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Three-Phase Modular Permanent Magnet Brushless
Machine for Torque Boosting on a

Downsized ICE Vehicle
Jiabin Wang, Senior Member, IEEE, Zhen Ping Xia, and David Howe

Abstract—The paper describes a relatively new topology of
3-phase permanent magnet (PM) brushless machine, which of-
fers a number of significant advantages over conventional PM
brushless machines for automotive applications, such as elec-
trical torque boosting at low engine speeds for vehicles equipped
with downsized internal combustion engine (ICEs). The relative
merits of feasible slot/pole number combinations for the proposed
3-phase modular PM brushless ac machine are discussed, and an
analytical method for establishing the open-circuit and armature
reaction magnetic field distributions when such a machine is
equipped with a surface-mounted magnet rotor is presented. The
results allow the prediction of the torque, the phase emf, and
the self- and mutual winding inductances in closed forms, and
provide a basis for comparative studies, design optimization and
machine dynamic modeling. However, a more robust machine, in
terms of improved containment of the magnets, results when the
magnets are buried inside the rotor, which, since it introduces a
reluctance torque, also serves to reduce the back-emf, the iron loss
and the inverter voltage rating. The performance of a modular
PM brushless machine equipped with an interior magnet rotor
is demonstrated by measurements on a 22-pole/24-slot prototype
torque boosting machine.

Index Terms—Electric torque boosting, engine downsizing, hy-
brid electric vehicle, permanent magnet (PM) machine.

I. INTRODUCTION

T
HE need to improve fuel efficiency and reduce the emis-

sion of and other harmful pollutants from internal

combustion engine (ICE) vehicles has led to a significant de-

mand for hybridization of vehicle power-trains [1]–[3]. There

are three main power-train configurations for hybrid electric ve-

hicles, viz., series hybrid, parallel hybrid, and series parallel hy-

brid [4], [5]. In a series hybrid configuration, an ICE drives an

electric generator which provides power to the vehicle traction

motor and the energy storage buffer, battery for example. In a

parallel hybrid electric vehicle, the ICE and electric motor are

coupled directly or via a gearbox by clutches. By appropriately

controlling the clutch and power electronic converter, it is pos-

sible to drive the vehicle only with the electric motor, with the

ICE (the electric motor in idle) or with both the electric motor

and ICE. The motor can also be driven by the ICE and operates

in generation mode to charge the battery. The introduction of
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Fig. 1. Typical torque-speed characteristics of 3.0 L naturally aspirated (NA)
and 1.8 L turbocharged (TC) ICEs (Courtesy of FEV, Germany).

a mechanical coupling via a clutch between the generator and

electric motor enables the vehicle power-train to change from a

parallel configuration to a series configuration, or vice versa,

hereby offering more flexibility in terms of optimally appor-

tioning the energy sources under various drive conditions. In all

three different configurations, the hybridization factor, i.e., the

ratio of the motor power rating to that of ICE tends to be rela-

tively high, which lead to a significant increase in vehicle cost.

Recently, a new form of hybridization known as en-

gine-downsizing has been proposed [6]. Small, lightweight

supercharged ICEs can reduce fuel consumption by 30%

compared to standard ICEs with 40% higher displacement.

However, supercharged ICEs exhibit a relatively poor torque

capability at low engine speeds, which results in unacceptable

drive-away and acceleration performance, as illustrated in Fig. 1

[6]. However, the low speed torque deficit may be overcome by

employing an electrical machine, supplied from an auxiliary

energy storage system, such as a supercapacitor, to provide a

torque boost for short periods. Fig. 2 shows a schematic of a

vehicle power-train equipped with such an electrical torque

boost system. At low engine speeds, the supercapacitor unit

supplies energy to the electrical machine which provides the

required level of torque boosting to improve the drive-away and

acceleration capabilities of the vehicle. The supercapacitors

may be recharged either by regeneration from the electrical

machine, when the engine speed is sufficiently high or vehicle

kinetic energy is being recovered during braking, or via the

dc/dc converter, using energy which is stored in the battery. The

latter may be necessary if the vehicle is not used for protracted

periods when the supercapacitor unit may become discharged.

The electrical machine could also perform the alternator and

0018-9545/$20.00 © 2005 IEEE
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Fig. 2. Downsized ICE vehicle with supercapacitor-based torque booster (Courtesy of EST project partners).

engine starter functions. Since the torque boosting is only

required at low engine speeds, and average power rating of the

electric power components is significantly lower than that of

conventional mild hybrid power-train configurations, this form

of power-train configuration becomes particularly attractive to

low cost applications.

As will be seen from various hybrid electric vehicle for-

mats, the electric machine, whether it operates as motor or

generator, plays a key role in improving fuel economy, energy

efficiency and drive performance. The common requirements

for electric machines in this application are high-power/torque

density, high-energy efficiency, robust to the harsh operating

environment, and low production cost. Brushless permanent

magnet (PM) machine technology is arguably well suited for

meeting these requirements, as has been demonstrated in com-

mercially available hybrid vehicles such as Toyota Prius [7].

The paper describes a relatively new topology of brushless

PM machines, which offer a number of significant advantages

over conventional brushless PM machines for hybrid electric

vehicle applications, such as providing electric traction torque

or boosting torque for a downsized ICE at low engine speeds.

Although the paper is concerned with the embodiment of

an optimal design for electric torque boosting, the proposed

topology could be scaled up and down to suit other hybrid

vehicle applications.

In the downsized ICE vehicle power-train configuration,

Fig. 2, the intermittent duty and space envelope constraints

imposed by the need to integrate the torque boost machine with

the ICE and flywheel favor the use of a brushless permanent

magnet (PM) machine, due to its high efficiency, high peak

power capability and compactness [6]. However, a conventional

PM brushless dc machine has a coil span of 120 electrical

degrees, which results in a low winding factor for the funda-

mental (viz. 0.866) and does not reduce the effect of the 5th and

7th harmonic fields. Consequently, although the machine has

the advantage of short end winding, it suffers from low torque

capability and can exhibit a relatively large cogging torque and

excessive torque ripple, which may exacerbate the noise and

vibration characteristics of the vehicle power-train.

Recently, a relatively new topology of PM brushless machine,

whichisoftenreferredtoas“modular”[8],[9],hasemergedwhich

offers a number of significant advantages over conventional

PM brushless machine, which make it particularly attractive for

automotive applications. The stator winding of a modular PM

brushless machine differs from that of conventional brushless

dc and AC machines in that the coils which belong to each phase

are concentrated and wound on consecutive teeth, as shown

in Fig. 3(a), so that the phase windings do not overlap. This is

not only a distinct manufacturing advantage [10], but is also

conducive to a high copper packing factor, and, hence, a high

efficiency [11], and to reducing the likelihood of an interphase

fault. It also results in a small number of slots for a given number

of poles, e.g., 24-slots for a 22-pole machine, as compared

to 33-slots for a conventional brushless dc winding, Fig. 3(b)

and a minimum of 66-slots for a conventional brushless ac

winding, Fig. 3(c). Further the modular winding arrangement

gives rise to a high winding factor for the fundamental, while the

effect of the 5th and 7th harmonic fields being significantly

reduced. Such a modular winding also yields a fractional

number of slots per pole, with the smallest common multiple

between the slot number and the pole number being relatively

large. Consequently, the cogging torque can be extremely

small without the use of skew [12]. Hence, the modular PM

machines will have higher torque capability and lower torque

ripple than conventional brushless dc or ac permanent magnet

machines.
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Fig. 3. 3-phase PM brushless machines having three different stator
winding configurations. (a) 24-slot/22-pole machine with modular winding.
(b) 33-slot/22-pole machine with nonoverlapping winding. (c) 66-slot/22-pole
machine with overlapping winding.

This paper discusses the relative merits of feasible slot

number and pole number combinations for 3-phase modular

PM brushless machines, and presents an analytical method

for establishing the open-circuit and armature reaction mag-

netic field distributions of modular machines equipped with

a surface-mounted magnet rotor. The developed analytical

framework allows the prediction of the torque, the phase emf,

and the self- and mutual winding inductances in closed forms,

which, in turn, provides a basis for comparative studies, design

optimization and machine dynamic modeling. However, in

order to improve the robustness of the machine, the permanent

magnets can be buried inside the rotor, which, since it intro-

duces a reluctance torque, also serves to reduce the back-emf,

the iron loss and the inverter voltage rating. The performance of

such a 3-phase modular brushless PM machine is demonstrated

by measurements on a prototype 24-slot/22-pole machine

which has been developed for the electrical torque-boost

system which is illustrated in Fig. 2. However, 3-phase modular

brushless machines would also be eminently suitable for other

applications on hybrid and electric vehicles, such as traction

drives and generators.

II. FEASIBLE SLOT/ POLE COMBINATIONS

Many feasible slot and pole combinations exist for three-

phase modular PM machines, the slot number being related

to the number of pole-pairs by the following

(1)

where must be divisible by 3. Furthermore, for a three-phase

winding, the phase shift between phases is given by

(2)

which, in electrical degrees, must equal , where

is a positive integer, is the magnet pole-pitch

angle, and is the slot-pitch angle.

Table I lists all possible combinations of and derived

from (1) and (2). It should be noted, from (2), that there is no

feasible slot/pole number combination when is divisible by 3.

For all feasible combinations, the number of slots

per phase is odd. Therefore, all the coils which form one phase

must be connected in series since the emf which is induced in

each coil is not exactly in phase. In other words, such slot/pole

number combinations prevent the coils from being intercon-

nected to form phase windings with parallel paths. As in-

creases, the number of coils in series also increases, and, as will

be shown, the winding factor decreases, which will adversely

affect the machine performance. For all feasible

combinations, however, the number of slots per phase is even.

Therefore, the coils of each phase can be either all connected in

series or connected in series/parallel groups if is even or se-

ries/anti-parallel groups if is odd.

Thus, slot/pole combinations offer greater flex-

ibility in that the number of parallel paths may be greater than

1. It will also be noted that for a given combination mul-

tiplication of both and by a positive integer number re-

sults in a new feasible slot/pole combination. For example, for

, , etc, are also
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TABLE I
FEASIBLE SLOT COMBINATIONS FOR 2p� 1, AND 2p� 2

TABLE II
FEASIBLE POLE/SLOT COMBINATIONS FOR THREE-PHASE

MODULAR PM MACHINES

feasible combinations, some of which are not cited in Table I.

In addition, although values of which are integer multiples

of 3 are not included in Table I, new slot/pole combinations

for such pole numbers can be derived from integer multiples

of the combination for . In general, as the number

of pole-pairs increases, the number of feasible combinations of

and becomes greater. For instance, when , there

are 4 feasible combinations, viz. , 15/8, 18/8,

and 24/8, while when , 5 feasible combinations exist,

viz. , 30/16, 33/16, 36/16, and 48/16. It is evi-

dent that modular machines with an even number of pole-pairs

have more feasible slot/pole number combinations than those

having an odd number of pole-pairs. Table II summarizes all

feasible combinations for values of up to 20, where it will be

noted that the last value of in each row corresponds to the

slot/pole number combination of a conventional PM brushless

dc machine.

Fig. 4. Analytical model for surface-mounted magnet PM machine.

For a given number of pole-pairs, different slot combinations

lead to different winding factors for both the fundamental and

high order emf harmonics, and for the armature reaction mmf

distribution. Further, the cogging torque due to slotting is ap-

proximately related to the inverse of the smallest common mul-

tiple of and [12]. Thus, the choice of a particular slot/pole

combination has a profound influence on the performance, de-

magnetization withstand capability and noise/vibration charac-

teristics of a machine.

III. OPEN-CIRCUIT MAGNETIC FIELD DISTRIBUTION,

FLUX-LINKAGE AND EMF

For a surface-mounted magnet machine having the geometry

shown in Fig. 3(a), the open-circuit air-gap magnetic field dis-

tribution can be derived analytically using the model shown in

Fig. 4 [13].

The radial and tangential flux density components, as func-

tions of and , are given by

(3)

where , , can be derived using the tech-

nique reported in [13], and given by

(4)

(5)

(6)
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for and

(7)

(8)

for , where is the mechanical angular position with

reference to the center of a magnet pole, is the ratio of the

magnet pole-arc to pole-pitch, and , , and are the stator

bore radius and the radii of inner and outer rotor magnets, re-

spectively. For radially magnetised magnets is given by

(9)

The open-circuit flux-linkage of a phase coil having turns

may be obtained by integrating at the stator bore

over the slot-pitch angle

(10)

where , is the stator stack length,

and is the pitch factor of the harmonic, given by

(11)

The induced emf in a phase coil is, therefore, given by

(12)

In a modular machine, the emfs in two adjacent coils are dis-

placed by an electrical angle given by

(13)

The emf in a phase winding having coils connected in series

can, therefore, be obtained as

(14)

Fig. 5. Mmf distribution of a phase winding.

where is the distribution factor of the harmonic, given

by

(15)

It should be noted that the winding factors for the

1st (fundamental), 5th and 7th harmonics of the 24-slot/22-pole

modular machine are 0.95, 0.16 and 0.1, respectively, as com-

pared with 0.866, 0.866 and 0.866 of the 33-slot/22-pole

bruchless dc machine. Consequently, for the same size, and the

same electrical and magnetic loadings, the modular machine

has 9% higher torque capability and a much lower torque

ripple than the brushless dc machine.

IV. ARMATURE REACTION FIELD AND INDUCTANCE

The armature reaction field in a surface-mounted magnet

modular PM machine can also be derived analytically, based

on the assumption that the stator and rotor cores are infinitely

permeable [14]. By way of example, Fig. 5 shows the mag-

neto-motive force (mmf) distribution of the phase A winding in

the 24-slot/22-pole modular machine shown in Fig. 3(a), which

may be represented by a Fourier series of the following form

(16)

where is the width of the slot openings, is the corre-

sponding slot opening angle, and

(17)

(18)

[see (19) at the bottom of the next page]. Fig. 6 shows the

air-gap mmf harmonic distribution of the three-phase modular

winding normalized to the coil Ampere turns, . As will

be seen, the mmf contains forward rotating harmonics for

, backward rotating harmonics for

, and zero even and triplen harmonics. It is also evi-

dent that the 11th, 13th, 35th, 37th, , harmonics are dominant.
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Fig. 6. Normalized mmf harmonic distribution.

Thus, for this particular 24-slot three-phase modular winding ar-

rangement, feasible numbers of pole-pairs for the machine are

11, 13, 35, 37, , etc. As the number of pole-pairs increases,

however, interpole leakage becomes greater, which may com-

promise the torque capability. It should also be noted that the

wavelength of the lowest field harmonic is , although its

magnitude is relatively small. For the 22-pole machine, how-

ever, only the 11th mmf harmonic interacts with the magnetic

field of the permanent magnets to produce continuous torque.

The other harmonics, in particular the 13th, 35th, 37th, , etc.,

which have relatively large magnitudes, may cause undesirable

effects, such as localized core saturation, and eddy current loss

in the magnets, which is the main disadvantage of modular ma-

chines. However, the eddy current loss in the rotor magnets of a

modular machine is not significantly higher than that in a con-

ventional brushless dc machine, and can be effectively reduced

by segmentation of the rotor magnets [15].

The resulting armature reaction flux density components in

the permanent magnets and the air-gap are given by

(20)

where

(21-a)

(21-b)

Fig. 7. Prototype machine.

Equation (20) forms the basis for evaluating whether any par-

tial irreversible demagnetization of the magnets occurs under a

specific operating condition.

The air-gap self-inductance and mutual inductance

can be obtained by evaluating the flux-linkage due to the arma-

ture reaction field, and are given by

(22)

(23)

where is the mechanical angular difference between phases

and . For a slotted armature, however, slot leakage will also

contribute to the self and mutual inductances. The total self and

mutual inductances of the machine are, therefore, given by

(24)

where the slot leakage components and can be evalu-

ated using formulas given in [16].

V. PROTOTYPE AND EXPERIMENTAL RESULTS

For many automotive applications, such as electrical torque

boosting, the maximum rotor speed is typically around 6000

rpm. Thus, retention of the rotor magnets is a major considera-

tion. However, although the magnets might be contained within

a metallic, nonmagnetic sleeve or by fiber reinforced banding,

for convenience, the magnets in the prototype 24-slot/22-pole

modular torque boost machine were contained in slots within

the laminated rotor, a prototype of which is shown in Fig. 7 and

whose performance specification is given in Table III. Fig. 8

(19)
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TABLE III
DESIGN SPECIFICATIONS FOR PROTOTYPE MODULAR PM MACHINE

Fig. 8. Open-circuit magnetic field distribution in 24-slot/22-pole modular
brushless PM machine.

Fig. 9. Cogging torque waveform of 24-slot/22-pole modular machine.

shows the finite element predicted open-circuit magnetic field

distribution, while Fig. 9 shows the cogging torque waveform

of the prototype machine. As can be seen, the cogging torque

which results with the modular machine topology is extremely

low, being less than 0.3% of the rated torque. Fig. 10(a) and (b)

compares the measured and predicted phase self-inductance and

back-emf as functions of the rotor position. As will be seen, the

measurements and predictions are in good agreement, and, it

should be noted that, while the inductance varies with the rotor

angular position, the degree of saliency which can be achieved

is limited by the available rotor space envelope, which is con-

strained by the ICE-clutch arrangement. Nevertheless, an in-

terior-magnet rotor is also beneficial in terms of reducing the

idling loss and inverter voltage rating. Fig. 11 and Table IV

Fig. 10. Comparison of measured and predicted phase inductance and
back-emf. (a) Inductance. (b) Back-emf at 1000 rpm.

Fig. 11. Comparison of measured and predicted back-emf harmonic
distributions.

TABLE IV
COMPARISON OF BACK-EMF HARMONIC COMPONENTS

compare measured and predicted harmonic components in the

back-emf waveform, from which it is evident that the modular

machine has very low fifth and seventh emf harmonics. Thus,

the machine has a very low torque ripple when the stator is sup-

plied with sinusoidally time-varying phase currents.



816 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005

VI. CONCLUSION

The utility and design considerations for 3-phase modular PM

brushless ac machines have been described, with particular ref-

erence to a torque-boost machine for a downsized ICE vehicle.

Feasible slot number and pole number combinations for such

machines have been derived, and their relative merits have been

discussed. It has been shown that various feasible combinations

exist for a given number of pole-pairs, and that the choice of a

particular slot number/pole number combination has a signifi-

cant influence on the machine performance, such as the magni-

tude of the cogging torque and the demagnetization withstand

capability. Analytical formulae for predicting the open-circuit

and armature reaction magnetic field distributions of a modular

machine equipped with a surface-mounted magnet rotor have

been established. These allow the prediction of the torque, the

phase emf, and the self- and mutual winding inductances in

closed forms, and provide a basis for comparative studies, de-

sign optimization and machine dynamic modeling. The perfor-

mance of a 22-pole/24-slot 3-phase modular PM brushless ma-

chine, equipped with an interior-magnet rotor so as to improve

robustness, for an electrical torque-boost system has been ver-

ified by measurements. However, given that modular machines

are simpler to manufacture and offer improved performance and

reliability compared with conventional 3-phase PM brushless

machines, they should be attractive for other automotive appli-

cations which require energy efficient and power dense elec-

trical machines.
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