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Abstract: The kernel Adatron with bias allows to find a large margin classifier in the kernel
feature space. It is an adaptive perceptron (Adatron) which uses augmented patterns in
the kernel feature space. The algorithm has been proposed firstly in [9]. In this document
the convergence properties of the algorithm are investigated. As a by-product of the

current analysis a simpler formulation of the algorithm is derived.

1 Introduction

The kernel Adatron, a non-linear version of the Adatron algorithm, allows to compute
large-margin percep‘grons in non-linear kernel feature spaces, assuming that the perceptron
has not bias parameter. Recently the kernel Adatron with bias has been introduced (9],
there it is shown how patterns can be augmented in the feature space in order to learn
the bias parameter.

In this document the proof of the algorithm is given. As a by-product a new formulation
of the optimisation problem arises which is even more simpler than the one which has
been proposed in [9].

The document is structured as follows: In the first section perceptrons are briefly dis-
cussed, then the algorithms for the kernel Adatron and kernel Adatron with bias are
considered. Afterwards the proof of the kernel Adatron with bias is presented. Finally
another algorithm, which is an adaption of the kernel Adatron using “augmented” kernels
is studied. Tt is shown that this algorithm cannot augment the training patterns in the

feature space.




2 Perceptron Learning

2.1 Rosenblatt’s Perceptron and Data Dependent Perceptrons

Rosenblatt’s learning algorithm for perceptrons [22] can find a linear discriminant func-
tion, f(z), for a given set of labelled training patterns. Each training pattern, z;, is a
vector in R* and has a label y; € {+1,—1} Vi € {1..[}. If it is possible to classify all
training patterns correctly, the algorithm terminates in a finite number of cycles [16].
Then a weight vector, w, has been found such that y; = sign(f(z;)) Vi. The weight
vector, w, may be expressed as a weighted sum of patterns: w = Si_, Biz; where the 5;
are multipliers for individual patterns, z;. Another way to expand the vector, w, is given
by: w = Ei-:l yiaimig in this case the «; are non-negative numbers.

Similar to perceptroins, the expansion of w onto a weighted sum of some training patterns
also holds for Vapnik’s support vector (SV) machines - therefore SV machines can be re-
garded as a species of the Rosenblatt-perceptron, or alternatively Rosenblatt’s-perceptron
as a special form of a “support pattern” machine.

The perceptron’s decision function can be rewritten in expanded form:
l l
f@) = (w,z) = (Q vicuzs), z) = D yici(zi, 7) (1)
and the perceptron’s update rule w <+ w + y;z; can be rewritten as:
Qi < ;T 1 (2)

Note that in (2) the elements of the vector of the multipliers, o, are updated instead of
updating the weight vector, w. directly. Decision functions of the form (1) will be called
data dependent representation (because the weight vector has been expanded on some
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data points), while decision functions of the form f(z) = (w,z) + b will be called explicit
representation (w is directly available).

To avoid the perceptron’s decision function passing through the origin, augmented training
patterns, z2, can be used. Then an affine function f(z) = (w,z) + b = (w*,z*) will be

obtained after learning which has one more degree of freedom:
Vie {1..d} w} = w;, wi,=> (3)

A pattern can be augmented simply by increasing its dimensionality by one and setting
the (d + 1)’th component of the augmented pattern vector to 1. Note that augmenting
patterns is similar to introducing a bias unit which always has an activation equal to one.

To use augmented patterns in a data dependent perceptron it is required to replace (2)

i
i

by the following update rule:
a; —a;+1n ;5 beb+ny (4)

The first part of this rule (a; + o; + 1) ensures that the first d components of the
weight vector w? are updated correctly; while the second part (b <= b+ ny;) ensures
that the (d + 1)’th component of w® is also updated. It is important to realize that in
this representation only the (d + 1)’th component of the augmented weight vector w* is
explicitly available, while all other d components are only implicitly given by the data
dependent expansion on some training vectors.

If augmented patters are used the relationship b = Zi:l cv;y; 1s always satisfied. Imagine a
perceptron which has just been initialised such that b = 0 and «; = 0V7. After one update

of multiplier a; the value of b is given by: b = ny;. Alter the next update of another




multiplier «; it follows that b = ny; + ny;. Therefore, after a finite number of updates,

b= 3! | a;y; must be satisfied’.

2.2 Kernel Functions and Nonlinear Perceptrons

The perceptron with kernels, known as the method of potential functions [1], has the abil-
ity to learn nonlinear decision functions. The algorithm is based on the idea of nonlinear
kernel functions which represent dot products in some Hilbert spaces. A kernel function
allows the mapping of two patterns (z,,z,) at first into a high dimensional feature space

(¢(x4), ¢(,)), and then the calculation of a dot product there. This is expressed by:

k(T, Tu) = (D(2u), $(20)) = (2us 20) (5)

f

where the z are images of patterns z in feature space. Any function k which satisfies

Mercer’s conditions may be used as a dot product in kernel-feature space [4].
Examples for kernel functions are the scalar product, the radial basis function (RBF)

kernel, the polynomial kernel, and the +( kernel (a meta kernel):

ksp(Tu, To) = (Tu, To) (6)

krpr (T, ) = ezp(—||zu — z|[*/0%) (7)
kpot (Tuy Tw) = ((Tuy Tu) + 1), d=1,2,.. (8)
kg (Tu, T0) = k(Tu,20) +¢, €20 (9)

Kernel-based algorithms are elegant in the sense that the “kernel trick” allows algorithms

to operate implicitly in very high dimensional feature spaces without explicitly expand-

IThis can also be seen by considering the decision function (see (22) below).
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ing patterns into their feature space representation. Further information about kernel

functions can be found in [24].

2.3 Adatron

The Adatron is a neural network algorithm [14] which can learn perceptrons (in explicit
form) with the largest possible margin between the decision plane and patterns closest to

the plane. During learning the following quadratic form is optimised ([2], [10]):
! 1Lt _
Wie) =3 =52 > cicyiy;(Ti,7;) (10)
=l 1=1j=1
subject to:
a; > 0Vie {1..1} (11)

il

Adatron (rewrittén in the data dependent representation)

{
faa(@) = Y yio(mi, z5)

j=1
My = mi )
4= oin faa(z:)

1. Choose a starting point (e.g. a; = 0.1 Vi € {1..[}), choose a learning rate 7,
and choose a very small threshold £.

2. WHILE Myq >t

3 choose pattern z; (1 € {1..1})
4. calculate a proposed update: py, = n(1 — faa(zi))
5. IF ((a; +pu) > 0) oy ¢ a +py END IF

6. END WHILE

Therefore the Adatron’s solution is identical to the one found by support vector machines
assuming that the plane to learn has no bias parameter b (2]
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In the seventies a highly similar algorithm has been studied in a more statistical context
[27]. There it is pointed out that this perceptron performs a gradient descent in the
quadratic cost function. In each step the gradient of the cost function in direction of one
canonical basis vector is computed (in step 4 of the algorithm), then the feasible solution is
updated. The Adatron’s learning process therefore implements a form of gradient descend

in the convex cost-function space defined by (10).

2.4 Kernel Adatron (KA)

The kernel Adatron is a nonlinear version of the Adatron algorithm. Since it has been

shown that the Adatron can be rewritten in the data dependent representation, it is

possible to replace dot products by kernel functions. All that’s required is to replace the
f ;

linear function faq4(z) from the algorithm above by the following nonlinear function:

faa(@) = 4 Y yieik(zi, z5) (12)

=1

For the training vectors the computation of function f44(z) can be performed efficiently
by calculating a kernel correlation matrix M; ; = k(z;,z;) (the cache matrix). If a cache
matrix is available function fa4(z;) Vi € {1..I} can be implemented in an elegant way by

computing only one dot product:

faa(zi) = yi{(@oy), MY i€ {1.1} (13)

where the operator o represents the element-wise multiplication of two [ dimensional

vectors and M* represents row-vector 4 of matrix M.




It is casy to see that the kernel Adatron minimises the same cost function (in kernel

feature space) than the Adatron, therefore it also converges to the large-margin solution.

2.5 Kernel Adatron with Bias Unit

It has been assumed so far in the Adatron and kernel Adatron algorithm that the plane
to learn will always pass through the origin; this assumption cannot be made in any case.
Therefore the data dependent Adatron and kernel Adatron has been extended by a bias

parameter.

Kernel Adatron with Bias Unit

i
faa(a:) = 4:(Q_ yjok(zs, ;) +b)

=1

Mgy = mi i
aq = 1o, faa(z:)
1. Choose a starting point? (e.g. oy = 0 Vi € {1..1}), choose a learning rate 7,

choose an initial value for b (e.g. b = 0), and choose a very small threshold t.

2. WHILE Myq > ¢

3. choose pattern z; (2 € {1..[})
4. calculate a proposed update: p, = n(1 — faq(z;))
5. IF (c; + pu) > 0) o ¢ ¢ + Pu
b b+ yiPu
END IF

6. END WHILE

2The suggested choice is a good choice in practice. Clearly, the kernel Adatron will converge for any

choice owing to the convex cost space.




In this kernel Adatron the weight vector, w, is not accessible, it resides in feature space.
Recall that it is possible to access and update the b-parameter explicitly by augmenting
the weight vector w in the feature space [9].

When support vector machines have found a solution constraint:

l %
Y aiy; =0 (14)
i=1

is always satisfied. Since the kernel Adatron with bias uses augmented patterns constraint:

l
ZOM% =b (15)
i=1

is satisfied at any feasible point.

The gradient evaluated in step 4 of the algorithm minimises the following cost function:

I U
1
L(w,b,a) =Y a;(1 —by;) — g > asayyiyik(zi, z;) (16)
i=1 1

i=1 j=

which is also optimised by support vector machines [3]. The difference is that in SV
machines the function is optimised with respect to (14), while in the kernel Adatron with

bias term constraint (15) will always be satisfied.

3 Proof of the Algorithms

3.1 Proof of the Kernel Adatron with Bias

The kernel Adatron with bias performs a gradient descent in the quadratic form (16).
Substituting (15) into this quadratic form leads to:

g




l 1

l
L(‘U), b, Ol) = Zal(l b l)ijt) — ; Z Z Ct’z'ﬂjyiyjk(ﬂ?i, IEj)
i=1 i=1j=1
l { [ 1 1 l
= Z e Z Z Q QY5 — 3 Z ooy kT, ;)
i=1 i=1 j=1 i=1j=1
{ 1 t 1
=2 o= 5>, ) asoyyiys[k(zi, 75) + 2] (17)
=1 T=1y=l1

The latter formulation shows an efficient alternative to compute the solution; expression
(17) can be optimised by the kernel Adatron algorithm without bias, then afterwards the
value of b is computed using relationship (15).

Clearly there are two ways to calculate the kernel Adatron with bias, either by minimising
(17) with a KA in conjunction with calculating the value of b using (15), or by the initial
algorithm stated abdve. Both solutions must be identical because they optimise the same
cost function.

During its learning process the kernel Adatron with bias performs a gradient descent in

cost function (17). This gradient is given by:

6L(w,b, )

!
By 1= > yiyjoik(zi, z5) +byi = 1 — faa(z:) (18)

j=1

where function faq = yi(Z§:1 y;ejk(zi, z;) +b), as defined above in section 2.5.

In each step of the algorithm the gradient in direction of one canonical base vector, o,
is computed. If a multipliers value remains nonnegative the weight vector, w is updated.
The weight, w, is represented by an expansion. Therefore multipliers, ;, are updated
in the algorithm such that the perceptron’s margin will be increased, that is the cost

measured by the cost lction is reduced.
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The nested kernel function

k_{_g(.’?.?i, LEU) = k(SLZ,“qu) + 2

is positive semidefinite, therefore the proof of the kernel Adatron with bias can be reduced

to the proof of the kernel Adatron.

%

3.2 Proof of the Kernel Adatron

This proof has been pointed out already in [10], and is a straightforward extension of the
original proof of the Adatron algorithm:

1. Anlauf and Biehl [2]: Every stable point for the Adatron algorithm is a mazimal
margin point and vice versa. By inserting the Kuhn-Tucker conditions for the maximal
margin (o; > 04 fua(z:) =1, s =0 f 44(z;) > 1) in the algorithms updating rule it
follows that the optimal margin is a fixed point. Vice versa by imposing p,a; = 0 Vi the
Kuhn-Tucker conditions are obtained.

2. Anlauf and Biehl [2]: The algorithm converges in a finite number of steps to a stable

point if a solution ezists. The quadratic functional:

L= o =Y ey {d(a), 8(z) (19)

i=1 j=1

is upper bounded [2] and is increased monotonically at each updating step of the algorithm,
so it will find a fixed point in a finite number of steps.

The proof of the kernel Adatron with L1 and L2 error function is straightforward and can

be derived easily from the formulations given above.




4 A Thought Experiment

Apparently it may seem to be sufficient just to optimise function:

! 1L
L= Z @~ >0 azagyiy;lk(e, o) + 1] (20)
p=d

i=1 j=1

by the KA algorithm (without bias). The “trick” is here to learn the bias parameter, b,
implicitly by augmenting the training patterns in the feature space. A pattern in feature
space, ¢(z), is augmented by introducing a new dimension, the new component of the
augmented vector [¢(z), 1] has the value 1. This naive approach is wrong. The reason lies
in the fact that in the derivation of the cost function (20) it has already been assumed

that constraint:
L
i Z o1, =0 (21)
;i i =1
‘s satisfied. Therefore the decision function learned by this KA (without bias) passes

through the origin in the feature space implied by kernel function:
k_H(fEi, .‘L‘j) = k($i,$j) +1
On the other hand the decision function of this thought-experiment algorithm must be:

! l l I
flz) = ajyiko (zi,5) = D o5yk(zi, 25) + > ajy =Y gyik(zi,z) +b 0 (22)

j=1 j=1 j=1 j=1

where it has been assumed that the following constraint has been satisfied.

[
Zij'yj =0 (23)
j=1

Contradiction: Constraint (23) and (21) cannot be satsified at the same time [
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5 Conclusion

The kernel Adatron with bias has been studied. It has been shown that both the KA
with bias and SV machines minimise the same quadratic cost functions, but with different
constraints.

The optimisation problem for the kernel Adatron with bias has been reformulated, leading
to an even simpler process which allows to find the multipliers, a, by a KA, and then
calculate the bias term of the decision function afterwards.

While in SV machines the bias term is always chosen such that 22:1 a;1y; = 0 is satisfied,
in the kernel Adatron with bias augmented patterns are used, leading to a constraint of
the form: 3%, ayy; = b.

It has been shown that just by replacing in the KA the kernel function, k(zy,z,), by
another kernel function, ky;(zy,Zy) = k(zu,zy) + 1, the bias parameter, which would

stem from augmenting patterns in the feature space, cannot be learned correctly.

6 Appendix

Aim of this appendix is to show that SV machines optimise function (16). The formulation
is more or less straightforward and in a similar form given in [5]. It is presented again
only for the purpose of clarification.

To maximise the margin of a perceptron a Lagrangian is formed:

L(w, b, o) = %{w,w) — > ai(yi((w, #(z:)) + ) — 1) (24)

=1

where the a, are nonnegative Lagrangian multipliers for the constraints.
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At the point which minimises L with respect to w the following constraint is satisfied:

(S_L(Qg—?;]b,oi) = (w - Z osyi(zi)) = 0 (25)

Expression (25) can be inserted into (24) which leads to:

L1

L:%(ww =33 ailyi((w, ¢(zi)) +b) — 1)

i=1 j=1
1 { l [
= '2_ 2; 21 ajyzyj 371: mJ Zal Yi Zazyz 333 )) + b) = ]-)
1=1 3= =1
1 L1 l
= 5 Z; aiajyiyjk(mia mj) G Z{ Zl &4; ajyzyj Tm mg z azyib -+ Za’z
=1 5= =17
l 1 (A
Z 051 by1 s 5 Z Z aiaj'yiyjk(ri, fL‘j) (26)
=1 1=1 j=1

If, as in SV machines, it is additionally assumed that ¥:_; ayy; = 0, this cost function

can be rewritten as [5]:
/

' !
L= Z Tl Zzax%yz% (z:, 25) (27)
=1

zljl
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