=4) 

11% 
(=8) 

18% 
(=5) 

30% 
(=3) 

14% 
(=7) 

16% 
(=6) 

11% 
(=8) 

M4 
28% 
(=1) 

10% 
(=4) 

13% 
(=2) 

9% 
(=5) 

1% 
(=9) 

7% 
(=6) 

11% 
(=3) 

3% 
(=8) 

6% 
(=7) 

1% 
(=9) 

M5 
-6% 
(=1) 

-1% 
(=4) 

-3% 
(=2) 

-2% 
(=3) 

-2% 
(=3) 

-1% 
(=4) 

0% 
(=5) 

-2% 
(=3) 

-1% 
(=4) 

-1% 
(=4) 

 

In order to interpret the results in Table 2 we need to consider the meaning and sense of each 
of the measures. While M1,M2,M3 are based on a change in the OD costs by the least cost 
path, M4,M5 compute the total cost of travel on the entire network based on the link costs 
and link flows. It is also noted that while increasing values of M1,M2,M5 make the network 
less vulnerable, decreasing values of M3, M4 make the networks robust. In order to help 
comparing the results, we have introduced a simple ranking of criticality (shown within the 
brackets) identifying the relative position in terms of vulnerability (1= most vulnerable,..,9 = 
least vulnerable).  Firstly, it is interesting to note that all indices M1 to M5 consistently 
identify the link R1 as being the most critical road link. It is also noted that the second most 
critical link (R3) is also consistently identified across. Furthermore, link R2 is also consistent 
at fourth place across the measures, the other rankings however vary depending on the 
indicator chosen. Secondly, it is noted that the values of M3 and hence the rankings have 
turned out to be identical to M1 (except the sign) as the weights used by both the indices are 
identical. Thirdly, M5 recognises the serviceability and hierarchy of each link – thus a link 
with low serviceability and high importance makes it a highly critical ink (e.g. R1). Equally, 
the measure is also able to identify a minor road (e.g. R3) as critical to the network as it 
considers the serviceability of each link. Finally the significance of results in Table 2 means 
that Fulford Road (R1) in the south and Leeman Road (R3) in the west are the two most 
important roads in York and if affected due to an event they need to be recovered ahead of 
any other road. In Section 5.3 later we discuss the diversion plans for the two most critical 
links identified.         
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5.2 Analysis of vulnerability with partial loss of road capacity and implications to 
network planning/operations 

The main purpose of this section is to illustrate the use of the new M5 when road links are 
partially damaged after an event. For example, a road link could get partially flooded and 
probably a lane becomes unusable due to standing water on the carriageway. Equally, it could 
be due to a broken-down vehicle partially occupying a lane or could be even closing of a lane 
due to road works by the local authorities leaving the rest of the carriageway for the motorists 
to use. In order to illustrate the index with a partial loss of capacity, we have developed two 
test scenarios relating a flood category to the road capacity. The first scenario assumes a 
minor flood which when occurs, 20% of the road capacity would be lost thus reducing the 
available capacity of the link to 80%. Second scenario considers a moderate flood which 
could cause a 50% reduction to the capacity of the affected road. The loss to road capacity in 
each scenario was applied to each of the critical road links R1 to R10 in turns and the 
measure M5 was recomputed. The results of these tests for the two test scenarios are 
summarised in Table 3. 

Table 3: M5 with partial loss of road capacity (rank in brackets) 
Test 

scenario R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

20% 
loss of 

capacity 
-0.23% 

(=1) 
-0.02% 

(=7) 
-0.05% 

(=4) 
-0.08% 

(=2) 
-0.04% 

(=5) 
-0.04% 

(=5) 
-0.05% 

(=4) 
-0.02% 

(=7) 
-0.06% 

(=3) 
-0.03% 

(=6) 
50% 

loss of 
capacity -2.25% 

(=1) 
-0.03% 

(=8) 
-0.08% 

(=4) 
-0.32% 

(=2) 
-0.29% 

(=3) 
-0.06% 

(=5) 
-0.06% 

(=5) 
-0.04% 

(=7) 
-0.11% 

(=4) 
-0.05% 

(=6) 

 

The results in Table 3 present a consistent pattern of M5 with respect to the loss of capacity 
i.e. the higher the loss of capacity, the greater the absolute value of M5. For example, a 20 % 
loss of capacity to R1 results in an M5 of -0.23%, a 50% loss causes an M5 of -2.25% and a 
fully blocked R1 gives an M5 of -6% (as shown earlier in Table 2). This pattern also holds 
for all other roads R2 to R10. However, the main implication of the results in Table 3 means 
that as M5 takes into account the effect of rerouting of traffic, a road which is relatively 
more(less) critical at a given loss of capacity may turn out to be less(more) critical when it is 
completely blocked. To give an example, R4 is the second most critical road (M5 = -0.32%) 
when half the capacity is lost, but when the road is completely blocked it is less critical than 
R3 which has a higher M5 of -3% (See Table 2). When a given road is blocked either 
partially or fully, drivers’ ability to find an alternative path (in comparable generalised cost 
terms) will be affected depending on the serviceability of the link as well as the level of 
congestion at which all other network links are operating. M5 is precisely designed to 
effectively capture these two factors viz., the serviceability and the congestion in a multi-path 
environment. The local authorities could perform a series of ‘what-if’ tests with varying 
capacity levels representing different real life situations and identify the critical links thus 
increasing their preparedness to face the events such as floods or simply while preparing 
alternative diversion plans before closing roads for maintenance.  The following section 
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outlines the traffic diversion plans prepared and summarises the effect of detours due to 
various links failing.  

5.3 Traffic diversion plans and the effect of detours   

Steps 1-5 described in Section 4.5 have been applied and a diversion plan each has been 
developed for all the flood prone roads analysed. Each diversion plan will have a large 
number of OD pairs to divert, therefore identifying the optimal locations to show diversion 
signs is not a trivial problem. In our research we have followed a simple heuristic involving 
identifying the affected OD pairs with high demand and then identifying the diversion as 
necessary. Figure 4 shows the diversion plan for Fulford Road (R1) and Figure 5 for Leeman 
Road (R3). For keeping the paper to the journal length we do not show the plans for the other 
roads. These two roads have been shown as they are the two top ranking critical roads as 
identified by the M5 and the plans shown are based on the heuristic as indicated. Although 
the plans show one diversion each, many such plans for other OD pairs put together will form 
a complete set. In order to illustrate the effect of detours we have worked out the difference in 
generalised cost between degraded and intact networks for all the OD pairs which is 
summarised in Table 4. The first row of the table shows the average cost of detour associated 
with each link failure considering all OD pairs and the second showing the median cost and 
so on. These summaries have been worked out for all roads R1to R10.     

Table 4: Descriptive statistics of traffic diversion effects associated with link failures# 

Statistic R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Mean 570.57 268.01 374.28 186.59 75.05 136.25 213.56 100.21 180.52 74.19 

Median 82.62 97.37 247.86 90.54 67.35 96.82 86.65 60.39 83.23 66.58 
Standard 
Deviation 2012.41 932.38 501.09 587.50 46.93 263.66 1114.12 316.54 672.96 46.16 

Maximum 27972.43 7352.07 5568.21 9388.64 384.79 4105.99 14609.36 5015.79 7109.40 405.55 

Minimum 24.74 13.16 107.34 58.14 8.63 49.65 25.86 3.06 43.20 3.90 
# In generalised cost units 
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Figure 4: Diversion plan for Fulford Road (R1) 

 

Figure 5: Diversion plan for Leeman Road (R3)  
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6. Concluding remarks 

Transport networks are vulnerable to natural disasters such as floods, earthquakes, forest fires 
etc. which may result in reduced accessibility to certain parts of the land or in the extreme 
they may remain completely cut off from the rest until the affected links are revived. Analysis 
of vulnerability of road networks has been a growing research field over the past decade and 
attracted the attention of researchers in formulating methods resulting in a series of indices 
measuring the vulnerability of road networks to failures of links in sparse regional networks. 
This research considered the question of vulnerability of dense urban road networks due to 
events resulting in partial or complete loss of capacity of links. Denser urban networks 
present new challenges as lack of accessibility may not be the primary focus any more, but 
the importance of the affected road link weighs higher. This research applied a series of 
indices from the literature to the urban network of York in England and compared the 
outcomes with a new index M5. The main conclusions from this work are as below: 

Vulnerability indices based on distance are suitable for sparse regional networks and less so 
for the urban networks. This is because drivers in urban networks weigh their travel time 
relatively higher than they do for the distance. In other words, drivers usually follow routes 
which are quicker even though they are longer in distance terms. Secondly, the indices based 
on OD costs tend to implicitly assume that all traffic is routed through the least cost OD path 
and hence are suitable for sparse networks. However, in dense urban networks drivers follow 
more than one path and hence all network link characteristics are of primary importance to 
the vulnerability analysis.  

The new M5 considers the serviceability in terms of loss of capacity of road links relative to 
their base values adopted from the hierarchy of road system reflecting their importance. The 
new M5 means a road with a relatively higher loss of capacity has a greater significance to 
the vulnerability measure than a similar road with relatively lower loss of capacity will have. 
Formulation of M5 also means that the loss of capacity of a road can be analysed in 
continuous terms thus allowing for analysis on the basis of partial loss to the capacity. This 
means M5 can be applied in general to any situation involving loss of capacity e.g. due to 
road works, traffic incidents, which may have major implications to road network 
planning/operations. M5 also allows for several ‘what-if’ scenarios to be built so that road 
links can be ranked in terms of their significance which may be extremely useful in 
developing alternative plans in case of major disruptions. 

Analysis of vulnerability does not stop at computing a numerical measure of vulnerability. 
This research paper also illustrates the use of M5 by developing an outline of a traffic 
diversion plan when the road network in York is affected by floods.  

Acknowledgements: We thank the two anonymous referees for their insightful comments on 
the manuscript which have immensely helped in improving the clarity of the exposition in the 
paper. 
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Appendix A: Vulnerability measures as set out in the literature 

Table A1:  Values of indices for critical roads 

Index R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

M1 -288996 -101661 -145925 -101798 -51585 -79914 -136031 -62574 -72349 -51562 

M2 3.73 3.91 3.79 3.85 4.02 3.91 3.93 3.96 3.99 4.03 

M3 9.18 3.23 4.63 3.23 1.64 2.54 4.32 1.99 2.30 1.64 

M4 1705 617 813 570 92 408 700 212 349 87 

M5 -14349 -3016 -6671 -6009 -5620 -2477 -1226 -5131 -2629 -1630 

 

Appendix B: Formulae used for calculating the proportionate values of indices 

ͳܯ ൌ	σ ௞οܿ௞௔௞σݍ ௞ܿ௞௞ݍ  

           A(1) 

A(1) indicates the change in total cost relative to the base cost with the network intact. ܯʹ ൌ	෍ݍ௞ǁܿ௞௞ ෍ݍ௞ܿ௞௞൘  

           A(2) 

A(2) indicates the trips per unit cost in degraded network relative to the base level trips per 
unit cost when the network is intact.  

͵ܯ ൌ	σ ௞ȟܿ௞௔෣௞σݓ ௞௞ݓ σ ௞ܿ௞௞σݓ ௞௞൘ݓ  

           A(3) 

A(3) computes importance of link a relative the base level of importance. A(3) is a general 
form of A(1) and is identical to A(1) when the weight adopted is equal to the OD demand. ܯͶ ൌ	ܥሚ௔ െ ܥ Τܥ          

          A(4) 

A(4) measures the change in total cost of travel on the network relative to the total cost in the 
base case when the network is intact. 

ͷܯ ൌ	 ቎෍൥൭ݔ௜௕௘௙௢௥௘ݎ௜௕௘௙௢௥௘൱ ௜௕௘௙௢௥௘൩ݐ െ	
ȁ஺ȁ
௜ୀଵ ෍൥൭ݔ௜௔௙௧௘௥ݎ௜௔௙௧௘௥൱ 	௜௔௙௧௘௥൩ݐ

ȁ஺ȁ
௜ୀଵ ቏ ෍൥൭ݔ௜௕௘௙௢௥௘ݎ௜௕௘௙௢௥௘൱ ௜௕௘௙௢௥௘൩ݐ

ȁ஺ȁ
௜ୀଵ൙  

 A(5) 

A(5) measures the NVI relative to the base case when the network is intact. 
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Appendix C: Reference values of vulnerability measures when the network is intact 

Table A2:  Base values of indices for critical roads 

Index R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

M1 451118 451118 451118 451118 451118 451118 451118 451118 451118 451118 

M2 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 

M3 14.33 14.33 14.33 14.33 14.33 14.33 14.33 14.33 14.33 14.33 

M4 6172 6172 6172 6172 6172 6172 6172 6172 6172 6172 

M5 260050 260050 260050 260050 260050 260050 260050 260050 260050 260050 
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