This is a repository copy of A Novel Algorithmic Approach to the Integration of Posterior
Knowledge into Condition Monitoring Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82473/

Monograph:

Marriott, S. and Harrison, R.F. (1998) A Novel Algorithmic Approach to the Integration of
Posterior Knowledge into Condition Monitoring Systems. Research Report. ACSE
Research Report 721 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Novel Algorithmic Approach to the
Integration of Posterior Knowledge into
Condition Monitoring Systems
S. Marriott and R. F. Harrison
- Research Report Number 721

August 1998

Department of Automatic Control and Systems Engineering
The University of Shefﬁeld
Mappin Street
Sheffield. S1 3JD. UK.

Contact author:; Dr. S. Marriott

E-Mail s.marriott@sheffield.ac.uk

The financial support of Rolls-Royce plc and the EPSRC (GR/L16651) is gratefully
acknowledged

200446470

LT

X




A Novel Algorithmic Approach to the Integration of Posterior
Knowledge into Condition Monitoring Systems:

S. Marriott and R. F. Harrison

The University of Sheffield. UK.

11%)]

{” LBRARY

Contact author: Dr. S. Marriott
E-Mail s.marriott@sheffield.ac.uk

The financial support of Rolls-Royce ple and the EPSRC (GR/L16651) is gratefully
acknowledged

Indexing Terms: Condition monitoring. fault diagnosis. posterior knowledge integration.

Abstract

This paper considers the problem of the integration of ‘posterior knowledge’ into condition
monitoring systems from both the theoretical and practical points of view. The work is
presented in the context of aircraft engine maintenance. A methodology for updating
posterior probabilities is proposed for cases where fault conditions are rejected or retained on
the basis of external knowledge supplied by an end-user—the posterior knowledge. A
possible fault class ranking 1s generated following the specification of fault class posterior
probability functions. Context-free simulations are used to show the effect of posterior
knowledge as part of a maintenance strategy. The simulations are independent of any specific
condition-monitoring situation. Preliminary results indicate that posterior knowledge reduces
the number of sub-unit inspections required for isolation of all faults. This has the potential to

result in real maintenance cost savings.

1. Introduction

A common approach to identifying faults or conditions in dynamical systems is to develop a
statistical classifier based upon historical data. Much effort—and possibly expense—can go
into the development of such classifiers which form the basis of diagnostic systems. A set of
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; fault-condition (FC) posterior probabilities is generated upon which diagnoses are made for
example using maximum a posteriori (MAP) or Bayesian risk weighted decision criteria (e.g.
. Melsa and Cohn, 1978). In short, this is a statistical viewpoint on condition monitoring.
When given a ranked set of FC probabilities representing the most likely FCs to have
occurred, if the most probable FC is known not to have occurred then what should further
decisions be based upon? Does it make sense always to choose the next most likely FC or set
of FCs?

The knowledge that FCs have (or have not) occurred is deterministic, not available to the
statistical classifier and is specific to the current.situation. It cannot be made part of the
historical data until the complete set of FCs is known for that particular input vector.
Furthermore, the situation-specific data may become ‘swamped’ by the rest of the historical
set in which it will be included. The main issue then, is the problem of integrating
deterministic situation-specific data with historical, probabilistic data in a condition monitoring
context.

This paper addresses the issue of the post-processing of condition monitoring information
when external evidence is available to inform the fault diagnosis process. The key objective is
v to devise a mechanism for the integration of such evidence into predictive systems to allow the
» update of FC probabilities that have been generated without reference to that knowledge.
Posterior knowledge integration has potentially widespread applications in the field of
condition monitoring (fault detection and isolation) as explored in this paper. Incorporation of
deterministic situation-specific knowledge about a monitored plant, not available in developing
the condition monitoring system, will facilitate a more informed choice of maintenance
strategy. Such a post-processing system could augment available condition monitoring
systems which generate probabilistic data following fault classification by pattern recognition.

There is a growing interest in automated condition monitoring systems as the number and
complexity of monitored plants increases to keep pace with the demands of modern
technology. This interest is reflected in the number of fault detection and isolation methods
appearing in the literature (e.g. Iserman, 1997, Rodd, 1997; Ruokonen, 1994). Such methods
usually entail the monitoring of key system features—with or without a reference model—for
pre-defined anomalies or novel operating conditions. A discussion of specific condition
monitoring methods is not relevant to this paper. The emphasis of this work is the post-
processing of probabilistic fault data regardless of the fault detection and isolation methods
employed.

In general, condition monitoring systems are confined to the actual tasks of detecting and
isolating faults and alerting an end-user to their possible existence and location. These systems
may or may not give probabilistic estimates of FC probabilities to allow the end-user to decide
an appropriate course of action. It is clear that such a methodology is “open-loop” in that

i end-users are given a final analysis, upon which to base operational decisions, without having
the opportunity to feed their observarions or their knowledge back into the process.




What if the end user has external information (not available to the condition monitoring
system) which would alter specific fault diagnoses? It is obviously desirable to maximise the
use of available information. The feedback of external information to a condition monitoring
process makes it a “closed-loop” process as shown in Figure 1.

| Condition FDI
Monitoring

Plant

: Posterior Knowledge

.............................................

Figure 1. The condition monitoring feedback-loop. Posterior knowledge supplied by an end-user may be
integrated into the condition monitoring process 1o improve FC isolation. The fault diagnosis and isolation
(FDI) block is where the decisions are made.

In a condition monitoring situation, the end-user may say, “The condition monitoring system
indicates the possibility of faults x,y and z. I have just checked y and can discount the .
possibility of a fault there. How does this affect the probability of faults x and z having 6
occurred?”.

The checking of y is not included in the monitored plant features and occurs after the
condition monitoring system has made its predictions concerning possible fault scenarios. This
external knowledge is given the name “posterior knowledge™ to distinguish it from any other
knowledge about the monitored plant. Posterior knowledge is knowledge about the outcome
supplied by an operator, or some other source, and which is not available to the predictive
system at the time of prediction. It is new evidence about the posterior probabilities which
have been predicted for the current classification in the form of an updated output
classification and differs from the new evidence about the state of the system which is typically |
encountered in sequential decision theory (e.g. Melsa and Cohn, 1978), i.e. updated evidence
vectors. Posterior knowledge is deterministic; it is about Anown outcomes. Subjective
probabilities could be used but are not considered here. The incorporation of this knowledge
into the feedback loop of condition monitoring allows fault analysis to be adjusted towards a
more accurate picture of the current plant status.

The main principle behind posterior knowledge integration is the fact that dynamical systems f
usually consist of a set of interconnected sub-systems which are causally related in some way.
This means that information about a particular sub-system may have an effect on the
prediction probabilities of other sub-system faults mediated by the causal connection, 1.e. that
multiple fault scenarios may be indicated simultaneously. This differs from the usual
assumptions of exclusivity or of conditional independence made in conventional pattern
recognition situations.




One particular application area for fault diagnosis and isolation methods is that of aircraft jet
engines (e.g. Patton and Chen, 1997; Nairac ef al, 1997). These are complex systems
comprising distinet interacting sub-units which include electronic feedback control and
monitoring devices. The posterior knowledge integration problem, as considered in this paper,
is discussed in the context of aircraft jet engine monitoring. The integration of posterior
knowledge into condition monitoring systems applied to jet engines is motivated by a need to
reduce costly no fault found (NFF) conditions. NFF conditions occur when one or more faults
are flagged and subsequent tests of sub-units fail to locate a problem. For example, a fault
may be logged in-flight and when the plane lands at airport x, the supposedly faulty unit 18
replaced. The same fault is flagged during the onward flight and the unit is replaced at airport
y. Subsequent analyses of both replaced units show no signs of malfunction because the alarm
was, perhaps, owing to a faulty connection. However, the units have to be re-certified for
future use which is a very expensive process. The generation of fault rankings—capable of
being updated by posterior knowledge—may allow better-informed decisions about which
sub-units and/or components to remove and test.

2. Posterior Knowledge Integration From an Engineer’s Point of View

A condition monitoring system will typically provide an end-user with a set of predictions
indicating one or more possible FCs. Merely choosing a single FC, on the basis of its
associated probabilities, may be too simplistic. Furthermore, the end-user’s knowledge may
come to bear on the problem, as posterior knowledge, and be used to modify the original
condition monitoring system diagnosis. A simple example will illustrate this (Marriott and
Harrison, 1998a):

A gas turbine vibration monitoring system has detected several features that correspond to
one of three conditions: “Bearing wear in IP shaft” with probability 0.65, “Out-of-balance
in LP compressor” with probabiliry 0.20, and “Out-of-balance in HP compressor " with
probability 0.15. However, the user knows from additional knowledge that a recent change
of bearing rules out condition “‘Bearing wear in IP shaft”. Is the most likely diagnosis now
“Qut of balance in LP compressor ol

If the above conclusions are based on dependent probability distributions then it may not be
sufficient simply to redistribute the probabilities between FCs “Out-of-balance in LP
compressor” and “Qut-of-balance in HP compressor’; this issue will be discussed further in
Section 4. Indeed it is possible that the suggestion “Out-of-balance in LP compressor” is
based on vibration phenomena attributed to bearing wear that also produces the out-of-
balance as a side-effect. Eliminating bearing wear as a possible diagnosis could remove the
possibility of the LP out-of-balance. The engineer may, therefore, conclude that the correct
diagnosis is “Out-of-balance in the HP compressor”. This example illustrates some of the
issues concerning the manner in which this posterior knowledge can be incorporated by the
system for re-evaluation and future reference.

! Suggested by Dr. Steven King of Rolls-Rovce ple. Applied Science Laboratory, Derby




3. Posterior Knowledge: Representation and Integration

It has been stated that posterior knowledge is deterministic knowledge external to the
condition monitoring system. Two questions naturally arise from this: how can posterior
knowledge be quantified and how is it to be integrated with the information contained within
the condition monitoring system based upon the key plant features? This paper explores these
two questions and then presents simulation evidence to show that posterior knowledge
integration represents a technique with potential application in the condition monitoring field.
As stated in the introduction, the key objective is to develop a method of automating the
knowledge integration and updating process which follows logically from the fault detection
and isolation tasks.

There are many possible ways of representing posterior knowledge. The representation
problem is solved here by representing the posterior knowledge of possible system states and
associated FCs as FC probabilities with discrete values of 1 or 0 depending upon whether a FC
is known to occurred or not. Thus, although the posterior knowledge is deterministic, it is
represented as a new set of FC probabilities, that is, a revised probability for each class which
is influenced by external observations of the current situation only. The externally obtained
information is then used to update the predicted FC ranking for the remaining probabilistic
FCs. In other words, posterior knowledge about an FC is represented in the form ofa
probability indicating the occurrence or non-occurrence of that FC. In this way, deterministic
data has been represented within a probabilistic framework. Note that this is not to be
confused with the posterior probability of a fault occurring.

For example, a set of class posterior probabilities will be predicted for a single input datum
(feature vector). Ifit is then possible to exc/ude one or more classes (i.e. the probability of
those FCs occurring is zero) on the basis of knowledge or reasoning not available to the
predictive system, then the current list of predicted FC probabilities may be revised. This will
give a more accurate estimation of new FC posterior probabilities in the form of a revised
probabilistic ranking. Similarly for the inclusion of known FCs.

Here, the integration of posterior knowledge is given in terms of classes which are known not
10 have occurred (excluded) or are known 7o have occurred (included) as indicated by the
external knowledge. It is convenient to represent the updated posterior probabilities in terms
of probabilities estimated from previous observations of system FCs, i.e. classes which have
occurred; these probabilities are probabilities of occurrence and they can be estimated from
empirical fault data. The limitation of probabilities involved in the representation of posterior
knowledge to the class of null and certain events is a design choice made to facilitate
implementation of the posterior knowledge integration process. This does not preclude the
generalisation of the subsequent analysis to cases of subjective posterior knowledge between
these extremes.

Three types of probabilities are involved in the posterior knowledge integration process:




1. the probability associated with the posterior knowledge that a FC has or has not occurred
i.e. 1 or O representing the deterministic knowledge,

2. the exclusive (i.e. non-overlapping) singleton and joint probabilities generated by the
condition monitoring system or FC frequencies of occurrence,

3. the (possibly) overlapping posterior probabilities of FCs reconstructed from the condition
monitoring probabilities of (2).

These probabilities will be discussed further in the remainder of the paper.

.

In essence, the posterior knowledge integration process involves the modification of the FC
posterior probabilities by the exclusion or inclusion of FC frequencies based upon the known
occurrence or non-occurrence of FCs,

Both the inclusion and exclusion of FCs by posterior knowledge integration will be dealt with
here. The revised posterior probabilities include the integration of external knowledge
explicitly in the notation. The revised posterior FCs probabilities given posterior knowledge

are represented by the expression P(Cp 'E M x) where the posterior knowledge is given by

€= (ﬂ G, Jﬂ[ﬂ(}f} and x is the feature vector. The subscripts &, and &, represent the

indices of the sets of FC occurrences and non-occurrences respectively which comprise the
posterior knowledge. The set of FCs occurrences and the set of non-occurrences are known

as the included and excluded classes respectively. The expression P(Cp{e M x) denotes the

predicted probability that FCs p has occurred given the observation vector x and posterior
knowledge, € .

4. The Probability Update Equation

The revised FC probabilities P(Cp‘e e x) are computed using the posterior probability update

x}
M

equation which is given by

(N Jn(ne)s)-

e,

Equation (1) gives the new FC probability when posterior knowledge is available. It is based
upon standard conditional probability theory. Thus, the new probabilities are computed given
that some events are known to have occurred and others are known not to have occurred.
The causal links between sub-systems are reflected in the joint probabilities present in the




probabilities of set unions of the update equation which can be computed using the standard
definition of set unions (e.g. Durret, 1994) with the appropriate terms substituted. This
compact expression for the update of FC probabilities following the integration of posterior
knowledge is derived formally in Appendix A. The union of the posterior probabilities of
excluded classes is subtracted from the remaining (non-excluded) classes. Both the numerator
and denominator of equation (1) represent what remains when any possibility of the excluded
classes is removed. Note that all terms include the intersection with included classes
(subscript 7). This is because only those fault scenarios (involving multiple sub-units) including
the faults known to have occurred are possible following posterior knowledge. Thus, the new

probability of P(Cap‘x) given by Equation (1) is based upon the reduced sample space for the

feature vector x. Note that UCEK =U (the universal set) for an exhaustive classification
k

system where & includes all class indices. The probabilities on the right hand side of Equation
(1) are estimated from condition monitoring data. This is a non-trivial problem but 1s not
considered further here. A brief description of the estimation problem is given in Section 7.

5. A Taxonomy of FCs: Some Rules.

I
|

Three specific exclusion or inclusion cases may be isolated from equation (1); these are, in E
increasing order of difficulty: Exclusive Class, Conditionally Independent Class, and )
Dependent Class exclusions or inclusions which reflect the division of FCs ( Marriott and
Harrison, 1998 a, b). A simple renormalisation of posterior probabilities is only valid in
restricted cases ( Marriott and Harrison, 1998 a,b). This accords with intuition in that I
exclusion or inclusion of FCs with dependent probability distributions may, in general, alter the |
position of classes in the ranking. Analysis of equation (1) indicates the conditions under
which simple renormalisation is appropriate.

The following list of rules for the possible simplification of the probability update procedure is
derived from the sixteen distinct cases arising from the non-existence, exclusivity,
independence and dependence of excluded and included classes respectively. Table 1 shows
graphically the outcomes for the sixteen cases. Derivations for the sixteen cases are found in

Appendix B.




Included (1)

N E I D
N — 0/1 — P(cy, ¥, Nx)
Excluded (e) E Renorm. 01 Renorm. p(ca; X, ﬂx)
I — oo — P(Cy, X, Nx)
D PUE (excluded) 0/1 PUE (excluded) General

Table 1. A table showing the sixteen possible combinations of included and excluded classes which can be
non-existent. exclusive, independent or dependent respectively. These FCs are denoted by N. E.I.and D
respectively. The ‘—* indicates that no changes are made 1o the remaining posterior probabilities. PUE
(excluded) denotes the probability update equation under the given conditions of excluded FCs only. The

intersection of included FCs is denoted by X, = ﬂ C 5, - Renorm. indicates where renormalisation of
1

probabilities is justified. General denotes the full equation. Equation (1).

5.1. The Exclusive Included Class Rule (EICR).

Where the infersection of the included classes is exclusive, the updated posterior
probabilities will be one or zero depending upon whether the probabilities are in the
included set (the intersection) or not.

In other words, if a set of exclusive events have occurred, then other, different, events cannot
possibly occur, hence a probability of zero for those other events. See Figure 2.

X

3

Figure 2. A schematic representation of the EICR. See text for details. The FC of interest is either included
in X, = ﬂ Cﬁ; or not. If it is then the update posterior is 1. else it is 0 because of the exclusivity of the

included classes




5.2. The Exclusive Excluded Class Renormalisation Rule (EECRR).

Where the included classes are non-existent or independent and the union of the
excluded classes is exclusive, the updated posterior probabilities of the remaining
classes, following the exclusion of the set, will be given by a renormalisation of the
remaining probabilities.

In other words, the excluded classes have no effect on the relative probabilities of the
remaining FCs and can be removed giving a smaller probability space. See Figure 3.

Figure 3. A schematic representation of the EECRR. See text for details. The FC of interest is now
conditional upon the remaining classes in X .. Because there is no overlap. a simple renormalisation is
justified.

5.3 The Independence Rule (IR).

If either the excluded or included classes are independent of all other classes, then the
remaining probabilities determined by other operations are unaffected.

Corollary: If both the excluded and included classes are independent then there is no
change to the posterior probabilities.

In other words, independent classes have no effect on the outcomes of the remaining FCs
leaving the posterior probabilities unchanged.

5.4 The Dependent Inclusive Class Rule (DICR).

The remaining posterior probabilities are conditional upon the included class
probability.




In other words, there may be overlap between the remaining posterior probabilities and the
included classes. The area within the overlap compared to the area of the included classes
gives the conditional probability of the posterior of the FC of interest occurring. See Figure 4.

P(G, |X, Nx)

Figure 4. A schematic representation of the DICR. See text for details. The posterior probability of class p
occurring is now conditional upen the included FCs.

5.5, The Dependent Excluded Class Rule (DECR)

Where the included classes are non-existent or independent, the probability update
equation is a special case for excluded classes only.

In other words it is as if there are no included sets involved in the posterior knowledge. See
Figure 5.

Figure 5. A schematic representation of the DECR. See text for details. Excluded classes are only of
importance here. The probability of FC p occurring is proportional to ratio of the area of class p remaining o
the whole remaining area. Note that it is not a simple renormalisation because some of the p th class is
discounted owing to the joint probability “shared” with the excluded classes.

All the above rules are special cases of the general posterior probability update equation (1).

It is to be noted that a simple renormalisation is not valid in most cases. This accords with
intuition in that exclusion of FCs with dependent probability distributions will alter the position
of FCs in the ranking. This idea will be illustrated in the next section.




6. Modified Fault Ranking Following Posterior Knowledge Integration

The original FC probabilities generated by the condition monitoring system are combined to
give posterior probabilities of FC occurrence. The identified FC would be chosen on the basis
of these posterior probabilities using whatever method such as MAP or weighted Bayes.
Equation (1) is used to update the FC posterior probabilities.

We assume that a statistical model of the fault probability distributions is available via some
estimation process (e.g. neural networks, mixture models etc.). The resulting model is fixed
and does not give any information about how posterior knowledge is to be incorporated. This
can lead to problems in complex situations where posterior knowledge may change the relative
ranking of possible FCs. For example, the interrogation of a fixed classifier will provide a
ranking of possible FCs based upon the computed posterior probabilities. If the indicated
excluded faults are exclusive and the included faults are non-existent or conditionally
independent of all other possible FCs, then a simple renormalisation of the probabilities of the
remaining fault classes—following the exclusion of one or more faults on the basis of external
information—is the obvious solution. Excluded dependent faults may, however, effect the
fault ranking owing to interactions between faults; these interactions being mediated by causal
connections between sub-units. This is illustrated in the following example (Marriott and
Harrison, 1998 a,b):

A Gaussian three class problem was specified with the posterior probabilities as shown in
Figure 6 (a). The classes in this synthetic problem might represent anomalous conditions such
as “Out-of-balance in LP compressor”. Gaussian likelihoods are specified for the
occurrences of FCs 1,2, and 3 alone, that is where a FC does not occur in conjunction with
any other. Gaussian likelihoods are also specified for the joint events of classes 1 and 2 and
classes 2 and 3. Priors are also specified for the classes. Using Bayes’ theorem gives the
posterior probabilities shown in Figure 6(b).

Poslarior probabilifies
o
n

4 6
Input vanable Input vaniable

Figure 6. (a) The posterior probabilities for the three class example before exclusion of class 3. (b) the
posterior prababilities following the exclusion of class 3 on the basis of posterior knowledge.




]

At the point x = 5 the posterior probabilities of fault occurrence prior to posterior knowledge
are given by column 2 of Table 1 which shows the effect of external knowledge on the ranking
of FCs. Given the posterior knowledge that class 3 is excluded, in this case, the updated
posterior probabilities are given in column 3 of Table 2 and shown in Figure 6 (b). The
exclusion of class 3 entails the removal of the likelihoods of class 3 alone and class 2 and 3.
These revised probabilities have been calculated using Equation (1). Note that class 1 has
risen to the top of the FC ranking following the integration of posterior knowledge into the
probability adjustment process. A simple renormalisation would have placed class 2 at the top
of the ranking which would have been incorrect.

.

The reason for the change in classification ranking following posterior knowledge is that faults
C2 and C3 are very highly coupled at x=5 as shown by the posterior probability of 0.5343 for
the two classes occurring together. At the point x =5 the exclusion of C3 reduces the
probability of C2 occurring by an amount significant enough to alter the class ranking. The
joint probability distribution of C2&C3 accounts for a significant proportion of class C2
occurring at x =35.

FCs Probs. prior to PK | Probs. following
integration PK integration
C] 0.3229 0.8518
C2 0.6444 0.2907
C, 0.6210 —
C1 el 0.0540 0.2014
C2 e C3 0.5343 —

Table 2. The fault class ranking before and after the integration of external evidence. The shaded box
indicates the most probable FC.

7. The Estimation Problem

The unprocessed condition monitoring data will consist of monitored feature vectors with
attached fault labels derived from a fault detection method. The integration of posterior
information requires posterior probabilities to be estimated either directly, or indirectly from
this data.

A common method of estimating posterior probabilities is to use an artificial neural network
(e.g. Bishop, 1995; Richard and Lippmann, 1991). Where the FCs are exclusive, given N
classes, there arises the 1 from N estimation problem, that is, for each input, one FC will be
chosen on the basis of the posterior probabilities. Where the classes are non-exclusive, more
than one FC can occur simultaneously giving rise to an M from N estimation problem. It has




been shown (e.g. Bishop, 1995; Richard and Lippmann, 1991) that for both the mean squared
error (MSE) and cross entropy (CE) measures, the neural networks will estimate the total

Bayesian posterior probabilities of the form P(C,|x) only. Thus, although joint class

information (M from N) is available in the training vectors, a conventional neural network
classifier will not be able to estimate the joint probability function unless the output space is
expanded to give an equivalent 1 from marny problem. To capture class combination
information in general, an augmented output vector consisting of 2" outputs is required. The
expansion is valid if the output space is treated as a collection of disjoint sets or partition

(Halmos, 1974). The desired probabilities may then be reconstructed from the members of the
partition.

Figure 7 shows the situation schematically. If the desired class training vector was [L..1.. .1]r

for example, joint class information would be available but would not be learned by the
network. It is equivalent to having N decoupled networks with no correlation between the

outputs, hence the M from Nto a 1 from 2" expansion at the worse possible case.

The whole process of posterior knowledge integration is shown schematically in Figure 8.
Not all of the joint probabilities will be nonzero unless the worst case scenario occurs. The
subset of relevant probabilities is chosen, forming a partition, and estimated using a neural
network or other method. The fault scenario identification cycle is then entered.

The desired FC posteriors are reconstructed giving a ranking of sub-unit fault probabilities.
This information is used to make a sub-unit inspection. If the fault scenario is identified—.e.
there are no other faults to be found—then the cycle ends. If the scenario is not yet identified,
then the new inspection information is fed in as further posterior knowledge and the cycle
continues. For the purpose of simulation, the number of fault in a scenario is known in
advance to provide the stopping criteria.

Input Output Desired Corresponding
Vector Vector Outputs FCs
o Y| |4 G
x Neural I—
i Network yj d - C
J 7
_xm | .);n C'J
n

Figure 7. A schematic illustration of the process of using a neural network as a classifier. If a class is
indicated. the relevant desired output is set to 1. otherwise it is left at 0.
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Figure 8. The posterior knowledge integration cycle. The posterior knowledge feedback occurs until all faults
are isolated.

8. Assessing the Utility of Posterior Knowledge Integration

Of primary interest here is the development of more informed maintenance strategies which
reduce the amount of maintenance required. By using posterior knowledge, revised fault
probabilities will lead to a more efficient sub-unit checking order. Without posterior
knowledge integration, the probability estimates—generated from the condition monitoring
data—give a fixed fault ranking via the posterior probabilities of fault occurrences. The
theory discussed so far indicates that revised posterior probabilities may alter the fault ranking
and give a more accurate prediction of the current fault scenario. How can posterior
knowledge integration enhance maintenance strategies in practice? Furthermore, how
effective is the use of posterior knowledge and how can this be quantified? These questions
and related issues will be explored in the remainder of this paper.

In general, in a condition monitoring situation, there will be a search path followed by
maintenance engineers to detect and isolate all current faults. In terms of aircraft maintenance,
this entails using all available fault indicators and maintenance experience/procedures to detect
the faulty line-replaceable units (LRUs). The posterior knowledge integration technique has
been developed to reduce search-path lengths during maintenance.

Posterior knowledge integration is an abstract technique designed, in theory, to be a post-
processing stage with general applicability to a wide-range of condition monitoring techniques
which produce probabilistic FC data. Consequently, the assessment of this technique should
be, at least initially, context-free. In other words, its utility should be indicated without
reference to a specific condition monitoring situation. A technique for context-free simulation
has been developed for this purpose. Using context-free simulations means that the results are
not limited to a specific set of FC relative frequencies. Using such a specific set may give a
misleading impression of the possible utility of posterior knowledge integration.




Context-free simulations use a number of individual sets of relative frequencies to explore how
the posterior knowledge technique functions across a range of conceivable condition
monitoring situations. Each simulation is based upon a single set of relative frequencies
generated at random, this set represents some possible set of condition monitoring data for a
single plant such as an individual aircraft. By applying the integration technique to each of the
relative frequency sets, an ensemble of results is obtained which can be summarised using
appropriate ensemble measures. Performance measures will be discussed in Section 10. The
ensemble results may represent many individual items of the same plant type (e.g. a fleet of
aircraft) or, more generally as applied in this work, a heterogeneous set of plants. For the
purposes of simulation, multiple instantiations of a plant may be characterised by using a
narrow probability distribution for the relative frequency vectors. In other words, relative
frequencies of individual plant items of the same basic type obviously do not vary to the extent
of those of different plants.

9. A Single Simulation

For a single simulation of an ensemble, a set of FC frequencies are generated at random which
represent a possible estimated set from the real-world. The real-world counterpart is shown
schematically in Figure 9. Here, in the context-free simulations the input features do not exist
because the FC frequencies may be associated with any possible input and represent some
possible situation. The relative frequencies represent the probabilities of fault scenarios for
the plant. An example scenario may be when sub-units (LRUs) 1 and 5 are faulty and all the
rest are operating normally.

Automated
I D|ag I‘IOSiS Condition

frequencies

Input

Figure 9. A schematic diagram of a “real-world” counterpart 1o a single context-free simulation. A set of
observations is fed into a pattern recognition system which generates a set of FC frequencies corresponding 10
the predicted probabilities of fault scenarios. These probabilities will then be used to identify the actual fault

scenario.

A fixed set of FC frequencies are generated for a given simulation from the ensemble. Each of
the fault scenarios represented by a non-zero probability is taken in-turn as the actual fault
scenario to be detected. The FC frequencies are used systematically—in conjunction with the
probability update equation—to identify the actual fault scenario. Finally, after each scenario,
relevant information is recorded which allows the single simulation measures ( e.g. for a single
aircraft) or the ensemble measures (e.g. for a fleet) to be calculated. Each fault scenario of the
‘ndividual simulation entails a fault search which results in a fault path representing the number
of inspections required before all faults are identified.




Figure 10 illustrates what happens for a single fault scenario awaiting identification using
posterior knowledge integration. The posterior probabilities of occurrence for each fault are
reconstructed using the scenario frequencies. These posterior probabilities are ranked in
descending order of magnitude and represent the probability of a given fault occurring. The
sub-unit is chosen for inspection with the highest fault probability and inspected for that fault.
The posterior knowledge following inspection is then used to specify the actual form of the
probability update equation which depends upon the FCs to be included or excluded. The
probability update equation is used to give the revised posteriors. If the fault scenario has
been identified then the search is halted. Otherwise, the revised posteriors are used and the
process is continued until the scenario is identified or the maximum number of sub-units s
inspected.

Condition Frequencies
=
Posterior Probabilities
¥
Fault Search

dentified Scenario

PK

Figure 10. A flow diagram of the identification process for a single binary-coded fault scenario. A number of
scenarios is identified for a given set of FC frequencies generated for a single simulation.

In order to show any possible utility of the posterior knowledge integration technique, a
comparison has to be made with a baseline method which does not use this external evidence.
A simple comparison method is to fix the FC posterior probabilities as they are obtained from
the condition monitoring system. The fault search entails inspecting the sub-units in
descending order which is equivalent to a simple renormalisation of the MAP decision. Here,
the comparison technique is referred to as the baseline method.

For comparison purposes, the posterior knowledge is included systematically, that is, the fault
status of an inspected unit is fed into the probability update equation to give the new
posteriors after each inspection. Both the posterior knowledge and baseline methods are
carried out for each scenario until all faults are found, i.e. the scenario is identified.




10. Performance measures

A number of performance measures are possible which allow a comparison between methods.
Of direct interest and applicability are measures involving the path length (PL) or path length
difference (PLD) between the same scenario identified using the two techniques. The path
length difference is the difference between the baseline and posterior knowledge integration
techniques for a given scenario. A positive path length difference indicates that the baseline
method took more steps (sub-unit inspections) to identify the scenario as compared to the PKI
method and vice versa. Results are recorded for each scenario, each simulation and each
ensemble for a given set of simulation FCs. Thus, in the context of aircraft maintenance, a set
of measures is calculated for each situation (FC), each aircraft and each fleet. Figure 11 shows
this schematically for a single FC and a single simulation.

PEI ——*PLIPKI}
Condition PLD
s BL —PL(BL)

(a)

PKI —APL(PKI
Multiple
Conditions +APLD
» BL — APL(BL)

(b)

Figure 11. (a) for a single FC. the posterior knowledge and baseline methods are applied to give path-lengths
signifving the number of sub-unit (LRU) inspections required to identify the scenario. The path length
difference is then calculated from the two path lengths. (b) For multiple FCs. the average path lengths and
average path length differences may be calculated.

The path length difference ranges between —(n7—1) through 0 to (n—1) where 7 is the
number of sub-units. One ensemble measure is to count the individual PLD’s to give quasi-
histograms of PLD frequencies. The counts are weighted to reflect the relative frequencies of
the scenarios which gave rise to those path length differences. For a single scenario, the path
length difference is calculated and weighted by the scenario probability. The weighted PLD
counts are then presented in a bar chart as a quasi-histogram. Positive PLD’s indicate that the
baseline method requires more sub-unit inspections to identify the scenario. Thus, a quasi-
histogram skewed in the positive direction indicates that the posterior knowledge method is
more effective at scenario identification and requires fewer sub-unit inspections. This may
translate into maintenance savings. In the aircraft industry, this would mean fewer LRU
inspections. LRU’s are usually removed and replaced which can be a costly process in terms of
LRU recertification. NFF situations mean that non-faulty LRU’s have to be tested thoroughly
prior to re-use.




11. Simulations

One thousand simulations were carried out where each simulation generated a set of FC
frequencies and applied the posterior knowledge and baseline methods to the scenarios within
each simulation. For the simulations described here, a total of eight sub-units was used to
represent a hypothetical plant; this gave 256 outcomes where the fault scenarios were
represented by 8-bit binary strings. Here, the 256 fault scenarios were equally likely. Future
work will consider different distributions of fault scenarios. Figure 12 shows a quasi-
histogram for a set of simulations in which all 255 scenarios are possible which have one or
more faults. The 256th scenario has zero faults. .
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Figure 12 A quasi-histogram of path length differences over a thousand simulations. Each simulation provided
a number of scenarios for identification using both the posterior knowledge and baseline methods. The
histogram is skewed towards positive path length indicating that posterior knowledge integration results in
shorter path lengths overall. The height of the bar indicates the relative frequency of occurrence for a
particular PLD

Comparing related columns (PLD of same magnitude) such as +1 and -1 sub-unit inspections
respectively reveals that the quasi-histogram is skewed towards positive path length
differences, i.e. that positive PLDs are more likely.. This means that the sequential integration
of posterior knowledge has reduced the number of required sub-unit inspections. As 255 fault
scenarios were possible, the scenario predictions were maximally ambiguous, that is, when an
actual scenario is to be identified, it can be any 1 of 255 possible scenarios.

Figure 13 shows the same protocol but with the number of scenarios reduced to any 64 out of
256. Comparison of figures 12 and 13 reveals that the quasi-histogram skewing is more
pronounced—as expected—because the number of possible scenarios for a given diagnosis 1s
reduced. In reality, the number of fault scenarios predicted for a given feature vector will
invariably be lower than the maximum possible; the prior distribution of scenario frequencies
will be dependent upon the dynamical system being monitored. For example it is conceivable




that multiple fault scenarios will be much less prevalent than simple fault scenarios thereby
reducing the number of fault scenarios associated with a given input. Furthermore,
associations between fault scenarios and input vectors depend upon the key features
monitored. If ambiguity is high, then it is likely that the choice of monitored features is not
optimal for predictive disambiguation of fault scenarios.

Path Length Ditlerence Relative Frequencies
0.35 T T T T T T T T

03t : : -

0.25F < .

aQ
&)
T
1

2
wn
T
1

Relative Frequency

0.05+

i 98

=Ll .
-4 -2 ) 2 4 8 8 10

Path Length Difference

-10 -8 -6

Figure 13. The results of the same simulations carried out using a reduced number of scenarios of 64 out of
256. The skewing is more pronounced. See text for details.

Figure 14 shows the same protocol again but this time with only 8 out of a possible 256
scenarios. Note that the skewing is even more pronounced than in the previous simulations.
This is owing to a further substantial reduction in target scenario ambiguity.
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Figure 14. The results of the same simulations carried out but using a reduced number of scenarios of 8 out of
256. The skewing is more pronounced. See text for details.




Figure 15 shows the total path-length difference relative frequencies of the left and right sides
of the quasi-histograms for an increasing number of scenarios. These sums represent the total
relative frequencies of the left and right sides of the quasi-histograms. A larger positive PLD
relative frequency indicates that the path-length for posterior knowledge integration is shorter
than for the baseline method. Note that the positive PLD sum is consistently larger. As the
number of scenarios allowed for each simulation increases, the difference between the positive
and negative PLDrelative frequencies diminishes. The number of possible scenarios for a
given input increases and represents an increase in predictive ambiguity. An expected
consequence is that the effectiveness of the posterior knowledge technique diminishes. A high
degree of predictive ambiguity is not expected in a “real world” situation because it would
indicate a problem with fault resolution. A consistently larger positive PLD relative frequency
indicates that the posterior knowledge integration technique always outperforms the baseline
technique. The main point is that the posterior knowledge integration technique is superior
even with high predictive ambiguity.
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Figure 15. A graph of the PLD sum relative frequency versus the number of scenarios allowed for each
simulation. The positive PLD sum relative frequency is a total relative frequency reflecting how many times
the baseline method path length has exceeded that of the posterior knowledge integration technique (positive

PLD) i.e. it the total relative frequency for the right-hand side of the histogram. This shows where the

integration of posterior knowledge has shortened the path-length.

Where there are only singleton classes, i.e. no joint probabilities, there will be no gain using
the PKI method. This is because no information is given about other FCs or sub-units.




12. Conclusions

In general, condition monitoring involves the detection of anomalous conditions that arise
during the operation of some plant or process. Condition monitoring techniques usually end at
the point of providing information about which sub-units of a given plant are suspected as
being faulty. The indication of the most likely fault and its estimated probability by a fixed
pattern recognition system is not necessarily the end-point. In reality, condition monitoring is
a continuous, closed-loop process involving an end-user who ultimately decides how to use
the information generated by the condition monitoring system. The end-user may, in turn,
require a mechanism of incorporating his or her-observations into the condition monitoring
system for a more accurate diagnosis. The incorporation and utilisation of posterior
knowledge presents a difficult problem. This paper has attempted both to articulate the
problem and to provide a framework for its solution.

It has been demonstrated that posterior knowledge integration, as a post-processing technique,
improves fault scenario identification. It is general in that it is applicable to condition
monitoring systems which provide probabilistic fault scenario data. The end-user 1s able to
feed back information into the condition monitoring process effectively, thus closing the loop.
Context-free simulations provide a clear indication that, overall, posterior knowledge
integration reduces path lengths in faulty sub-unit identification. This has potential payoffs in
terms of maintenance costs, both direct and indirect. The skewing effect on the quasi-
histograms is dependent upon the number of non-zero scenario probabilities. Here, the
posterior knowledge integration was sequential, that is, was included after individual sub-units
were inspected.

The above results are preliminary but they show that posterior knowledge integration has
potential use in condition monitoring. Furthermore, the “closed-loop™ method is independent
of any predictive condition monitoring system. This stage follows on from the prediction of
faults given a set of monitored features. The method requires a set of fault scenarios and their
corresponding relative frequencies regardless of how they are estimated.

Now that the possible utility of the posterior knowledge integration technique has been
demonstrated, a number of issues remain which have to be addressed.

The probability update equation has been applied to sets of FC frequencies as specified in the
simulations. These FC frequencies determine both the initial fault scenario ranking and
subsequent changes. In reality, the probabilities will be estimated from condition monitoring
data and, as such, will be subject to estimation errors. The combined effects of these
estimation errors may alter the scenario ranking and, consequently, change the maintenance
strategy. The effect of estimation errors on the update equation must therefore be
investigated.

At present, the path lengths are weighted only with respect to the scenario relative frequencies
and are not weighted with respect to maintenance cost. In reality, the costs may rise




significantly as time goes on; in the case of aircraft, foe example, long down-times can incur
extra costs. The effect of cost weightings will be taken into account. Further weightings will
also apply, e.g. the financial cost of replacing one LRU may be very much higher than
replacing another. The simulations presented within this paper have equally weighted
scenarios. This means that the prior probabilities of fault scenarios are the same and that
scenarios with many faults are as equally likely as those with fewer faults. In practice,
scenarios with multiple faults are less likely. This will be represented by using various prior
distributions for the scenario frequencies.

The simulations presented here assume that the number of faults occurring in each simulation
is known a priori. This is to ensure that performance comparisons between posterior
knowledge integration and the baseline methods can be made. In the real-world, the number
of faults will be unknown. Another possible benefit of posterior knowledge integration is that
the modified probabilities may indicate whether or not it is sensible to search for other possible
fault FCs. The baseline method will not supply any further information as to whether or not
more faults remain. With posterior knowledge integration, a probability threshold may be
used, below which any further search is terminated.

Posterior knowledge is currently included sequentially following each sub-unit inspection. In
practice, information about one or more sub-units may be available prior to the fault search. A
facility for “en masse” posterior knowledge integration will be included. There is also the
possibility of bringing joint probability information into the system derived from engineering
knowledge and practice, i.e. subjective probabilities other than simple 0/1.

The properties of exclusivity, independence may be used to pre-process the data before using
the probability update equation. Furthermore, by identifying and simplifying dependencies, the
probability estimation problem may be reduced.
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Appendix A. The Posterior Probability Update Equation

The general form of the posterior probability update expression can be written as
P(CBF‘XDE(CBI...CM )) where E(Cal Cﬁk) is a function of the classes Cy ...Cy, and the

three set operators of complement,union and intersection.
The probability update equation, Equation (1) can be proved formally as follows:

The general form can be expanded using the definition of conditional probability:

A b )-SR
_ A6, NG G, Jx)
Ple(Giyse G, )

The final expression can be rewritten in terms of positive probabilities. A linguistic analysis of
the engineer’s posterior knowledge regarding the occurrence or non-occurrence of faults can

be coded to give an expression for E(C81 G, ) which, in turn can be expressed in terms of

izk

known (estimated) probabilities It is sensible to impose the restriction of E(Ca. ---Cs,.) to

expressions only involving complement and intersection. E(Csl Gy, ) will be of the form

Hﬂclﬂ[ﬂc H

Now,

P(eNx) )

P(C'5p ‘8 ﬂx) ==

by the definition of conditional probability.

The external evidence is represented by the general form
e=XNX, (A2).

Substituting Equation (A1) into equation (A2) gives,




*

P(C},FﬂX,ﬂX:ﬂx)
P(x,NX:Nx)

P(G,, XN X2 )p(x)
= by P
P(X,NxgJx)p(x)

)

P(G, | nxenx)=

(4" B)= P(AB)P(B)

i P(Cﬁp NXxnNxe
-~ P(xnx; x)

by cancellation

giving,
P(Cap mX,lx)— P(Cf,p nx ﬂXelx)

PG, N X0 === e )

(A3)

by the identity P(A NB*

x) = P(A|x) - P(A ﬂBix)

The form of Equation (1) is obtained by substituting X, = UCﬁp , X = ﬂCa, into Equation

(A3) and applying the distributivity and associativity laws of set theory. The form of Equation
(A3) is the most general. Appendix B gives details of the 16 special cases derivable from
Equation (A3) by making the appropriate substitutions.

The probabilities of set unions of Equation (1) can be computed using the standard definition
(e.g. Durret, 1994) with the appropriate terms substituted; the numerator term is given by the
expansion

el e
gp[cﬁpn(mc& Jne. J—
s Ac.n(ne e,

e<e'

5 Ac.n(ne nanane,

e<e'<e"”

x] + (A4)

+) PG NG N NG, )




to include the conditional probabilities of Equation (1). Equation (A4) can be proved easily by
using the distributivity of set relations and substituting Cﬁp Nx for C; in the general form

ofP(Ui]CEJ) (e.g. Durrett, 1994, Grimmet and Stirzaker, 1992) where K is the number of

sets involved in the union:

P(Uil Cﬁ, ) = gp(cﬁz)

_ Rj PG, nG,)

K

+,-<J<kP(CB" NG, mCE})

+ (= 1) P(Cél AYEE i, )

in terms of probabilities of occurrence. Note that conditional probability has been used.
Appendix B.
The Axiom of Exhaustivity,
The universal set of conditions is exhaustively covered by a finite number of condition classes,
ie. U= ﬂC . » 1<k <n where n is the number of diszinct condition classes. In other

k

words, there are no other condition classes.

Where there are excluded and included classes which can be non-existent, exclusive,
independent or dependent there are 16 possible cases as shown in Table B1:




Case Number Excluded Included
1 N N
2 N E
3 N 1
4 N D
5 E N
6 B E
7 E I
8 E D
9 1 N
10 1 E
11 1 |
12 I D
13 D N
14 D E
15 D I
16 D D

Table B1. The 16 possible cases where excluded and included classes are possibly non-existent. exclusive.
independent or dependent. These states are denoted by N. E. I and D respectively Note that it assumes that a//
excluded or included classes have the same state.

The cases of Table B1 will be dealt with in order.

Case 1: (N/N) there are no excluded or included classes

PGy [x)=P(Cs,}x)

E

where

PE(CBJ}()E P(CBP‘E ﬂx)
for notational convenience throughout the derivations.

In this case, no evidence available implies no change as expected.




Case 2 (N/E) there are no excluded classes but the included classes are exclusive.

Substituting X, = ¢ into the PUE gives

P(C;, N X,‘x)— P(c;, Nx,Nx,
)= P(X,[x)- P(X, N X, x)

)

P(Cy, s

B P(Cﬁp NX, Lx)
P(X [x)

Now, by the axiom of exhaustivity, and exclusivity of the excluded classes:

Cs, = Cs, for some i € Al or Gy = C;, for some & e{l,...n}, keAl.

Where C; is not an included class:

Cy =Cop ke{ln) keAl =C, NX, =¢ giving Q(Cﬁp’x)z 0
which is the trivial case. In other words, Cy ~will not happen.

For the former case, C is an included FC so it has happened.

Gy, =G, €Al =G NX, =X, giving PE(C&F’X):]

Stated simply, case 2 entails that the included classes are exclusive which means that if
exclusive classes are known to have occurred, the on the classes are ruled out. Hence a
probability of one or zero depending upon whether the desired class i1s amongst those known

to have occurred or not.

Case 3 (N/T) there are no excluded classes but the included classes are independent.

With no excluded classes, substituting X, =¢ into the PUE gives
P(c,, N X, x)- P(c,, N, Nx, x)
)- P(x [x)- P(X,NX,]x)

P(Cs, Jx




P(C,, N [x)
T P(x)

Now, by conditional independence.

P(C;, N X Jx)= P(C, [x)P(x,]x)

P(C, [x)P(x,]x)
R (G ) =——= o)
= P(CSF x)

When the included classes are independent, it follows that the occurrence of these classes will
have no effect on the occurrence of the remaining classes.

Case 4 (N/D) there are no excluded classes but the included classes are dependent.

Again, with no excluded classes,

A, 0

which cannot be simplified in any way unless G5 =C; 1€ Al = G, NX, = X, giving

E

P (CB ’1) — 1 which is trivial. For the non-trivial case, the included classes are dependent and

restrict the probability space of C5 occurring.

Events are restricted to those in the included class intersection, X, = ﬂCSf :

1

Now,




P(c,, NxJx)

G k) =5

P(Cﬁp Nnx.N x) / P(x)
T P(X,Nx)/ P(x)
PG, Nx.Nx)

— P(X.Nx)

-r(e e

Thus the posterior probabilities are now conditioned on the included class space.

Case 5 (E/N) the excluded classes are exclusive but there are #o included classes.

Where there are no included classes, X, = U/ . Substituting into the PUE gives,

J

x) - P(Cap nx,

x)

By applying the axiom of exhaustivity, and the exclusivity of the excluded condition classes,

px):O

Gy, NX, =G, or G5, NX, =¢. The former case is trivial giving P, (C'5

Where, CapﬂXc =

Because the excluded classes are exclusive, the probability space is reduced without
information affecting the ratios of the remaining classes. For example, if the class 1 and class
2 probabilities are in the ratio 2:1 then the ratio remains at 2:1 following the exclusion of the
exclusive classes. Exclusive classes do not carry any joint information about the remaining
classes.




Case 6 (E/E) both the excluded and included classes are exclusive.

The exclusiveness of the excluded classes gives

X NX,=¢, giving

P(CBP ﬂx,;x)

R (¢,

Now, by the axiom of exhaustivity and the exclusivity of the included classes,

Cy, = Cs, forsome i€ Al or G, = C, for some k € {,...n}, keAl

Where,C; =Gy, ke {l...n}, keal =C; NX, =0 ging (CEP

x) =0, which 1s the

trivial case. In other words, C; has not been included.
For the former case, (5, =Cs, 7€ Al = C,NX, = X, giving F, (C‘S_lx) =]

Case 6 is similar to case 2 in that the exclusivity of the included classes precludes any other
events. Similarly with cases 10 and 14.

Case 7 (E/I) the excluded classes are exclusive but included classes are independent.
The exclusiveness of the excluded classes gives

X,NX, =0, giving

Plo, Nk




For the trivial case, Cap = C’ai k€ {1,...,}1}, ke Al = Cay NX, =¢ giving P, (Cap’x): 0.
Now, by conditional independence
P(Csp ﬂX,.‘x) = P(Caplx)P(XJx)

S0,

Case 8 (E/D) the excluded classes are exc/usive but included classes are dependent.
The exclusiveness of the excluded classes gives

X.NX, =06, giving

P(c, nxJx)

AR

£

which cannot be simplified in any way except for the trivial case, CBP =G,
ieAl = C; NX, =X, giving F, (CEP’X) =1 which is trivial. For the non-trivial case, the

included classes are dependent and restrict the probability space of Cﬁp occurring.

Case 9 (I/N) the excluded classes are independent but there are no included classes.




Where there are no included classes,

X =U,
Substituting into the PUE gives,

P(Csﬁ fx)— P, N Xe]x)
P(Ux)- P(X [x)

(o )=
Now, by conditional independence,

P(C,, NX k)= P(Cy, x)P(X. x)

giving,
P(Cy, [x)- P(Cy, 1 )P(x. %)
A ey
P(Xg|x) =0
giving,
P CSP‘X
(Gufx)= JE(U x))
= P(Cy %)

Case 10 (I/E) the excluded classes are independent but included classes are exclusive.

Where the exclusive classes are independent,

P(Cﬁp N XE’X) = P(Cap‘X)P(XJX)




giving,

i P(CBF nx }x) — P(CEP nx, 'x)P(Xe
") B P(x [x)- P(X,[x)P(X.]x)

x)

p(C,, NX, )
P(X,[x)

Now, by the axiom of exhaustivity and exclusivity of the included condition classes,
Cs, = C;, for some i€ Al or G5 = Cs, for some k € {l,....n}, ke Al.

Cs, =Cs, .k € 1,...n}, keAl =C; NX, =¢ giving PC(Csp]x): 0 which is the trivial

For the former case,

G,=GCs, i€l = C;, N X, = X, giving R(Cap‘x)zl

Case 11 (I/T) both the excluded and included classes are independent.

Where the exclusive classes are independent,

P(C pﬂXJ’x
-

For the included classes, by conditional independence
P(CBP nx }1) - P(Cap .x)P(X, x)

S0,




P(C;y x)P(X;]x)
PE(CSP|"): ( p(;’ X)

= P(Cap'x)

Case 12 (I/D) the excluded classes are independent but included classes are dependent.

Where the exclusive classes are independent,

P(CSP mX,(x)

A= =56

P

which cannot be simplified in any way except for the trivial case, Cﬁp =G
ieAM = C; X, =X, giving F, (Cﬁp‘x) =1 which is trivial. For the non-trivial case, the

included classes are dependent and restrict the probability space of Caﬂ oceurring.

Case 13 (D/N) the excluded classes are dependent but there are no included classes.
Where there are no included classes,
X.=ll.

Substituting into the PUE gives,

P(CEP 4:;)— P(Cép nx,
r(e, M ~ T PUR)-P(x.x)

J

e

This is the probability update equation for excluded classes only.

Case 14 (D/E) both the excluded and included classes are exclusive.




The exclusiveness of the excluded classes gives

X NX,=9¢,giving

F (Cap x|= P(Cap ﬂX,-‘I)

; )_ P(X,x)

Now, by the axiom of exhaustivity and the exclusivity of the independent classes, Cy , = C;
for some 7 € A7 or G5 =G, for some k € {l,...,n}, ke Al

Caﬂ ':Cf:]. ,k € {l,...,n}, k EM = Cé’pﬂX‘ :(:) glVlng

which is the trivial case.

For the former case,

Cs,=GCs 1€eAl =G, NX, =X, giving

2 (Ca,, ’x) =1

Case 15 (D/I) the excluded classes are dependent but included classes are independent.

Where the included classes are independent,

P(Cy, [ )P(x,8) - P(Cy, N [x )P (x.[x)
g (Caﬁ x): P(Ux)P(x,|x)- P(X.[]x)P(X,|x)




P(Cap}x)d P(C§P ﬂXelx)
P(Ux)- P(X,x)

Here, the included classes have no effect on the result as expected.

Case 16 (D/D) both the excluded and included classes are dependent.

Where both classes are dependent, Equation (A3) is used in its derived form where

&=Uqﬂx:ﬂg

From these 16 cases, a number of general rules can be noted as mentioned in the paper.




