This is a repository copy of Support Vector Neural Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82466/

Monograph:

Frieb, Thilo-Thomas and Harrison, R.F. (1998) Support Vector Neural Networks. Research
Report. ACSE Research Report 725 . Department of Automatic Control and Systems
Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Support Vector Neural Networks

Thilo-Thomas Friefl and Rob Harrison

Date: 14. September 1998

.

Research Report No. 725

The University of Sheffield,
Dept. of Automatic Control and Systems Engineering
Mappin Street, Sheffield, S1 3JD, England
email: friess@acse.shef.ac.uk

Abstract: The kernel Adatron support vector neural network (SVNN) is a new neural
network alternative to support vector (SV) machines. It can learn large-margin decision
functions in kernel feature spaces in an iterative “on-line” fashion which are identical to
support vector machines. In contrast “conventional” support vector learning is batch
learning and is strongly based on solving constrained quadratic programming problems.
Quadratic programming is nontrivial to implement and can be subject to stability prob-
lems.

The kernel Adatron algorithm (KA) has been introduced recently. So far it has been
assumed that the bias parameter of the plane in feature space is always zero, and that all
patterns can be correctly classified by the learning machine. These assumptions cannot
always be made. The kernel Adatron SVNN with bias and soft margin combines the speed
and simplicity of neural networks with the predictive power of SV machines. However the
SVNN does not, unlike to SV machines, suffer from any problems related to quadratic
programming, and unlike to conventional neural networks the SVNN’s cost function is
always conver.

The support vector neural network is introduced, then experimental results using bench-
marks and real data are presented which allow to compare the performance of SVNN’s
and SV machines.

Key Words: Neural Networks, Perceptron, Adatron, Kernel Functions, Method of Poten-
tial Functions, Statistical Mechanics, Support Vector Learning

200446572

TR

1 Introduction

Support vector (SV) machines, developed by Vapnik and co-workers ([5], [7]), are known
since 1995. There seems to be experimental evidence that this algorithm has the capa-
bility to obtain a high generalisation ability (e.g. [34], [41]). Unlike to neural networks
SV machines are still not widely used in the community. SV learning is strongly based
on quadratic programming which is not easy to implement, in particular for large-scale
problems. In cases where the hessian is close to singular optimizers may fail to find solu-
tions at all, in other cases sometimes only sub-optimal solutions can be found. In support
vector learning most elements of the solution vector are zero (theoretically), however most
optimizers return solutions where most components have very small positive or negative
values. Users usually help theirselves by defining a small threshold and to cut all compo-
nents which have an absolute value smaller than the threshold. This is dangerous because
the loss caused by this effect depends on the input distribution which is not known. If
the computer’s memory is not large enough to store the hessian matrix decomposition
strategies (like chunking) are required.

The kernel Adatron SVNN is an algorithm which allows to overcome these limitations.
Tt can learn decision surfaces in kernel feature spaces and find ezract solutions without
explicitly solving a constrained quadratic programming problem. The algorithm is nu-
merically highly stable and extremely simple.

Since the SVNN is a neural network algorithm this work implicitly establishes a link be-
tween (more cognitive oriented) neural network studies and a machine learning algorithm
motivated mainly by ideas developed in a statisitcal context.

This document is structured as follows: In section one Rosenblatt-perceptrons, data de-
pendent perceptrons, kernel perceptrons, and SV machines are considered. In section two
the Adatron and kernel Adatron is considered, then the support vector neural network
with bias and soft margin is introduced. It is shown how training patterns can be aug-
mented in the feature space in order to learn the bias parameter. Section three shows
computer experiments which allow to compare SVNN'’s and SV machines in four cases.

2 Perceptron Learning

2.1 Rosenblatt’s Perceptrons

Rosenblatt’s learning algorithm for perceptrons [38] can find a linear discriminant func-
tion, f(x), for a given set of labelled training patterns. Each training pattern, z;, is a
vector in R® and has a label y; € {+1,—1} Vi € {1..l}.

The vector w of the linear decision function

f(z) = (w,) (1)

can be found by the following algorithm:

Rosenblatt-Perceptron

1. Choose a starting point (e.g. wq = 0 Vd)

2. WHILE not all patterns are correctly classified

3. choose pattern z; (i € {1..l})

4. If NOT sign(f(z;)) = y; update w by: w < w + nz;y; END IF
5. END WHILE

For the learning rate, 7, usually a small positive value is chosen (or alternatively 7 is
set to 1 and training patterns are re-scaled). Similar algorithms (e.g. neural networks)
sometimes use an adaptive learning rate which can vary during the learning process.

If it is possible to classify all training patterns correctly, the algorithm terminates in a finite
number of cycles. Then a weight vector, w, has been found such that y; = sign(f(z;)) V.
The weight vector, w, may be expressed as a weighted sum of patterns: w = Yi_; f;z;
where the 3; are multipliers for individual patterns, z;. Another way to expand the vector,
w, is given by: w = Y_, y;04T;, in this case the ; are non-negative integers.

Similar to perceptrons, the expansion of w onto a weighted sum of some training patterns
also holds for Vapnik’s support vector (SV) machines - therefore SV machines can be re-
garded as a species of the Rosenblatt-perceptron, or alternatively Rosenblatt’s-perceptron
as a special form of a “support pattern” machine.

2.2 Perceptrons in the Data Dependent Representation

Decision function (1) can be rewritten in expanded form:

1 !
f(@) = (w,) = (3 cuzi),z) =) i, z) (2)
i=1 i=1
and Rosenblatt’s update rule (as described above) can be rewritten as: |

Q; < a; + NY; (3)

Note that in (3) the elements of the vector of the multipliers, o, are updated instead of
updating the weight vector, w, directly. Decision functions of the form (2) will be called
data dependent representation (because the weight vector has been expanded on some
data points), while decision functions of the form (1) will be called explicit representation
(w is directly available).

To avoid target function ((1),(2)) passing through the origin augmented training patterns,
z* can be used. Then an affine function: f(z) = (w,z) + b = (w*, z*) will be obtained
which has one more degree of freedom:

V1 e {l.d} w} =w;, wy,,=b (4)

A pattern can be augmented by simply increasing its dimensionality by one and setting
the (d + 1)’th component of the augmented pattern vector to 1. Note that augmenting
patterns is similar to introducing a bias unit which always has an activation equal to one.

3

To use augmented patterns in a data dependent perceptron it is required to replace (3)
by the following update rule:

o o +ny 5 bb+ny; (5)

The first part of this rule (e; < @; + ny;) ensures that the first ¢ components in weight
vector w® are updated correctly; while the second part (b < b+ ny;) ensures that the
(d + 1)’th component of w* is also updated.

It is important to realize that in this representation only the (d + 1)’th component of the
augmented weight vector w® is explicitly available, while all other d components are only
implicitly given by the data dependent expansion on the training vectors.

2.3 Kernel Functions and Nonlinear Perceptrons

The perceptron with kernels, known as the method of potential functions [1], has the abil-
ity to learn nonlinear decision functions. The algorithm is based on the idea of nonlinear
kernel functions which represent dot products in some Hilbert spaces. A kernel function
allows the mapping of two patterns (z,,z,) at first into a high dimensional feature space
(¢(zy), #(z,)), and then the calculation of a dot product there. This is expressed by:

k('ru,xﬂu) = (qb(mu): ¢($v)> = (Zmzv> (6)

where the z are images of patterns z in feature space.

Any function k which satisfies Mercer’s conditions may be used as a dot product in kernel-
feature space [6].

Initially the kernel idea was applied in the potential function algorithm; an algorithm
which uses kernel dot products to run a perceptron in a linearization space - the kernel
feature space.

There has been an increased interest in using kernel dot products to create nonlinear al-
gorithms. Examples are support vector machines [7], kernel principal component analysis
[41], linear programming machines [14], ridge regression in dual variables [40], and kernel
clustering [21]. It is also possible to shine some new light onto gaussian-based algorithms
by considering Gaussians as dot products in some feature space [10].

Examples for kernel functions are the scalar product, the radial basis function (RBF)
kernel, and the polynomial kernel:

ksp(xm SCU) = (SCM, 1131,) (7)
krpr(ZTy, Ty) = ezp(—||zu — zy||*/0?) - (8)
kot (T, Tw) = ({Tu, 20} +1)%, d=1,2,.. (9)

Kernel-based algorithms are elegant in the sense that the “kernel trick” allows algorithms
to operate implicitly in very high (sometimes infinite-) dimensional feature spaces with-
out explicitly expanding patterns into their feature space representation. Undesired side
effects have been observed using support vector machines with polynomial kernels which
are not scale or shift invariant. In these learning machines the optimal margin decision
function will not lie in the middle of the two classes ([5], [13]). Further information about

4

¥

kernel functions can be found in [41].

To plug kernels into Rosenblatt’s algorithm the dot products from the data-dependent
decision function (2) are simply replaced by kernel functions:

f(z) = (w, ¢(z) Zaz z;))“‘“Z% i, &) (10)

On the right hand side of (10) the weight vector, w, resides now in the feature space
defined by the kernels, it cannot be accessed any more for updates. Recall that the dot
product in feature space is available, but not the transform ¢(z) = 2, for a pattern z.
However in the data dependent representation of the kernel perceptron, multipliers are
still accessible, therefore the learning scheme is now given by:

Kernel-Perceptron Learning (Method of Potential Functions)

1. Choose a starting point (e.g. o; =0 Vi € 1..)

2. WHILE not all patterns are correctly classified (using decision function (10))
3. choose pattern z; (i € {1..1})

4. If NOT sign(f(z;)) = y; update w by o; < o; + ny; END IF

5. END WHILE

The b-parameter can be introduced in this perceptron by using update rule (5) instead
of the rule suggested in step 4 and by using decision function: f(z) = L oik(zi,z) + b
instead of (10). This is equivalent to augmenting the training pattems z = &(zs), n
kernel feature space by one dimension. Then an augmented (d + 1 dimensional) weight
vector w® will be used instead of a d dimensional vector w.

2.4 Data Dependent Decision Functions

Owing to the data dependent representation of the weight vector in kernel perceptrons
linear dependencies between training vectors z; in feature space ¢(z;) may exist. Then a
variety of data dependent perceptrons may represent exactly one weight vector in feature
space.

In the following subsection it is shown how linear depenencies between patterns in fea-
ture space can be identified, such that data-dependent perceptrons can be reduced to a
minimal expansion. This result is different to the work by [36], where it is pointed out
that linear dependencies in kernel feature space exist. Here it is shown how these depen-
dencies in feature space can be identified in order to remove redundancies and compress
the perceptrons decision funcion, regardless of the choice of regularisation parameters (if
existing as in SV machines).

Data dependent kernel perceptrons use a decision function of the general form:

l&'ll

f(z) = (w, ¢(z +b"'Zﬁz ’,z) +b (11)

In this expansion all patterns with a non-zero multiplier, 3, are denoted as “sv” patterns,
there are [*Y such patterns (I** < [). As stated above, in data dependent perceptrons
the weight vector, w, exists only in feature space; it lies in the subspace spanned by
the vectors ¢(z*”). In ([7], Endnote 6) it is explained that in support vector machines
sometimes more patterns, =¥, are found than necessary to expand w in feature space
(“the decision function is unique but not its expansion on support vectors”).

It is a nontrivial task to eliminate the linear relationships in feature space because trans-
form ¢(z) is not available. Even if this transform were available it would be nearly
impossible to calculate linear dependencies between the vectors, ¢(z*"), because these
vectors can have a very high number (possibly infinite) of dimensions.

If linear dependencies in feature space could be found, their images in input space could
be removed from the decision function in a straightforward manner. Assuming that mul-
tipliers from the decision function are updated correctly, patterns from expansion (11)
can be removed without loss.

Matrix P will be defined such that P, is the A’th component of vector ¢(z,); g € {1..1°"}.
Note that matrix, P, is an [** by d/* matrix where fs denotes the dimensionality of the
feature space.

It is useful to define an [°Y by [** kernel correlation matrix D = PP';D;; = k(z;, z;)
which has the following property:

rank(D) = rank(P) (12)

This relationship is a property of a Gram matrix [22].
Except for cases where rank(D) = [*” there will be patterns ¢(z;) which can be expressed
as a linear combination of [**” other patterns in feature space (I**¥ < I*V).

l*SU

$lzi) = > 1 dlagr) (P45 V57) (13)

i*=1
Linear dependencies between row-vectors of D are defined by:

l*SU

Vhe {1.I*} Dip=Y 6;Djup (14)

=1
It can be shown that the linear dependencies between the row vectors in D are exactly
the same as the linear dependencies between the row vectors in P.

Theorem: For each linear dependency of the form (13) there ezists exactly one linear
dependency in D where the linear factors in (13) and (14) are equivalent:

Vi v =06 (15)
Proof:

Vi :Dip = k(zi,xp) = (¢($i):¢($h)> = <z—:1 ’Yj’¢5($j*)a¢($h)) = (16)

t*SU l*SU

Z ’Yj*k(&')jt,.’ﬂh) = Z 'Yj*Dj*,h

j"‘:] =1

Therefore it follows that v; = d; Vi. This relationship allows the computation of the ~y
from matrix D, this leads to the d which can be used to update the multipliers, 3, if a
pattern, z;, is to be removed from the decision function.

All that’s required is to find the vy is to solve linear equation systems where one row vector
of D is expressed as a linear combination of other row vectors of D. This can be done
using standard techniques for solving linear equation systems (e.g. Gauss elimination or
Householder’s method [26]).

Once linear dependencies, ¢, in feature space have been found the decision function can
be rewritten in a way such that one redundant (linearly dependent) pattern will vanish.
Function (11) can be expanded:

lSU

flz)=b+ Z:lﬂik(mi: ¢(z)) = (17) |
b+ Bilz1, ¢(2)) + Bolze, d(2)) + .02, d(2)) + ... Bise (219, B(z))

By using (13) and multiplying out

f(z) = b+ P21, 9(z)) + Pafz2, d(z)) + ...

131.1

Bi{(Z_: Vi=2Zje), () + .o oo (2150, B())

= b+ fi(z, #(z)) + Ba(22, d(z)) + ...(B; + Bivi) (2, d(z)) + ... (18)
(Be + Bivie) {2k, () + .- Bisv (250 1), #(2))

a function is obtained where one unit has been removed from the expansion.

So the update rule for multipliers 8 from (11) is given by:

if k#i u(Bk) = B+ Bives (19)

In an algorithm which aims to compress the decision function without loss in each itera-
tion a linear dependency of form (13) can be identified; then one pattern is removed from
the decision function, and multipliers § are updated.

As mentioned in [39] Vapnik’s leave-one-out bound works only in cases where all patterns
are correctly classified by a support vector machine. In those cases the “compression
ratio” (expected generalisation ability) given by the leave-one-out bound [46] is an upper
bound on the compression function: Tyrgsr = rank(P)/!.

It has been pointed out recently [36] that in support vector machines with RBF kernels
rank(D) = [V is always satisfied, therefore in this kernel feature space there will be,
unlike to polynomial feature spaces, no linear dependencies.

3 Support Vector (SV) Machines

SV machines ([5], [7], [46]) are data dependent kernel perceptrons using decision function
(11). The perceptron found by the SV machine algorithm is the one which has the largest
possible margin p betwen the decision plane and patterns closest to the plane.

There are different explanations why the large margin perceptron performs well. Inde-
pendently in distict frameworks (e.g. statistical learning theory [46], learning by regular-
isation in the frequency domain [4], and statistical mechanics of neural networks [18]) a
link between the large margin property of a learning machine an its generalisation has
been established.

In this subsection the SV machine algorithm will be reviewed. Further information on
SVM’s can be found in e.g.: [46], [8], [7].

SV machines are perceptrons of the form:

(We,z) +b, =0 (20)
where all training patterns are classified such that:

assuming that it is possible to classify all patterns correctly. If this assumption cannot
be made an error function must be used (below).

The margin p is expressed as the distance between the training patterns closest to the
plane:

{(w,) (w,)
=) (Wl {ew=1} [wlz
The perceptron with the maximum-margin plane is the one which minimizes the L, norm
of the weight vector subject to (21):

p(w,b) = (22)

2 2

p woaba) = . 23
(|wola {5 W) (23)
To maximise the margin a Lagrangian is formed:
1 l
L(w,b,a) = §(w,w)—2ai(yi((w,$i)—l—b) = 1) (24)

=1

where the a; are nonnegative Lagrangian multipliers for the constraints.

At the point which minimises L with respect to w and b the following constraints are
satisfied:

8L (w, b, a) l

T (w— Zl a;yiz;) =0 (25)
0L(w, b, ;
_E_éb—) =D %0 =0 (26)

8

Figure 1: Visualisation of the quadratic optimisation problem (27) for a trivial two-pattern
example (the diagram shows the corresponding maximisation problem). The cost function
and the linear constraints are illustrated by the hyperbola and the two planes. Where the
diagonal black line lies in the positive quadrant all constraints are satisfied. When solving
the problem it is necessary to ensure that the feasible point lies in the constraint-space
(here on the black line and in the positive quadrant) and maximises the corresponding
(projected) value of the quadratic form.

Following [7] this leads to an [dimensional quadratic form:

I Lo
W(a) = Z Qy — % Z > eioyyiy; (i, 5) (27)

i=1 j=1
which must be optimised subject to constraint:
o; > 0Vie {1.1} (28)

and subject to (26).
For nonlinear classification functions the dot product in (27) is replaced by a kernel
function which leads to:

1 1 1 I
W) =) o;i— 2 > ouoyyiysk(zi, ;) (29)

i=1 i=1j=1

which again can be optimised subject to (26) and (28).
Expression (29) can be written is vector notation:

W) = (AT, 1) — %/\Tm (30)

where 1 is an [dimensional unit vector, A an [dimensional vector of multipliers o, and
correlation matrix D is given by: D, ; = v;y;k(%;, ;) (as defined above).

9

It is common practice to use methods of mathematical programming to solve this con-
strained [dimensional quadratic programming problem, therefore SV machines implement
a form of batch learning. Clearly, for a high number of patterns in the training set the
optimisation problem to solve will be of a high dimensionality, and therefore hard to solve.
This problem has been perceived recently, some algorithms to attack this problem have
been proposed ([35], [23]).

To allow to cope with cases where not all training patterns can be correctly classified
slack variables have been introduced; then expression (21) is replaced by:

yi({(w,z;) +b) > 1—¢, Vie{l,.,l} (31)
An error function (soft margin) can be introduced [7]:
!
=W (32)
i=1

which allows to implement different noise-models by choosing values for 7 and 1) (Cortes
and Vapnik give the quadratic form to optimize for choice 7 = 1,9 = 2 (mean square
error MSE) and for choice 7 = 2, ¢ = 1 (least square error LSE)). Then it is required to
optimize the functional:

¢ = 2 lw,w)+ O (33)

i=1

which leads to a quadratic optimisation problem for the two choices of 7 and 1) mentioned
above. Also for the choice 7 = 1 and ¥ = 1 (L, error function) the corresponding
optimisation problem is quadratic [7].

To balance the ammount of error minimisation versus weight decay regularisation in the
feature space (capacity control) the scalar C' was introduced.

For the mean square error function (MSE) the optimisation problem to solve is given by:

W, k) =\, 1) - %(/\TD/\ - ’-g) (34)
subject to constraints: (\T,Y) =0, k>0, 0< \; <k Vie {1.l} (x is a constant).
For the least square error function (LSE) the quadratic form is given by:

W) = (AT,1) - %(ATD)\ + éx—'”,\) (35)

subject to constraints: A > 0, and (AT,Y) = 0.

If the L, error fuction is used support vector machines minimize a quadratic form (29);
subject to constraints: 0 < oy < C (i € {1..1}), and subject to Yi_; a;y; = 0.

Further details about SV machines and complexity regularisation by the C' parameter can
be found in ([8], [46]).

10

4 Kernel Adatron Support Vector Neural Networks

4.1 Adatron

The Adatron is a neural network algorithm [24] which can learn perceptrons (in explicit
form) with the largest possible margin between the decision plane and patterns closest to
the plane. During learning the following quadratic form is optimized ([15], [2]):

= 1

[
Wa)=> o— 9 > > eioyyy;(Ti, T5) (36)
i=1 i=hj=1
subject to:
0 > 0 Vi € {10} (87)

Therefore the Adatron’s solution is identical to the one found by support vector machines
assuming that the plane to learn has no bias parameter b [2].

The Adatron’s learning algorithm is given by:

Adatron (rewritten in the data dependent representation)

define:

!
fad(z) =i Z%%‘(%s ;)

j=1
Myq = mi ;
Ad zg{lllfh faa(z:)
1. Choose a starting point (e.g. o; = 0.1 Vi € {1..1}), choose a learning rate 7,

and choose a very small threshold £.
2. WHILE Myq >t

3 choose pattern z; (i € {1..1})

4 calculate a proposed update: p, = (1 — fad(z:))
5. IF ((; + pu) > 0) @ ¢ o5 +py END IF

6. END WHILE

In the seventies a highly similar algorithm has been studied in a more statistical context
[45]. There it is pointed out that this perceptron algorithm performs a gradient descent
in the quadratic cost function. In each step the gradient of the cost function in direction
of one canonical basis vector is computed, then the feasible solution is updated. The
Adatron’s learning process therefore implements a form of gradient descend in the convex
cost-function space defined by (36).

4.2 Kernel Adatron (KA)

The kernel Adatron algorithm, which has been proposed recently [15], is a nonlinear
version of the Adatron.

Since it has been shown that the Adatron can be rewritten in the data dependent repre-
sentation, it is possible to replace dot products by kernel functions.

11

All thats required is to replace the linear function faq(z) from the algorithm above by
the following nonlinear function:

faa(®) = 4:) yjo5k(z:, 75) (38)

j=1

The computation of function fas(x) can be performed efficiently by calculating a kernel
correlation matrix D as defined above (the cache matrix). If a cache matrix is available
function fag(z;) Vi € {1..1} can be implemented in an elegant way by computing only one
dot product:

faa(@) = vi{(a o y), D) (39)

where the operator o represents the element-wise multiplication of two I dimensional vec-
tors and D7 represents row-vector j of matrix D.

It is easy to see that the kernel Adatron minimises the same cost function (in kernel
feature space) than the Adatron, therefore it also converges to the large-margin solution
(now in the feature space).

4.3 Kernel Adatron with Bias Unit (KAb)

It has been assumed so far in the Adatron and kernel Adatron algorithm that the plane
to learn will always pass through the origin; this assumption cannot be made in any case.
Therefore the data dependent Adatron and kernel Adatron has been extended by a bias
parameter. In this kernel Adatron weight vector w is not accessible, it resides in feature
space. Recall that it is possible to access and update the b-parameter explicitly (as dis-
cussed above in section 2.3 for the kernel perceptron with bias).

The gradient descent performed by this algorithm will lead to a solution which is guar-
anteed to be identical to the solution obtained by support vector machines. This is
interesting because the kernel Adatron with bias implements gradient descent in an un-
constrained | + 1 dimensional quadratic form (in the positive quadrant') while support
vector machines perform a constrained optimisation of an | dimensional quadratic form
in the positive quadrant. The additional constraint which must be used during learning
in SV machines (26) is caused by the way in which the bias term b has been implemented
in the support vector algorithm. ‘

It can be expected that a gradient descent in the positive quadrant without constraints
is simpler and faster to implement than gradient descent subject to a linear constraint.
This explains conceptually why the kernel Adatrons with bias unit has the ability to learn
very fast.

1The solution vector will lie in the positive quadrant with respect of the first ! components (the
multipliers @), while the (I + 1)’th component,b, can be positive or negative.

12

Kernel Adatron with Bias (KAb)

define: z
faa(z) = vi(D_ yiogk(zi, z5) + D)
j:l
Muaa = zg{llﬂ}} faa(z:)

1. Choose a starting point? (e.g. a; = 0 Vi € {1..1}), choose a learning rate 7,
choose an initial value for b (e.g. b = 0), and choose a very small threshold £.
2. WHILE My4 >t

3 choose pattern z; (i € {1..1})
4. calculate a proposed update: p, = (1 — faq(z:))
5 IF (a; + pu) > 0) a; < 05 + Py '
b+ b+ YiDu
END IF
6. END WHILE

When support vector machines have found a solution constraint:

!
Y oy =0 (40)
i=1

is always satisfied. Since the KAb’s quadratic form is [+ 1 dimensional constraint:

!
S oyi=b (41)
=1

is satisfied at any feasible point. This constraint can be used (as done in the experiments
below) to check the feasibility of the solutions found by the kernel Adatron.

4.4 Kernel Adatron SVNN with Bias and Soft Margin

Support Vector machines have the capability to cope with outliers and misclassified pat-
terns by an error function (soft margin). Weight C on the error function allows to contol
the capacity of the classifier, therefore parameter C' can be regarded as a regularization
parameter.

Let’s consider the quadratic form for LSE again:

W) = (\T, 1) — %(ATDA + é,\T/\) (@)

subject to constraints: A > 0, and (\T,Y) = 0. For simplicity it will be assumed that
a cache matrix is used in the kernel Adatron, then the kernel Adatron’s cache matrix
D; ; = k(z;,z;) has to be replaced by matrix EXSE:

if i=j BFF =D(i,j)+1/C else EEF = D(i,j)

2The suggested choice is a good choice in practice. Clearly, the kernel Adatron will converge for any
choice owing to the convex cost space.

13

As usual in support vector learing, parameter C has to be chosen a priori.

The final algorithm can now be stated as:

Kernel Adatron with Bias and LSE Error Function (SVNN):
define:

Faa(z) = vi({(@oy), B¥F 7) + 1)
Mpg= é?llﬂl} faa(z:)

1. Choose a starting point (e.g. e; =0 Vi € {1..}), choose a learning rate 7,
choose an initial value for b (e.g. b = 0), and choose a very small threshold t.
2. WHILE Myq >t
3 choose pattern z; (2 € {1..1})
4. calculate a proposed update: py, = n(1 — faa(zi))
5 IF (o; + pu) > 0) @i = @i +Pu
b+ b+ YiPu
END IF
6. END WHILE

The algorithm is also given in the Appendix in MATLAB-pseudocode.

Obviously, this algorithm performs a gradient descent in the quadratic form (42). It is
straightforward to argue backwards and to show that the SVNN implements a support
vector machine with capacity control and LSE error function.

Another interesting approach to implement a soft margin and capacity control would be
to choose a very small initial starting point (eg. @y =0Viand b= 0), and to stop
the learning process after a fixed number of iterations (an early stopping approach). As
pointed out by Cristianini [9] this can be done more systematically by bounding the values
of o into a box (the so called box constaint); this implements a linear (L) error function
in the kernel Adatron (7 =1,1% =1).

Finally it should be mentioned that in the Adatron and its nonlinear version all multipliers
go exactly to zero or to a value which is a pattern’s corresponding multiplier. This is a
positive effect compared to the numerical inaccuracies observed in quadratic optimizers.

5 Computer Experiments

Aim of the experiments presented in this section is to compare the performance of the
kernel Adatron SVNN to the one of SV machines, both with LSE error function. For
this purpose four benchmarks have been chosen, that is a two-dimensional set of patterns
drawn from gaussian generators, the sonar benchmark [19], the mirror symmetry data
[30], and the Wisconsin breast cancer database [43]. To avoid undesired side effects, as
observed for polynomial kernels ([5], [13]), in all experiments a radial basis function (RBF)
kernel (8) has been used.

14

In all following experiments the origin has been chosen as the starting point (o; = 0 Vi €
{1.1}, b = 0). As a stopping criterion for the SVNN the following scheme has been
applied: After every cycle the current value of function M 44 has been measured. It is
assumed that as soon as the sum of the latest m (e.g. m = 10) deviations from the
mean is less than a very small threshold, r,, the algorithm has approximated the optimal
solution with high accuracy. This stopping criterion can be expressed as:

m—1
rs = Z_[:JI vl — | Mz | (43)

where the mean of the last m values of M4, hds been denoted as v. If ry < r, the stopping
criterion is satisfied. In all experiments below the stopping criterion has been defined by:
r, = 0.01, m = 10. Other choices of the two parameters are possible, this allows the user
to specify the accuracy of the algorithm. If even more accuracy would be required, other
stopping criteria would be possible, e.g. one which is a function of My, as well as of the
values of b.

5.1 Gaussian Experiment

Task of this experiment is to classify 150 training patterns drawn equally from two gaus-
sian generators. The two classes are overlapping, for a bayesian optimal [17] decision
surface (which is quadratic) some misclassifed patterns must be accepted.

To estimate the true risk the empirical error on 500 patterns from the same generator has
been measured. The number of errors on the training set and test set is given in table 1
for three choices of C.

Figure 2: Decision space diagrams computed by the SVNN for three values of C' (left:
C = 0.1, middle: C = 1, right: C' =10), o = 0.8 in all three cases.

The three diagrams in figure 2 illustrate the effect of choosing the C' parameter. By
choosing C' the complexity of the decision function which will be learned is influenced.
The solid line in figure 3 (left) shows the process of optimising the regularized “margin-
cost” functional® over the number of cycles.

Note that at each point constraint Y:_, y;a; = b is satisfied. Diagram 3 (left) also illus-
trates how the bias parameter b gradually converges to an optimal value where the overall
cost is minimised.

3The "margin-cost” function M 4; is given by the [+1 dimensional quadratic form which is minimized.
Function M 44 can be computed as indicated in the algorithm given in section 4.4.

15

T T T T T T T T
— margin
- b parameter |4 # tm. arrors

401 —— #tst.ermors |

1 =
25K

20f

n L 3 s y i L L L
100 120 140 160 (] 20 40 &0 100 120 140 160

"o 20 40 60

80 80
cycles # cycles.

Figure 3: Convergence of the SVNN’s regularized margin M4, and b parameter against
the number of cycles (left), and (right) error rate on training set (dotted) and test set
(solid) versus the number of cycles (C = 1,0 = 0.8,7 = 0.0625).

[Alg. || C | o(RBF) | 7 [# TrnErr | # Tst.Exr | FLOPS |
SVM | 0.1 0.8 - 11 43 25854647
SVNN || 0.1 0.8 0.25 12 44 1844307
SVNN | 0.1 0.8 0.125 11 43 23777881
SVNN || 0.1 0.8 0.0625 11 43 4880081
SVM 1 0.8 - 12 44 690986414
SVNN || 1 0.8 0.25 12 44 23239716
SVNN || 1 0.8 0.125 12 44 12135615
SVNN || 1 0.8 0.0625 12 44 10971373
SVM || 10 0.8 - 8 48 867615481
SVNN || 10 0.8 0.25 7 48 47235273
SVNN | 10 0.8 0.125 8 48 55600319
SVNN || 10 0.8 0.0625 8 48 67590981

Table 1: Comparison of SVNN and SVM using the Gaussian patterns.

The values in table 1 show classification results on the gaussian data from the SVNN and
SVM for three choices of capacity parameter C. To investingate the effect on choosing a
value for the learning rate 7 the experiment has been repeated for three values of 7.

The table shows that the SVNN approximates the SVM’s solution quite well. In a few
cases the SVNN’s solution is slightly different, these small inaccuracies may have been
caused by choosing a too large learning rate n = 0.25. Table 1 shows that the SVNN
was able to find its solutions faster than the SVM (see the column which indicates the
number of floatpoint operations (FLOPS) which have been required). It is interesting to
note that, depending on the choice of C, a different (slightly larger or smaller) learning
rate did lead to the fastest convergence. The table also shows that the SVNN is relatively
robust to changes in C in the sense that it also converges in a reasonable time for a slightly
too small or too large learning rate 7.

16

5.2 Sonar Experiment

In this benchmark it is required to classify the sonar set of 208 patterns representing metal
cylinders and rocks, where each pattern has 60 dimensions. As suggested in [19] the angle
dependent data has been split into a training set and test set, each of 104 patterns.

In earlier studies ([15], [14]) an optimal value for kernel parameter o has been determined.
Therefore in this and the following two experiments emphasis is put on the comparison
between the SVNN and SVM. For three values of kernel parameter o, and each three
choices of n, the SVNN’s solution has been calcuated. For three cases diagrams of the
convergence of the algorithm and performance on the training set and test set are given.

-0.8

Figure 4: Sonar experiment: Learning curves for function M4 and bias parameter b
against the number of cycles for three choices of the learning rate n: n = 0.05, C = 10
(left), n = 0.10, C = 10 (middle), n = 0.20, C = 10 (right). The plots show that for
n = 0.05 (left) more iterations than for n = 0.1 (middle) were required. For a large choice
of the learning raten = 0.20 (right) osciallations in the value of b can be observed which
disappear gradually.

Figure 5: Sonar experiment: Number of classification errors on the test set. Type 1
errors are indicated by the dash-dotted line, type 2 errors by the dotted line, and the
overall (type 1 + type 2) error by the solid line. The diagrams show the generalisation
performance for three choices of learning rate, 7, as given in the description of figure 4.
In each case it can be observed that after a number of cycles the kernel Adatron has
converged, the error rates are stable and constant. The right plot shows that fluctuations
in the value of b (see figure 4) are related to changes in the error rate on the test set.

17

Figure 6: Sonar exeriment: Number of classification errors on the training set. The three
diagrams show the empirical error versus the number of cycles for the values of 7 and C

as given in figure 4 (type 1, type 2, and overall error is indicated as in figure 5).

Alg. || o(RBF) | C n | FLOPS | # Trn.Emr | # Tst.Eir |
SVM 0.8 0.1 - 8769622 10 30
SVNN 0.8 0.1 | 0.01 | 2731748 5 27
SVNN 0.8 0.1 | 0.05 | 1099362 5 27
SVNN 0.8 0.1 | 0.10 | 2331980] 27
SVM 0.8 1.0 - 8769749 1 17
SVNN 0.8 1.0 | 0.01 | 16024034 1 17
SVNN 0.8 1.0 | 0.10 | 3831110 1 17
SVM 0.8 10 - 19420444 0 8
SVNN 0.8 10 | 0.01 | 43769280 0 8
SVNN 0.8 10 | 0.05 | 11591706 0 8
SVNN 0.8 10 | 0.10 | 6695145 0 8

Table 2: Sonar experiment: Comparision of SVNN and SVM for three values of 5, o = 0.8.

[Alg. [o(RBF)[C [n [FLOPS | # Tin.Err | # Tst.Err |
SVM 1.0 0.1 - 8769458 13 29
SVNN 1.0 0.1 | 0.01 | 2731748 12 26
SVNN 1.0 0.1 | 0.05 | 1099362 12 26
SVNN 1.0 0.1 | 0.10 | 2431922 12 26
SVM 1.0 1.0 - 8769868 1 15
SVNN 1.0 1.0 | 0.01 | 17056768 1 13
SVNN 1.0 1.0 | 0.05 | 4264192 1 13
SVNN 1.0 1.0 | 0.10 | 4197564 1 14
SVM 1.0 10 - 49335323 0 9
SVNN 1.0 10 | 0.01 | 56870687 0 9
SVNN 1.0 10 | 0.05 | 15348892 0 9
SVNN 1.0 10 | 0.10 | 8323604 0 9

Table 3: Sonar experiment: Comparision of SVNN and SVM for three values of n, o = 1.0.

18

[Alg. [o(RBF) | C | n [FLOPS [# Trn.Err | # Tst.Eur |

SVM 12 |01 - | 8769582 18 30
SVNN 12 | 01001]| 2731748 14 26
SVNN 12 | 0.1 0.05 | 1165990 14 26
SVNN 12 |01]0.10| 2565178 14 26
SVM 12 |10 - | 14137906 2 15
SVNN 1.2 | 1.0 | 0.01 | 17622104 2 14
SVNN 12 | 1.0 | 0.05 | 4463764 2 14
SVNN 12 | 1.0]0.10 | 3431069 2 14
SVM 1.2 10 | - | 63186138 0 8
SVNN 1.2 10 | 0.01 | 68241212 0 9
SVNN 1% 10 | 0.05 | 18806642 0 9
SVNN 1.2 10 | 0.10 | 10285299 0 9

Table 4: Sonar experiment: Comparision of SVNN and SVM for three values of 5, ¢ = 1.2.

Table 2-4 shows that in most cases the SVNN’s solutions are identical to the ones found
by the SVM based on MATLAB’s routine for quadratic programming. In all three cases
where C' = 0.1 the SVNN has returned a different solution for three different values for
n. This solution has a lower error rate on the test set. The effect is explained by the
sensitivity of the quadratic programming routine which has been used. Depending on the
conditioning of the quadratic form the accuracy seems to vary. It is beliefed that in these
cases the soluions found by the SVNN are more accurate than those determined by the
SVM used.

5.3 Mirror Symmetry Experiment

All patterns from the mirror symmetry benchmark are synthetic patterns (200 patterns
for the training set, 100 patterns for the test set). The aim of the benchmark [13] is to
distinguish patterns which are symmetric about their centre from patterns which are not
symmetric. The three tables in this subsection compare the performance of the SVNN
and SVM for each three choices of ¢, in each table three values of C' and n have been
applied.

[Alg. [o(RBF)[C [7 | FLOPS | # TrnEmr | # Tst.Err |
SVM 5 [01] - [60502406 18 35
SVNN 5 | 0.1 | 0.0078 | 12163400 15 34
SVNN 5 | 0.1]0.0156 | 7176406 15 34
SVNN 5 | 0.] 0.125 | 48653597 i5 34
SVM 5 [10] - [60500512 0 7
SVNN 5 | 1.0 [0.0078 | 62308242 0 7
SVNN 5 | 1.0 | 0.0156 | 35273860 0 7
SVNN 5 |10 0.125 | 39287782 0 g
SVM 5 10 | - | 60592277 0 5
SVNN 5 10 | 0.0078 | 133189230 0 5
SVNN 5 10 | 0.0156 | 73831838 0 5
SVNN 5 10 | 0.125 | 19217428 0 6

Table 5: Mirror symmetry: Comparison of SVNN and SVM for ¢ = 5.

19

] 100 120 0 0 2 0 40 50 80 70 % B3 100 160 200 250 300 350 400 450 500
cycien

Figure 7: Mirror symmetry experiment: Learning curves for functional M4, and bias
parameter b, are plotted against the number of cycles for three choices of the learning
rate n: n = 0.0078 (left), n = 0.0156 (middle), n = 0.125 (right). In all three cases
C = 0.1, and ¢ = 7. The diagrams show that either a very small or a too large learning
rate can slow down the learning process. For a very small value of » many updates
are required, for a too large 5 osciallations in the value of M4q4 and b occur. After the
learning process has converged in all three cases to the same solution has been found by
the algorithm (see table 5).

emors
B 8 5 8 B 3 B 8
(O]
rars
8 8

=

3 " L A S SUS ST, |
20] 80 10 120] 10 20 30 a0 E] &0 7 G 50 W0 150 200 250 200 350 400 450 500
cycles

Figure 8: Mirror symmetry experiment: Number of classification errors on the testset.
Type 1 errors are indicated by the dash-dotted line, type 2 errors by the dotted line and
the overall error by the solid line. Parameters were chosen as indicated in figure 7. The
right plot shows that osciallations on the value of b (see figure 7) lead to oscillations in
the performance on the testset.

5 B it Bty
AN Y "
0 B0 100 150 20 250 300 350 400 450 80
cyies

Figure 9: Mirror symmetry exeriment: Number of classification errors on the trainset.
The three pictures show the empirical error versus the number of cycles. The values for
n and C are given above in figure 7.

20

[Alg. [o(RBF)| C | n | FLOPS | # Trn.Err | # Tst.Err |

SVM 6 01| - 60591736 28 32
SVNN 6 0.1 | 0.0078 | 12285034 26 33
SVNN 6 0.1 | 0.0156 | 7419674 26 33
SVNN 6 0.1] 0.125 | 54613663 26 33
SVM 6 1.0 - 60590825 0 10
SVNN 6 1.0 | 0.0078 | 68844844 0 10
SVNN 6 1.0 | 0.0156 | 39166148 0 10
SVNN 6 1.0 | 0.125 | 37098370 0 10
SVM 6 10 | - | 209722180 0 4
SVNN 6 10 | 0.0078 | 176604624 0 1
SVNN 6 10 | 0.0156 | 104113040 0 1
SVNN 6 10 | 0.125 | 19338090 | _ 0 5

Table 6;: Mirror symmetry: Comparison of SVNN and SVM for ¢ = 6.

[Alg. [¢(RBF)]| C n | FLOPS [# Trn.Err | # Tst.Err |
SVM 7 0.1 - 60592032 35 37
SVNN 7 0.1 | 0.0078 | 12406668 34 36
SVNN 7 0.1 | 0.0156 | 7784576 34 36
SVNN v 0.1 | 0.125 | 61181899 34 36
SVM 7 1.0 - 60591130 0 14
SVNN ¥ 1.0 | 0.0078 | 73953472 0 14
SVNN 7 1.0 | 0.0156 | 42328632 0 13
SVNN 7 1.0 | 0.125 | 21164316 0 11
SVM 7 10| - | 246209555 0 1
SVNN 7 10 | 0.0078 | 224888888 0 4
SVNN 7 10 | 0.0156 | 134639844 0 4
SVNN 7 10 | 0.125 | 22256325 0 4

Table 7: Mirror symmetry: Comparison of SVNN and SVM for ¢ = 7.

Tables 5-7 show that the SVNN has achieved a fine performance which is equivalent, or at
least highly similar, to the one of SVM’s. In the cases for C' = 0.1 the SVNN’s solutions
are slightly different, a similar effect has been observed in the gaussian experiment. Since
in these cases the performance of the testset is quite good it is assumed again that the
SVM’s solution is less accurate than the one found by the SVNN.

5.4 Wisconsin Breast Cancer Diagnosis

The original Wisconsin breast cancer database consists of 699 instances. For this experi-
ment a subset of 200 patterns was randomly chosen for the training set and 200 patterns
were chosen for the test set.

The plots in figure 10 show the effect on choosing a small, moderate, and far too large
learning rate. While in the first two cases the algorithm converges nicely, the curve in the
latter case shows that for an extreamely large choice of the learning rate, n = 1, the algo-
rithm cannot converge any more. This is not surprising since the theory of the Adatron,

and more generally of neural networks, provides usually an interval for apropriate values
of the learning rate 7.

21

-1 =
] 100 200 300 40 500 600 700] 5 100 150 200 250 300 3% 400 480 o 20 40 60 B3 100 120
cycias

Figure 10: Wisconsin breast cancer diagnosis experiment: The values of functional M4q4,
and bias parameter b is plotted against the number of cycles for three choices of the
learning rate n: n = 0.04 (left), n = 0.4 (middle), n =1 (right). In all three cases C = 10
and o = 0.6.

s
A e e

| |
UL WJLJ Iy \«\J\FM’W”MJL\

100 200 300 400 500 600 700 0 B0 100 150 200 250 300 350 40 450
cycles

Figure 11: Wisconsin breast cancer diagnosis experiment: Number of classification errors
on the testset (type 1, type 2, and overall errors are indicated as before). All other
parameters were chosen as as denoted in figure 10.

it TN
,,,,,, il

3 H
R R i e \4 MJMM*JJWNJ\L

! i RO
o 100 200 300 400 500 600 700 50 100 150 200 250 300 350 40 450 w 80 80 oo 20
cyclas

Figure 12: Wisconsin breast cancer diagnosis experiment: Number of classification errors
on the training set for three values of n (all other parameters were chosen as specified in
figure 10).

22

[Alg. [o(RBF)[C [1 FLOPS # Trn.Err | # Tst.Err |
SVM 0.4 0.1 - 59726326 11 13
SVNN 0.4 0.1 [0.004 | 21797649 10 12
SVNN 0.4 0.1 | 0.04 6021219 10 12
SVNN 0.4 0.1 0.4 1797987 8 13
SVM 0.4 1.0 - 2158131600 2 11
SVNN 0.4 1.0 | 0.004 | 110719152 2 11
SVNN 0.4 1.0 | 0.04 17188854 2 11
SVNN 0.4 1.0 0.4 101197821 2 11
SVM 0.4 10 - 2406014900 0 11
SVNN 0.4 10 | 0.004 | 253450767 0 11
SVNN 0.4 10 | 0.04 40193268 0 11
SVNN 0.4 10 0.4 60066207 0 10

Table 8: Wisconsin breast cancer diagnosis experiment: Comparision of SVNN and SVM for three
values of n, ¢ = 0.4.

[[Alg. [o(RBF)[C [n | FLOPS [# Trn.Err | # Tst.Err |
SVM 0.5 0.1 - 59922228 9 11
SVNN 0.5 0.1 | 0.004 22158936 9 11
SVNN 0.5 0.1 0.04 6262179 9 11
SVNN 0.5 01| 04 1797933 8 11
SVM 0.5 1.0 - 2207641700 3 10
SVNN 0.5 1.0 | 0.004 | 121526988 3 10
SVNN 0.5 1.0 | 0.04 18509577 3 10
SVNN 0.5 1.0 04 95416857 3 10
SVM 0.5 10 - 2513699700 0 10
SVNN 0.5 10 | 0.004 | 291473100 0 10
SVNN 0.5 10 | 0.04 55497294 0 10
SVNN 0.5 10 0.4 55483005 0 10

Table 9: Wisconsin breast cancer diagnosis experiment: Comparision of SVNN and SVM for three
values of n, o = 0.5.

| Alg. [o(RBF)[C | n FLOPS | # Trn.Err | # Tst.Err |
SVM 0.6 0.1 - 59922468 8 10
SVNN 0.6 0.1 | 0.004 | 22399794 8 9
SVNN 0.6 0.1 | 0.04 6503100 8 9
SVNN 0.6 01| 04 1917693 7 9
SVM 06 | 10| - | 2239325100 3 9
SVNN 0.6 1.0 | 0.004 | 130774671 3 9
SVNN 0.6 1.0 | 0.04 19349376 3 9
SVNN 0.6 1.0| 04 93243903 3 9
SVM || 06 | 10| - | 2719153000 0 9
SVNN 0.6 10 | 0.004 | 42473087 0 9
SVNN 0.6 10 | 0.04 75406500 0 9
SVNN 0.6 10 0.4 50538633 0 10

Table 10: Wisconsin breast cancer diagnosis experiment: Comparision of SVNN and SVM for three
values of n, o = 0.6.

23

The results in tables 8-10 indicate that the kernel Adatron SVNN has shown a fine per-
formance, usually at least as good as SV machines, and usually substantially faster.

It is observed again that in cases where a small value for parameter C has been chosen the
SVNN'’s solution seems to be more accurate than the one found by the SVM’s quadratic
optimizer. In cases where the quadratic form is very steep, which is the case for large
choices of C, the optimizer’s solutions seem to be accurate. However in cases where the
quadratic form is very flat, as for very small choices of C, the optimizer seems to be
slightly inaccurate.

6 Conclusion

The support vector neural network with bias and soft margin is an interesting neural
network approach to support vector learning. It establishes a link between work done in
a more statistical context (PAC and VC theory, SVM), statisitcal mechanics, and neural
network research, which has traditionally ([38], [37]) been motivated by more cognitive
aspects of neural information processing.

The SVNN is a powerful algorithm because it allows to compute ezact solutions without
numerical problems which can occur in conventional routines for constrained quadratic
programming [35]. Furthermore the algorithm is very short, numerically stable, and
conceptually simple because it is based on unconstrained quadratic optimization in the
positive quadrant. As usual in neural networks the learning speed is controlled by the
choice of a learning rate. It is known that as long as this parameter is chosen small enough
the algorithm will always converge [24]. Further work will address the question how to
choose a good value for the learning parameter.

Statistical mechanics provides a framework which proves that the Adatron’s solution 1s
identical to the one found by SV machines. Extensive experimental studies have confirmed
this result for the SVNN with bias unit and LSE error function.

Acknowledgements Thanks to Thorsten Joachims for his useful comment at ICML98.
Thanks also to Klaus-Robert Miiller for his support which is gratefully acknowledged.
This work has been funded by the STORM ESPRIT project, the Engineering and Physical
Science Research Council (EPSRC), and Univ. of Sheffield, Dept. AC&SE.

References

[1] Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical Foundations of the Po-
tential Function Method in Pattern Recognition Learning, Automations and Remote Con-
trol, 25:821-837.

[2] Anlauf, J.K., and Biehl, M. (1989). Europhysics Letters, 10:687.

[3] Bartlett P., Shawe-Taylor J., (1998). Generalization Performance of Support Vector Ma-
chines and Other Pattern Classifiers. ’Advances in Kernel Methods - Support Vector Learn-
ing’, Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT
Press, Cambridge, USA.

24

e ———

e s T

[4] Beliezynski, B., Lukianiuk, A., (1998) Fast Regularized Network for Dynamic System Ap-
proximation, Eng. and Int. Sys. (EIS98 Conf. Proc.)

[5] Boser, B., Guyon, I, Vapnik, V. (1992). A training algorithm for optimal margin classifiers.
Fifth Annual Workshop on Computational Learning Theory. 5, Pittsburgh, ACM Press.

[6] Courant A., Hilbert D. (1951). Methods of Mathematical Physics, Wiley Interscience.
[7] Cortes, C., and Vapnik, V. (1995). Support Vector networks, Machine Learning 20:273-297.

[8] Cortes, C. (1995). Prediction of Generalization Ability in Learning Machines. PhD Thesis,
Department of Computer Science, University-of Rochester.

[9] Cristianini, N., Frief§ , T-T., Campbell, C., Shawe-Taylor, J., (1998). Simple Learning Algo-
rithms for Support Vector Machines. to appear.

[10] Cristianini, N., Shawe-Taylor, J., Sykacek, P., (1998). Bayesian Classifiers are Large Margin
Hyperplanes in a Hilbert Space, in Shavlik, J., ed., Machine Learning: Proceedings of the
Fifteenth International Conference, Morgan Kaufmann Publishers, San Francisco, CA.

[11] DudaR. O., Hart P.E. (1973), Pattern Classification and Scene Analysis, Wiley Interscience,
New York

[12] Fahlman, S.E. & Lebiere, C., (1990). The Cascade-Correlation Learning Architecture. In
Touretzky (ed.), Advances in Neural Information Processing Systems 2, Morgan-Kaufman,
1990.

[13] FrieB, T-T., Harrison, R.F., (1998), Pattern Classification using Support Vector Machines,
Eng. and Int. Sys. (EIS98 Conf. Proc.)

[14] FrieB, T-T., Harrison, R.F., (1998), Perceptrons in Kernel Feature Space, Research Report
720, The University of Sheffield, Department of Automatic Control and Systems Engineering.

[15] FrieB, T-T., Cristianini, N., Campbell, C., (1998). The Kernel Adatron: A Fast and Simple
Learning Procedure for Support Vector Machines. in Shavlik, J., ed., Machine Learning:

Proceedings of the Fifteenth International Conference, Morgan Kaufmann Publishers, San
Francisco, CA.

[16] Freund Y., Schapire R. E., (1998) Large Margin Classification Using the Perceptron Algo-
rithm, Proceedings of the Eleventh Annual Conference on Computational Learning Theory

(COLT 98)

(17] Fukunaga K., (1990), Introduction to Statistical Pattern Recognition, Academic Press, San
Diego :

[18] Gardner E., Derrida, B. (1988), Optimal storage properties of neural network models. J.
Phys. A:Math. Gen. 21, 271

[19] Gorman R. P. & Sejnowski, T. J. (1988) Neural Networks 1:75-89.

[20] Guyon, I., Matic, N., & Vapnik, V. (1996). Discovering Informative Patterns and Data
Cleaning, Advances in Knowledge Discovery and Data Mining ed by U.M.Fayyad, G.
Piatelsky-Shapiro, P. Smyth and R. Uthurusamy AAAI Press/ MIT Press.

25

[21] Grappel T., Obermayer K. (1988). Fuzzy Topographic Kernel Clustering, in Brauer W.,
ed,. Proceedings of the 5th GI Workshop Fuzzy Neuro Systems ’98

[22] Horn A. R., Johnson H. R. (1985). Matrix Analysis, Cambridge University Press, New York

[23] Joachims T. (1988) Making large-scale SVM learning practical, ’Advances in Kernel Meth-
ods - Support Vector Learning’, Bernhard Schélkopf, Christopher J. C. Burges, and Alexan-
der J. Smola (eds.), MIT Press, Cambridge, USA.

[24] Kinzel, W.,(1990) Statistical Mechanics of the Perceptron with Maximal Stability. Lecture
Notes in Physics, Springer-Verlag, 368:175-188.

[25] Krauth W. and Mezard. M. (1987) J. Phys. A20:L745
[26] Kreyszig E., (1993) Advanced Engineering Mathematics, Wiley, New York

[27] Lang, K.L. & Witbrook, M.J. (1988). Learning to tell two spirals apart. In Proceedings of
the 1988 Connectionists Models Summer School, Morgan Kaufmann (Palo Alto, CA).

[28] LeCun, Y., Boser, B., Denker, J.5., Henderson, D., Howard, R.E., Hubbard, R., & Jackel,
L.D. (1990). Handwritten digit recognition with a back-propagation network. In D. S. Touret-
zky (ed.), Advances in Neural Information Processing Systems 1, 396-404.

[29] Minnick, (1961). Linear Input Logic, IRE Transactions on Electronic Computers, 10, 6-16
[30] Minsky M.L. & Papert, S.A. (1969) Perceptrons, MIT Press: Cambridge.

[31] Muroga et al., (1961). Theory of Majority Decision Elements, Journal of Franklin Institute,
271, 376-419

[32] Opper, M. (1988). Learning Times of Neural Networks: Exact Solution for a Perceptron
Algorithm. Physical Review A38:3824

[33] Opper, M. (1989). Learning in Neural Networks: Solvable Dynamics. Europhysics Letters,
8:389

[34] Osuna E., Freund R., Girosi F., (1997) " Training Support Vector Machines: An Application
to Face Detection”, Proc. Computer Vision and Pattern Recognition "97, 130-136

[35] Platt J. (1998). Fast Training of Support Vector Machines using Sequential Minimal Op-
timisation, ’Advances in Kernel Methods - Support Vector Learning’, Bernhard Scholkopf,
Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA.

[36] Pontil M., Verri A. (1998) Properites of Support Vector Machines, Neural Computation,
MIT AI Memo 1612.

[37] Rummelhart, D. E., Mc Clelland, J. L. (1984) Parallel Distributed Processing, Cambridge
Massachusets

[38] Rosenblatt F., (1961). Principles of Neurodynamics, Spartan Press, New York

[39] Ripley B.D., (1996). Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge

26

[40] Saunders C., Gammermann A., Vork V. (1998). Ridge Regression Learning Algorithm in
Dual Variables, in Shavlik, J., ed., Machine Learning: Proceedings of the Fifteenth Interna-
tional Conference, Morgan Kaufmann Publishers, San Francisco, CA.

[41] Schélkopf, B., (1997). Support Vector Learning. PhD Thesis. R. Oldenbourg Verlag, Mu-
nich.

[42] Smith, (1968). Pattern Classifier Design by Linear Programming, IEEE Transactions on
Computers, 17, 367-372

[43] Ster, B., & Dobnikar, A. (1996) Neural networks in medical diagnosis: comparison with
other methods. In A. Bulsari et al. (ed.) Proceedings of the International Conference
EANN’96, p. 427-430.

[44] Vanderbei R. J., (1994) LOQO: An interior point code for quadratic programming, TR
SOR-94-15, Statistics and Operations Research, Priceton University, NJ

[45] Vapnik, V., Chervonenkis A. (1979) Theory of Pattern Recognition, German Translation,
Akademie Verlag, Berlin

[46] Vapnik, V. (1995) The Nature of Statistical Learning Theory, Springer Verlag.

[47] Watkin, T., Ran, A. & Biehl, M. (1993). The Statistical Mechanics of Learning a Rule,
Rev. Mod. Phys. 65(2).

27

7 Appendix

7.1 MATLAB-Pseudocode of the Algorithm

% Support Vector Neural Network (SVNN)

.

/A

% load training patterns and calculate matrix dvals = E"{LSE},
% as defined above

% initialize vector y (the vector of labels)

% initialize all compoments of vector alpha to zero

% initialize bias parameter, b = 0

Y define % TRUE = 1; FALSE = 0; STOP = FALSE;

while STOP == FALSE

min_Margin = 100e250;

for indexr=1:1
alphay = alpha .* y;

decval = y(indexr) * (dvals(indexr,:) * alphay + b);
if decval < min_Margin min_Margin = decval; end;
update = eta * (1 - decval);

if (alpha(indexr) + update) > 0
alpha(indexr) = alpha(indexr) + update ;
b = b + update * y(indexr);
end;
end; % end for

% if you want, check that b is feasible (b == sumalphay)
% sumalphay = sum(alpha .* y)

if Stopping_Criterion_is_satisfied STOP = TRUE; end;

end; % end while

28

