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Abstract: The weight vector of a perceptron can be represented in two ways, either in afr
explicit form where the vector is directly available, or in a data dependent form where
the weight is represented by a weighted sum of some training patterns.

Kernel functions allow the creation of nonlinear versions of data dependent perceptrons
if scalar products are replaced by kernel functions. For Muroga’s and Minnick’s linear
programming perceptron, a data dependent version with kernels and regularisation is
presented; the linear programming machine which performs about as well as support
vector machines do by only solving linear programs (support vector learning is based
on solving quadratic programs). In the decision function of a kernel-based perceptron
nonlinear dependencies between the expansion vectors can exist. These dependencies in
kernel feature space can be eliminated in order to compress the decision function without
loss by removing redundant expansion vectors and updating multipliers. The compression
ratio obtained can be considered as a complexity measure similar to, but tighter than,
Vapnik’s leave-one-out bound.
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1 Introduction

The weight vector of a perceptron can be represented in two ways, either in an explicit
form where the vector is directly available, or in a data dependent form where the weight
is represented by a weighted sum of some training patterns. Kernel functions allow the
creation of nonlinear versions of data dependent perceptrons if scalar products are replaced
by kernel functions.

The linear programming machine (LPM) is a novel algorithm. It operates in batch mode
to learn a perceptron with kernels using weight decay regularisation. It is simple to
implement, and its performance is comparable to that of support vector machines (SVM).
In LPMs, learning is based on optimising linear cost functions while in SVMs a quadratic
cost functions must be optimised. Quadratic programming is nontrivial to implement,
and may be subject to some stability problems.

After learning a data dependent perceptron (e.g. a SV M) the decision function may con-
tain nonlinear dependencies between the expansion vectors (as pointed out in [5], [29]).
Tt is shown how these dependencies in kernel feature space can be identified in order to
compress the decision function without loss. This allows the determination of the frue
compression ratio which is upper bounded by Vapnik’s leave-one-bound and leads to a
speedup of the learning machine in prediction mode.

This document is strucured as follows. In the following section perceptrons will be rewrit-
ten in the data dependent representation. It is shown how kernels can be “plugged into”
a Rosenblatt-perceptron in order to create nonlinear algorithms. This result has been
known for decades [1]; parts are presented again to underline the crucial link between this
work and the linear programming machine, as well as to Vapnik’s support vector machine.
In section 3 it is shown how data dependent decision functions can be compressed without
loss by removing redundant patterns. Finally, section 4 presents the results of computer
experiments which allow the comparison of the performance of the LPM to that of KNN
classifiers, kernel perceptrons, SVMs, and kernel Adatrons.

2 Kernel Perceptrons

2.1 Rosenblatt’s Perceptrons

Rosenblatt’s learning algorithm for perceptrons [25] can find a linear discriminant func-
tion, f(z), for a given set of labelled training patterns. Each training pattern, xz;, is a
vector in R? and has a label y; € {+1,—-1} Vi € {1.l}.

The vector w of the linear decision function

f(z) = (w,z) (1)

is found by the following algorithm:

N =




Rosenblatt-Perceptron

1. Choose a starting point (e.g. wq = 0 Vd)

2. WHILE not all patterns are correctly classified
3. choose pattern z;(i € 1..0)
4
5

; If NOT sign(f(z:)) = y; update w by: w + w +nz;y; END IF
. END WHILE

For the learning rate, 7, usually a small positive value is chosen (or alternatively 7 is
set to 1 and training patterns are re-scaled). Similar algorithms (e.g. neural networks)
sometimes use an adaptive learning rate which can vary during the learning process.

If it is possible to classify all training patterns correctly, the algorithm terminates in
a finite number of iterations. Then a weight vector, w, has been found such that
y; = sign(f(=z;)) Vi. Clearly then the weight vector, w, may be expressed as a weighted
sum of patterns: w = Zﬁ-:l a;z; where the «; are multipliers for individual patterns, z;.
Another way to expand the vector, w, is given by: w = Syl in this case the af
are non-negative integers.

Similar to perceptrons, the expansion of w onto a weighted sum of some training patterns
also holds for Vapnik’s support vector (SV) machine - therefore the SV machine can be re-
garded as a species of the Rosenblatt-perceptron, or alternatively Rosenblatt’s-perceptron
as a special form of a “support pattern” machine.

2.2 Perceptrons in the Data Dependent Representation

Decision function (1) may be rewritten in expanded form:

£(z) = (,2) = (L aww), o) = 3 ol ) @)

and Rosenblatt’s update rule (as described above) can be rewritten as:
Q; <= @i + MY (3)

Note that in (3) the elements of the vector of the multipliers, o, are updated instead of
updating the weight vector, w, directly.

To avoid target function ((1),(2)) passing through the origin it is common practice to use
augmented training patterns, z°. Then an affine function: f(z) = (w,z)+ b = (w® z%)
will be obtained which has one more degree of freedom.

A pattern can be augmented by simply increasing its dimensionality by one and setting
the d + 1'th component of the augmented pattern vector to 1. Obviously, augmenting
patterns is similar to introducing a bias unit which always has an activation equal to one.
It is also possible to introduce a bias unit in the data dependent representation, this
requires a change in the update rule (3) to:

a; oy 5 b b+ny (4)

In data dependent perceptrons it is not necessary to use augmented patterns for learning
because parameter b can be updated directly.
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2.3 Kernel Functions and Nonlinear Perceptrons

The perceptron with kernels, known as the method of potential functions [1], has the
ability to learn nonlinear decision functions. The algorithm is based on the idea of non-
linear kernel functions which represent dot products in Hilbert spaces. A kernel function
allows the mapping of two patterns (z,,z,) at first into a high dimensional feature space
(¢(z.), #(z,)), and then the calculation of a dot product there. This is expressed by:

k (2, Tu) = ($(2w), d(zv)) = (2u 20) (5)

where the z are images of patterns x in feature space.
Any function k which satisfies Mercer’s conditions may be used as a dot product in kernel-
feature space [4].
Initially the kernel idea was applied in the potential function algorithm; an algorithm
which uses kernel dot products to run a perceptron in a linearization space - the kernel
feature space.
There has been an increased interest in using kernel dot products to create nonlinear al-
gorithms. Examples are support vector machines [5], kernel principal component analysis
[29], kernel Adatrons [13], and kernel clustering [16]. It is also possible to shine some new
light onto gaussian-based algorithms by considering Gaussians as dot products in some
feature space [9].
Two examples for kernel functions are the radial basis function (RBF) kernel and the
polynomial kernel:

krpr(Tu, o) = ezp(—|lzy — 2|* /%) (6)

kpat{@y, 1) = ({Ba, B} + 14 d= 1.3 (7)

Kernel-based algorithms are elegant in the sense that the “kernel trick” allows algorithms
to operate implicitly in very high (sometimes infinite-) dimensional feature spaces with-
out explicitly expanding patterns into their feature space representation. Undesired side
effects have been observed using support vector machines with polynomial kernels which
are not scale or shift invariant. In these learning machines the optimal margin decision
function will not lie in the middle of the two classes ([3], [12]). Further information about
kernel functions can be found in [31].

To plug kernels into Rosenblatt’s algorithm the dot products from the data-dependent
decision function (2) are simply replaced by kernel functions:

f(z) = (w, ¢(z)) = (; aip(zi), 6(z)) = Z; ak(z;, z) (8)

On the right hand side of (8) the weight vector, w, resides now in the feature space defined
by the kernels, it cannot be accessed any more for updates. Recall that the dot product
in feature space is available, but not the transform ¢(z) = z, for a pattern z.

However in the data dependent representation of the kernel perceptron, multipliers are
still accessible therefore the learning scheme is now given by:




Kernel-Perceptron Learning (Method of Potential Functions)

1. Choose a starting point (e.g. o; =0 Vi € 1..0)

2. WHILE not all patterns are correctly classified (using decision function (8))
3. choose pattern z;(i € 1..0)

4. If NOT sign(f(z;)) = y: update w by o; + a; + ny; END IF

5. END WHILE

The b-parameter can be introduced in this perceptron by using update rule (4) instead of
the rule suggested in step 4. g

In step 2 of the algorithm, f(z), is evaluated many times for training patterns. To speed
up the algorithm the kernel correlation matrix M; ; = k(x;, z;) should be calculated once
and stored in the computer’s memory. During learning an evaluation of f(z) can then be
realised efficiently by a simple [ dimensional dot product between the ¢'th row-vector of
M and the vector of multipliers, . In the kernel perceptron and kernel Adatron used in
the following experiments, and also in [13], this coding scheme was used.

2.4 The Cost Function

Learning a set of training patterns can be implemented by minimising a cost function.
Minimising only the error rate on the training patterns is not always sufficient and leads
often to the well known overfitting phenomenon. Complexity regularisation allows the
addition of an inductive bias into the process of choosing a model (a decision function)
by minimising a cost function which minimises the empirical error (empirical risk) and an
additional penalty term to punish hypotheses (decision functions) of a high complexity.
Occam’s Razor, a well known principle in machine learning, states basically that sim-
ple explanations which work well should be preferred over more complex ones. Popular
approaches are the minimal description length (MDL) principle [7] and structural risk
minimisation [34].

Often it is not possible or useful to classify all training patterns correctly. Outliers,
wrongly labelled patterns, and noise in the training patterns may be tolerated to avoid
overfitting. In cases where a misclassification of some training patterns is more expensive
(implies a higher risk) than the misclassification of some other training patterns the loss
(e.g. Ly or L, loss) of each pattern, e(z;), can be weighted by a cost factor, ¢;.

For this purpose an error function of the following form can be used [8]:

E(Ii) = Z:cie(m,;) (9)

In batch learning this approach is useful, while in on-line (neural network-) algorithms it
is common practice to use multiples of some training patterns to increase their cost.

Support vector machines are perceptrons using batch learning in the data dependent
representation; there a good set of multipliers, «, is sought by minimising a quadratic
function:




g(w) = C E(s;) + (w,w) (10)

while insisting on constraint y,(w, ¢(z;)) > 1 —s; Vi € {1..l} (s; is a non-negative slack
variable required for cases where pattern ¢ cannot be classified correctly).

This cost function consists of two parts, one which minimises the L, norm of w, and one
which minimises the empirical error (denoted by error function E).

For capacity control, a constant C is used which allows a balance of the proportion of
error minimisation against maximising the margin by minimising ||w||;. Minimising the
L, norm of the weight vector can be considered as weight decay regularisation in feature
space, that is to find the large margin perceptron (recall that in perceptrons the margin
1s inversely related to the norm of weight vector, w). The large margin perceptron is
the one which separates two classes such that the distance from the closest pattern of
each class to the decision boundary (that is the margin) is maximised. By definition the
expected generalisation ability of a perceptron is high if there is a large margin between
the separating perceptron-plane and the closest training patterns [35].

Perceptrons of optimal stability have already been studied in the framework of statistical
mechanics. It has turned out that the optimal perceptron has a large margin and is nearly
identical to the support vector machine [18]. On-line and batch learning algorithms for
perceptrons with optimal-margin have been developed. The Adatron and kernel Adatron,
respectively, are perceptrons of optimal stability; their learning algorithm converges fast
to the optimal solution [23].

Adatrons and support vector machines use weight decay regularisation based on minimis-
ing the L, norm of w. Other ideas to implement regularisation are to minimise the L; or
Ls norm of the vector of multipliers, a. This leads to cost functions of the form:

g(w) = E(z) + Cllal], (11)

g9(w) = E(z) + C|al]. (12)

Algorithms which implement function (11) or (12) do no longer find a large-margin per-
ceptron in feature space, but they aim to maximise the margin of the perceptron in
“hidden unit” space; in other words they minimise some function of the overall embed-
ding strength. The hidden unit space is the vector space spanned by the row vectors
of the kernel correlation matrix M (as defined above). The vector which is obtained by
propagating a training pattern, z;, through the first layer of a two-layered (data depen-
dent) perceptron is equivalent to row ¢ in M.

2.5 Linear Programming Machines

In 1961 Minnick and Muroga proposed a batch algorithm for learning perceptrons using
linear programming. Since then some different and interesting approaches have been
developed, see e.g. [2], [27] for further details.
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Minnick’s and Muroga’s algorithm works as follows; use linear programming to solve:

min g(w Zsz (13)
subject to: s; > 0; gi((w,mi) +b)>A—s;

The constraints ensure that during the optimisation process a weight vector, w, is deter-
mined such that training patterns z are correctly classified. In some cases this may not
be possible, therefore non-negative slack variables s; were introduced. The overall slack
(L, error) is minimised in cost function (13). Constant, A, was introduced for the purpose
of numerical stability. Any non-negative choice for A is possible; in the following A = 1 is
assumed.

Similar to the Rosenblatt perceptron, it is possible to rewrite the decision function and
learning procedure in the data dependent representation using kernel functions. In this
type of kernel perceptron the decision function is given by:

z
=Y aiyik(zi, z) (14)

i=1

and batch learning is performed by minimising a linear program:

min g(a Zsi (15)
subject to : 8; > 0; a; > 0; yif( ) > A —s;

In this notation weight vector w = ¥ _; a;¥;%;, has been substituted by a weighted sum
of patterns and labels, therefore multipliers, e, will always be non-negative.

Owing the circumstance that this kernel perceptron operates in high dimensional spaces
implied by the kernels, it may tend to learn overly complex decision boundaries. Therefore
capacity control by the rightmost term in (11) is introduced. As pointed out above, this
type of regularizer maximises the margin of the multiplier-vector in the “hidden unit”
space.

The final algorithm is called the linear programming machine LPM. It uses decision
function (14) for predictions after optimising cost function:

min g(a Zsc,—l—C’Zal (16)
subject to: s; > 0; a; > 0; yif( )2)\—5i

(the ¢; are the costs of making errors on individual patterns).

So far it has been assumed that the function to be learned can be completely characterised
by the weight vector, w, or its data-dependent representation. In many cases it may be
desired to learn a regularized function with a bias unit (a non-regularized parameter,
b). This can be achieved by simply changing expression (14) to: f(z) = (w,z) +b =
Yt asyik(z, 2;) + b and using (16) to optimise the values for all a and b.




3 Minimal Expansion of the Decision Function

Data dependent kernel perceptrons, like support vector machines and kernel Adatrons,
use a decision function of the form:

ES'U

flz) = (w,¢(z)) + b= Zﬁik(vavm) +0 (17)

In this expansion all patterns with a non-zero multiplier, 3, are denoted as “sv” patterns,
there are [V such patterns. As stated above, in data dependent perceptrons the weight
vector, w, exists only in feature space; it lies in the subspace spanned by the vectors
#(z*). In ([5], Endnote 6) it is explained that in support vector machines sometimes
more patterns, z®Y, are found than necessary to expand w in feature space ( “the decision
function is unique but not its expansion on support vectors” ).

It is a nontrivial task to eliminate the linear relationships in feature space because trans-
form ¢(z) is not available. Even if this transform were available it would be nearly
impossible to calculate linear dependencies between the vectors, ¢(z*"), because these
vectors can have a very high number (possibly infinite) of dimensions.

If linear dependencies in feature space could be found, their images in input space could
be removed from the decision function in a straightforward manner. Assuming that
multipliers from the decision function are updated correctly, patterns from expansion
(17) can be removed without loss.

In the following, a way to find linear dependencies between patterns in feature space is
given, then the expansion is rewritten such that the corresponing images in input space can
be removed. If, in feature space, all linear dependencies are removed, an optimal decision
function can be calculated (optimal means here the use of a minimal number of expansion
vectors leading to a speed up in decision making proportional to the compression ratio
obtained).

In [29] the reduced set algorithm is proposed, which is conceptually different to the one
presented here because there the “compression” of the decision function is not loss-less
(compression with loss), and the expansion vectors obtained by the reduced set algorithm
are no longer elements from the set of training patterns.

Matrix P will be defined such that P, is the A’th component of vector d(z,); g € {1..1°}.
Note that matrix, P, is an [*¥ by d’® matrix where fs denotes the dimensionality of the
feature space.

It is useful to define an I by I*¥ kernel correlation matrix M = PPy M;; = k(z;, ;)
which has the following property:

rank(M) = rank(P) (18)

This relationship is a property of a Gram matrix [17].
Except for cases where rank(}) = [*” there will be patterns ¢(z;) which can be expressed
as a linear combination of [**¥ other patterns in feature space (=8 £ Y.

EtS'LI

o(z:) = Y v dlay) (#5757 (19)
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Linear dependencies between row-vectors of M are defined by:

l‘S'L‘

Vh e {L.I"} M= 6;Mj s (20)

Jj*=1
It can be shown that the linear dependencies between the row vectors in M are exactly
the same as the linear dependencies between the row vectors in P.

Theorem 1: For each linear dependency of the form (19) there exists ezactly one linear
dependency in M where the linear factors in (19) and (20) are equivalent:

Vi v =4 (21)
Proof:
l sU
Vh s f\-ﬁfi,h = k(ﬂ?i,xh) = <¢(CL‘I .Th = Z "yj 233 ) qf) .Ih)) = (22)
=l
l*s'{l i!S'u
Y virk(zie an) = 30 v My
=t =l

Therefore it follows that ; = d;Vi. This relationship allows the computation of the
from matrix M, this leads to the ¢ which can be used to update the multipliers, f, if a
pattern, z;, is to be removed from the decision function.

All that’s required is to find the v is to solve linear equation systems where one row vector
of M is expressed as a linear combination of other row vectors of M. This can be done
using standard techniques for solving linear equation systems (e.g. Gauss elimination or
Householder’s method [19]).

Once linear dependencies, 6, in feature space have been found the decision function can
be rewritten in a way such that one redundant (linearly dependent) pattern will vanish.
Function (17) can be expanded:

-
flz)=b+ Zﬁf’ﬂ(% ¢(z)) = (23)
b+ Biz1, d(z)) + Ba(22, ¢(x)) + ...0:(zi, (x)) + .0 (210, B())

By using (19) and multiplying out

f(:E) =b+ ﬁl(zqu,b(iﬂ)) + ﬁz(Zz,qb(fE)) =+ ...

lsu

[ Yjezi0), 6(z)) + o Brse (210, 6(2))

g*=1

= b+ Bi(z1, d(x)) + Bolz2, $(x)) + ...(B; + Bivi) (2, () + - (24)
(ﬁk + ﬁi’yk)(z;;, (,?5(:6)) + .Gy (Zusn_l), qﬁ(:c))




4 function is obtained where one unit has been removed from the expansion.

So the update rule for multipliers g from (17) is given by:

if k#i  uw(Be) = P+ Bivie (25)

To obtain the minimal expansion the process of removing redundant units and updating
multipliers is repeated until no further updates are possible.

An algorithm for minimal expansion set reduction can now be summarised in pseudocode:

minimal expansion set reduction (MESR) algorithm

1. calculate correlation matrix M using all [*” patterns
2. REPEAT the following loop exactly (I — rank(M)) times:

3. choose index i of a row-vector from M which can be expressed as a linear
combination of other row-vectors of M

4. find the multipliers, 8, which allow one to express row-vector iof M as a
linear combination of some other row-vectors of M

5. recalculate M using all patterns used in the last iteration except
pattern 4 chosen in step 3

o

update all multipliers by Bt u(p1)
7. END REPEAT

8. use all patterns whose corresponding rows and columns in M were not deleted during
the update process; use also the latest set of updated multipliers, %, for the new
expansion of the decision function

In each iteration of the algorithm a linear dependency of form (19) is identified, one pat-
tern is removed from the decision function (point 3), and then multipliers 3 are updated.

At step 3 of the algorithm it is expected to find a pattern which is a linear combination
of other patterns. If a number, n, of patterns are linearly dependent, then obviously each
of the n patterns could be chosen and expressed by n — 1 or fewer patterns.
If the algorithm is applied to support vector machines it is suggested to pick the sup-
port pattern with the largest slack variable. These patterns are often the misclassified
patterns or patterns which lie close to the margin, for those support patterns “classifi-
cation constraint” y;(w,z) > 1 is violated. As pointed out in [24] Vapnik’s leave-one-
out bound works only in cases where all patterns are correctly classified by a support
vector machine. In those cases the “compression ration” (expected generalisation abil-
ity) given by the leave-one-out bound [35] is an upper bound on compression function
TA{ESR = 'rank(P)/l
Therefore it is suggest to estimate the model complexity and expected generalisation
performance by using function Tagesr-
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4 Computer Experiments

Four experiments with linear programming machines are presented below. In the first
experiment the two-spiral benchmark has been chosen to compare the decision funcions
found by the LPM and SVM. In the three following experiments the performance obtained
by the LPM is compared to that obtained by k-nearest neighbourhood (KNN) classifiers,
kernel perceptrons with bias unit, kernel Adatrons, and SVMs. In these experiments
the following validation strategy has been applied; parameters were chosen such that the
performance on a validation set (a subset of the training set) was optimal.

The experiments merely aim to allow a first comparison between LPM and other clas-
sification techniques. Except for the KNN classifier the RBF kernel (6) has been used
in all experiments. All algorithms have been implemented in MATLAB, for linear and
quadratic programming LOQO [33] was used.

4.1 Two Spiral Classification

Figure 1: Two Spiral classification for linear programming machine (left) and support
vector machine (right); (JLPM =0svM = 08, CLPM = 0; CSVM = 1000)

In the two spiral benchmark the patterns which must be classified lie on two spirals which
are coiled three times around each other. The benchmark [11] is widely known and has
been used with a variety of classification techniques. The two dimensional nature of the
benchmark allows the visualisation of the decision function learned by the two algorithms.
Both algorithms have determined all 194 training patterns to be support patterns (hidden
units). The diagrams show that in both cases (LPM, SVM) a classification was learned
such that a large margin lies between the decision function and most patterns from the
two classes. The two results are slightly different, note that in the centre of the two spirals
the LPM’s decision boundary is smoother than that of the support vector machine where
the decision boundary always has the largest possible margin. Note also that the linear
programming machine chose smaller values for multipliers, , than the support vector
machine (this can be seen by comparing the size of the grey “band” around the outmost
patterns).

Patterns which have a high distance to the decision plane in feature space (that is, roughly,
a large distance to the training patterns in input space) are always assigned to one class

11




in RBF kernel machines (both in SVM and LPM). This can be explained by considering
decision function (14) which always assigns patterns which lie exactly on the decision
plane in feature space to one class. Owing to assumptions which are always made when
algorithms are implemented on computer systems (with static number representation) all
numbers which lie in a small interval around zero are considered to be zero (rounding).
All patterns which have a small distance to the decision plane in feature space will lie in
such a zero-interval and therefore be assigned to one class. This computational bias (how
to assign labels to the two classes) represents a prior which one should be aware of when
using radial basis function learning machines.

4.2 Sonar Classification

The task here is to classify the sonar set of 208 patterns representing metal cylinders and
rocks, where each pattern has 60 dimensions. As suggested in [15] the angle dependent
data has been split into a training set and test set each of 104 patterns.

[ SONAR [ Cycles [ o(RBF) [ # Trn.Err | # Tst.Err |

KNN (k=1) - - 0 10
KNN (k=3) - - 0 19
k-Perc. - 0.8 0 6
k-Perc. - 1.0 0 8
k-Perc. - 1.2 0 13
SVM - 0.8 0 8
SVM = 1.0 0 7
SVM - 1.2 0 7
LPM = 0.8 1 11
LPM - 1.0 1 9
LPM - 1.2 0 8
k-Adatron 10 0.8 0 6
k-Adatron 10 1.0 0 9
k-Adatron 10 1.2 0 8
k-Adatron 250 0.8 0 6
k-Adatron 250 1.0 0 6
k-Adatron 250 1.2 0 7

Table 1: Comparision of classifiers using the sonar patterns.

Table 1 compares the performance of the linear programming machine with other al-
gorithms. In this classification task no significant improvement can be observed when
comparing the kernel perceptron’s (small margin) performance with the one of the SVM
(large margin). Interestingly the LPM is the only algorithm which tends to allow mis-
classified patterns in the training set (due to its regularizer); however the performance on
the test set is comparable to that of the SVM.

4.3 Mirror Symmetry Classification

All patterns from the mirror symmetry benchmark are synthetic patterns (200 patterns for
the training set, 100 patterns in the test set). The aim of the benchmark is to distinguish
patterns which are symmetric about their centre from patterns which are not symumietric.

12




[ Mirr.Sym [ Cycles | o(RBF) | # Trn.Err | # Tst.Err |
KNN (k=1) - - 0 25
KNN (k=7) - - 0 22

k-Perc. - 5 0 25
k-Perc. - 6 0 26
k-Perc. - 7 0 27
SVM - 5 0 3
SVM - 6 0 2
SVM - 7 0 5
LPM - 5 0 6
LPM - 6 0 3
LPM - 7 0 2
k-Adatron 10 5 0 4
k-Adatron 10 6 0 5
k-Adatron 10 7 0 6
k-Adatron 250 5 0 3
k-Adatron 250 6 0 4
k-Adatron 250 7 0 5

Table 2: Mirror symmetry; comparison of classifiers.

In this benchmark both the KNN classifier and the kernel perceptron have shown a poor
performance compared to the LPM, SVM, and kernel Adatron. In all cases, where regu-
larisation has been used a substantially better performance was obtained.

4.4 Wisconsin Breast Cancer Classification

The original Wisconsin breast cancer database consists of 699 instances. For this experi-
ment a subset of 200 patterns was randomly chosen for the training set and 200 patterns
were chosen for the test set.

[ CanDiag [ Cycles [ o(RBF) [ # Trn.Err | # Tst.Err |
KNN (k=1) - - 0 13
KNN (k=3) - - 0 9

k-Perc. - 0.4 0 13
k-Perc. - 0.5 0 10
k-Perc. - 0.6 0 9
SVM - 04 0 11
SVM - 0.5 0 10
SVM - 0.6 0 11
LPM - 0.4 9 16
LPM - 0.5 0 10
LPM = 0.6 0 9
k-Adatron 10 0.4 0 8
k-Adatron 10 0.5 0 9
k-Adatron 10 0.6 0 11
k-Adatron 250 0.4 0 10
k-Adatron 250 0.5 0 9
k-Adatron 250 0.6 0 10

Table 3: Classification performance on the Wisconsin database.
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Similar to the sonar experiment the simple kernel perceptron seems to perform as well
as the LPM, kernel Adatron, and SVM. One possible explanation is that the kernel
perceptron stopped in a lucky position where the plane has, by accident, a large margin.
Another explanation is that the “large” margin between the closest patterns from two
classes and the plane in feature space is only very small (for the o given in the table),
and that, therefore, the kernel perceptron always stops at a good position. It could also
be possible that there is some “noise” in the patterns such that the large margin between
the patterns closest to the plane is not similar to a large margin for most patterns from
the two classes.

The experiment was repeated five more times with the kernel perceptron using different
starting points, in all cases a similar performance to the one indicated in the table was
obtained.

5 Conclusion

Perceptrons, both on-line and batch, have been rewritten in the data dependent represen-
tation. This allowes to plug kernels into the algorithms and to develop non-linear models;
one of them is the linear programming machine which implements weight decay regular-
isation (large margin) in hidden unit space, similar to neural networks and Ada-Boost
[26] where the weight of the final “neurone” is regularized by weight decay. In contrast,
support vector machines use weight decay regularisation in feature space.

Computer experiments compare the performance of the LPM, SVM, and kernel percep-
tron. In these experiments the LPM achieved a performance which is comparable to the
one obtained by support vector machines. This is interesting because linear program-
ming is computationally much simpler than solving quadratic optimisation problems as
required by support vector machines.

The minimum expansion set reduction algorithm allows a speed up of kernel perceptrons in
prediction mode by analysing linear dependencies in kernel feature space. The algorithm
can be considered from two perspectives; on the one hand it allows the compression and
speed up of support vector machines and thus a decrease in the description length of
the hypothesis, on the other hand it can determine a compression ratio of a learning
machine which can be considered as a complexity measure. The compression ratio is
a useful complexity measure for model selection compared to the method of estimating
the generalisation ability using the leave-one-out bound (as suggested in [35]) because it
allows the removal of redundant instances from the decision function and does not fail in
cases where a high overlap between the two classes occurs.
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