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We have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations
to study the equations of state of MgSiO; perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the
pressure and temperature conditions of the base of Earth’s lower mantle. The ground-state energies were derived
using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the
quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of
MgSiO; agree well with experiments, and better than those from generalized gradient approximation calculations.
The Pv-PPv phase boundary calculated from our QMC equations of state is also consistent with experiments, and
better than previous local density approximation calculations. We discuss the implications for double crossing of

the Pv-PPv boundary in the Earth.
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I. INTRODUCTION

The accurate description of electronic correlation effects
is one of the main challenges in theoretical condensed matter
physics. Quantum Monte Carlo (QMC) [1-5] simulations can
describe these correlation effects while maintaining a high
computational efficiency [6]. A number of recent studies
demonstrate the growing ability of the QMC method to
accurately describe ground-state properties of complex solids
[7-14]. This large basis of previous work provides the motiva-
tion to apply QMC calculations to solid silicate perovskite (Pv)
and post-perovskite (PPv) (MgSiO;) in order to derive equa-
tions of state that are more accurate than those that have been
previously obtained with density functional theory (DFT).

The Pv-PPv phase transition is particularly important
because Pv is the dominant phase in Earth’s lower mantle [15].
Pv was the only known phase under lower mantle conditions
until a phase transition to PPv at a pressure of 125 GPa
and temperature of 2500 K was discovered in 2004 [16,17].
The post-perovskite phase is believed to exist in Earth’s thin,
core-mantle boundary layer, known as D”. The discovery
of MgSiO; PPv has attracted considerable attention because
it offers a possible explanation for many of the unusual
properties of the D” layer, such as the inhomogeneous seismic
discontinuity observed a few hundred kilometers above the
core-mantle boundary, anomalous seismic anisotropy, and
ultra-low-velocity zones [16-21]. Some quantitative estimates
of these anomalies were made by Wentzcovitch et al. [22].

Many computations [17,23-31] based on DFT [32,33] have
reported the equations of state of Pv and PPv. However, DFT
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results are dependent on the choice of exchange-correlation
functional [10,34,35] since the exact exchange-correlation
functional is unknown. Generally, DFT with the local density
approximation (LDA) provides a good P-V relationship for
MgSiO; perovskite [23,24] but underestimates the Pv-PPv
transition pressures [17,27]. In contrast, whereas DFT with
the generalized gradient approximation (GGA) provides a
better prediction of the Pv-PPv transition pressure, it over-
estimates the zero-pressure lattice volume in the equation
of state [17]. The ~10-GPa difference between the LDA
and GGA predictions of the phase transition pressure [27]
makes a difference in depth of about 150 km, according to
the preliminary reference Earth model (PREM) [36]. The
discrepancy among DFT calculations, although relatively
small for many applications, is significant with regard to
geophysical modeling. The position of the Pv-PPv boundary
is crucial for interpreting seismic data from the base of the
mantle, to understand if this transition is sufficient to explain
most lower mantle heterogeneity or if there must also be partial
melt, compositional heterogeneity, etc. In particular, double
crossing of the Pv-PPv boundary [37,38], or, more generally,
through the two-phase region [39], may give an indication of
temperature and compositional variations, which are crucial
for interpreting the seismological data [40] and as input into
geodynamic modeling [41].

II. COMPUTATIONAL METHODS
A. Quantum Monte Carlo

A rigorous discussion of QMC methods has been reported
in previous publications [4,5]. Here, we briefly outline the main
choices we make within the methodology. We employ two
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types of QMC sequentially in order to extract the ground-state
properties of a system. The first is known as the variational
Monte Carlo (VMC) method, in which a fixed-form trial
many-body framework is constructed by multiplying a single-
particle Slater determinant by a Jastrow correlation factor:

Ut (R)= D'D'Ye’, )

The up- and down-spin Slater determinants, D' and D*, are
obtained from DFT calculations. The Slater determinant fixes
the nodal surface of the calculation, which is used in the
so-called fixed-node approximation. The Jastrow factor, J,
is the exponential of a sum of parametrized one- and two-body
terms that are a function of particle separation and satisfies
the cusp condition. The Jastrow parameters are optimized by
minimizing a combination of variance of the VMC energy and
the energy itself [42].

The VMC method by itself is generally not accurate
enough due to the fixed form of the trial wave function. In
a second method, diffusion Monte Carlo (DMC), a statistical
representation of the wave function is evolved according
to a version of the Schrodinger equation which has been
transformed into an imaginary time diffusion equation. The
statistical wave function, constructed from the optimized trial
VMC wave function, is evolved in imaginary time until it
exponentially decays to the ground state. The DMC method
is very efficient at projecting out the ground state as all
higher-energy states are exponentially damped:

N
Wpme = Alzigo l—[ e Ay, )
=1

where H is the Hamiltonian, Atr is the step size used for
imaginary time propagation, and N corresponds to the number
of projections. In both VMC and DMC methods, the space
of electron configurations is simultaneously explored with
an ensemble of independent configurations, which follow a
random walk. In the DMC method, the walk is guided by
an importance-sampled wave function for efficiency. Once
configurations have equilibrated, averages of their energies can
be accumulated and analyzed statistically. This allows QMC
methods to be massively parallelized in computations.

The diffusion Monte Carlo method would be an exact,
stochastic solution to the Schrodinger equation except for the
sign problem, which is controlled by using fixed many-body
wave-function nodes. The nodal surface comes from the trial
wave function, which in our case is from a single Slater
determinant of the Kohn-Sham orbitals from a converged
DFT computation. At least there is a variational principle,
so we can say that our result is an upper bound on the total
energy. In MgSiOs, an insulating, closed-shell system, we
expect this approximation to be very good and in general to
be independent of structure or compression, so even if there is
a small shift in the total energy from inexact nodes, it should
be very close in each structure studied. The agreement we
discuss below with experiment is post hoc evidence of this. The
second approximation is related to the use of pseudopotentials,
discussed more below. This would be no worse than the use of
pseudopotentials in DFT, except that there is an additional
“locality approximation” which can make results sensitive
to the pseudopotentials used. This approximation can be
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controlled and tested and again should give similar errors to
each structure for the MgSiO3 system. Again, the evidence is
that this is usually a very small error.

B. Pseudopotentials

While great care is taken to generate pseudopotentials,
they are constructed within the mean-field treatment rather
than in a many-body framework. A recent paper which
systematically applied the diffusion Monte Carlo method to
calculate properties of solids concluded that the determining
factor on the accuracy of the method was the fidelity of the
pseudopotentials used [13]. This conclusion echoed results of
earlier studies on geophysics with the QMC method which
found the effects of the pseudopotential approximation to be
large [8]. One possible strategy to mitigate this error is to
perform all electron calculations as was done in recent work on
boron nitride [11]. This approach is, however, impractical for
this study due to the extreme computational demands posed by
all electron calculations within the QMC method for heavier
elements. As an alternative, we have endeavored to test the
pseudopotentials used in this paper as rigorously as possible
in an attempt to validate their use in the DMC method.

Our testing methodology has three parts. First we have
tested the Mg and O pseudopotentials by comparing the
linearized augmented plane wave (LAPW) calculations per-
formed with the ELK code [43] to pseudopotential calculations
performed with QUANTUM ESPRESSO [44]. In calculations
of the equilibrium lattice constant and bulk modulus we
find excellent agreement with the all-electron results giving
4.219 A and 156.6 GPa and the pseudopotential results giving
4.206 A and 159.9 GPa. While this test is not conclusive in
terms of stating that the pseudopotential will be accurate for
QMC calculations, it does preclude corrections of the type
applied in earlier work [8].

The second test we applied was to calculate the electron
affinity and ionization potential for each of the pseudopo-
tentials used and to compare the results to experiment as was
shown to be useful in a recent paper on Ca,CuOj; [45]. Here we
use the Slater-Jastrow form for the trial wave function with a
single Slater determinant. The spin state for the neutral atom,
anion, and cation are determined from spin-polarized DFT
calculations and are kept fixed in the QMC calculation. While
this is not likely to produce highly accurate electron affinities or
ionization potentials, large errors greater than approximately
0.1 eV would be a cause of concern. In this case, however,
the pseudopotentials prove to be rather accurate as shown in
Table I.

TABLE 1. Electron affinity (EA) and ionization potential (IP)
from QMC and experiment given in eV. The electron affinity of Si
and O is taken from Ref. [47], while the negative electron affinity
of Mg is from Ref. [48]. The ionization potentials are taken from
Ref. [49].

QMC EA Expt. EA QMCIP Expt. IP
Mg Unbound Unbound 7.591 £0.013 7.64624
(0] 1.372£0.013 14611134 13.681 £0.026 13.61806
Si 1.430 £0.013 1.3896210 8.228 £ 0.012 8.15169
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MgO energy vs separation from DMC
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FIG. 1. (Color online) Energy vs separation curve for MgO cal-
culated using DMC method.

The third test we applied was to calculate binding curves
of the molecules MgO, O,, and SiO. These energy vs
separation curves were then fitted to a Morse potential and the
resulting atomization energies, bond lengths, and vibrational
frequencies are compared to experiment where possible. From
the example of the MgO case in Fig. 1, we could see
the fitting of the Morse potential to the QMC energy is
pretty good. It should again be noted that an attempt to
make these calculations as accurate as possible would use
a more sophisticated wave function containing, for instance, a
multideterminant expansion [46]. However, the performance
of the single Slater-Jastrow trial wave function is highly
relevant as this is the form used in the calculation of the
properties of the solid phases. In this case we find excellent
agreement with experiments (Table II), leading us to conclude
that these pseudopotentials are accurate for use in calculating
the perovskite-to-post-perovskite phase-transition pressure.

It is possible to make high-quality pseudopotentials for
correlated systems [54]. However, such pseudopotentials
would not be applicable to the DFT computations we use to
generate our trial functions, so one would have to use different
pseudopotentials to generate the trial functions. Put in this way,
one could say that the problem is not with pseudopotentials per
se, but in ones that are usable for generation of trial functions,
or that the ultimate problem is with the trial functions.
In principle the trial functions could be parametrized and

TABLE II. Equilibrium bond length (r,) in angstroms, vibrational frequency (wy) in cm™
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optimized variationally [55], or backflow optimized [56], or
other nodal variations could be used, but such computations
have not yet been possible for complex solids such as we study
here.

C. Quasiharmonic phonon free energies

Whereas the static crystal energy can be obtained by
DFT [32,33] or QMC [1-3] calculations, it is currently
intractable to calculate the phonon frequencies from quan-
tum Monte Carlo simulations. Therefore, in our results we
combine static QMC energies with vibrational energies from
density functional perturbation theory (DFPT) calculations.
The accuracy of QMC static energy plus DFPT vibrational
energies has been shown to be an improvement over using
DFT plus DFPT for the silica phases [10]. Once the Helmholtz
free energies are obtained for several lattice volumes at various
temperatures, the temperature-dependent equation of state and
other thermodynamic properties of interest are determined.

The Helmbholtz free energy is a function of lattice volume
and temperature: F (V,T). Using the Vinet equation of
state [57,58], the Helmholtz free energy is

4Ko Vo 2KoV

F=F -
& —1E (K- 1)

1/3 13
x is+31<5 [(%) - 1} _3 (%) }
0 0
3 Ky—1 AN 1 3
X exp —5( o—D <Vo> - , (3)

where Fy, Vo, Ko, and K are the Helmholtz free energy, lattice
volume, bulk modulus, and its pressure derivative, respectively,
under zero pressure. Within the quasiharmonic approximation
(QHA), the Helmholtz free energy is given by [59,60]

1
F=E+TS = Espgic + E kz hwk,i

—ha)k,,‘
—i—kBTZln [1 — exp (kB—Tﬂ 4)
k,i
where E is the internal energy, S is the entropy, Estric 1S
the static energy, A is the Planck constant/2w, wy; is the
angular frequency of a phonon with wave vector k in the
ith band, kg is the Boltzmann constant, and 7T is the absolute
temperature. In the quasiharmonic approximation, Esy. and

!, and atomization energy (Dy) in eV calculated

with QMC and fit to a Morse potential compared to experiments. Note that the vibrational frequency of SiO is difficult to obtain experimentally

due to issues in isolating SiO at low temperatures.

QMCr, Expt. r, QMC wy Expt. wg QMC Dy Expt. Dy
MgO 1.7519 £0.0018 1.749° 782.3 £32.5 785.2183 4 0.0006° 2.14£0.02 2.56 £0.22¢
(0)3 1.1978 4+ 0.0007 1.208* 14805+ 11.4 1580.161 4 0.009° 4.89 £ 0.02 5.117¢
Sio 1.5097 £ 0.0007 1.51° 788.9 £22.6 1241.543 88 4 0.00007° 7.98 £0.42 8.244

4Reference [50].
bReference [51].
‘Reference [52].
dReference [53].
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wg,; are independent of 7' and are determined only by the
atomic positions and lattice parameters at zero temperature.

D. Computational details

The pseudopotentials used for all DFT, DFPT, and QMC
calculations in this work were generated with the OPIUM
code [61] using the Wu-Cohen (WC) exchange-correlation
functional [35]. The core radii of the pseudopotentials are as
follows: 1.2 (1s), 1.2 (2s) for magnesium; 1.3 (1s), 1.3 (2s)
for oxygen; and 1.7 (1s), 1.7 (25), 1.7 (2p) for silicon.

Our equations of state are constructed from the energies of
seven different volumes in both the Pv and PPv phases. We
used the plane-wave pseudopotential DFT code, PWSCF [44],
to relax the atomic positions, obtain the static DFT energy,
and extract the single-particle orbitals for the QMC wave
function at each volume. The seven volumes correspond to
constant pressure simulations at —20, —10, 0, 50, 100, 150,
and 200 GPa. These calculations used the WC [35] exchange
correlation approximation, a plane-wave energy cutoff of
300 Ry, and Monkhorst-Pack k-point meshes of 6 x 6 x 6
and 12 x 6 x 6 for the 20-atom unit cells of perovskite and
post-perovskite, respectively, which converged the total energy
to tenths of millirydberg/MgSiOs accuracy. At each volume
above, the phonon frequencies and temperature-dependent
vibrational energies were calculated with ABINIT [62] using
density functional perturbation theory within the quasihar-
monic approximation. These calculations used g-point meshes
of 4 x4 x4 for the 20-atom unit cell of perovskite and
4 x 4 x 2 for the 10-atom unit cell of post-perovskite, which
ensured calculated phonon free energies were converged to
tenths of millirydberg/MgSiOs3.

The accuracy of our QMC calculations is determined
by three classes of approximations that are necessary for
computational efficiency of fermionic calculations: finite
simulation cell size effects, pseudopotentials, and the fixed-
node approximation [63]. For accurate QMC results, one must
reduce the error introduced by these approximations such that
the end result is converged. The effectiveness of pseudopoten-
tials in QMC calculations was checked in the previous section.
Here, we discuss how the other approximations are mitigated.

In any simulation we are forced to simulate a true solid
with a simulation cell that is subject to periodic boundary
conditions. Finite-size errors arise from both one-body effects
due to discrete k-point sampling of the Brillouin zone and
two-body effects from spurious electron correlation in the
periodic cells. We minimize the one-body errors by using
twist-averaged boundary conditions. We average over eight
twists, allowing us to improve our sampling of the Brillouin
zone. The two-body errors are minimized by using the model
periodic Coulomb (MPC) interaction [63—65], which corrects
the potential energy for the spurious correlation effects. We
then use the scheme of Chiesa et al. [66] to correct the kinetic-
energy two-body effects. While applying these techniques, we
then perform our calculations in three different supercell sizes
of 40, 80, and 120 atoms, and we fit an extrapolation to infinite
cell size.

The final approximation we discuss is that of the nodal sur-
face to handle the fermion sign problem. The QMC calculation
samples a positive-definite probability function constructed
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from an antisymmetric wave function which has positive
and negative regions. Unchecked, sampling the probability
in this way will lead to a bosonic ground state as positive and
negative contributions cancel out and the odd-parity solution
becomes swamped in statistical noise. In order to circumvent
this problem, absorbing barriers are placed between all nodal
pockets in configuration space. This can only be done if the
nodes are fixed to a known location at the start of the DMC
calculation (we use the nodes from DFT), which is called the
fixed-node approximation. The size of the fixed-node error is
generally assumed to be small and, for small systems, can
be checked with backflow optimization of the single-particle
orbital coordinates, but this is too computationally expensive
for the systems studied here.

In order to ensure electron correlation was treated uniformly
across all of our calculations, we fixed the Jastrow parameters
in DMC simulations for all volumes and supercell sizes
to values obtained from optimizing the Jastrow approach
for the smallest volume and supercell size. In addition, for
computational efficiency, a b-spline basis set is used to
represent the single-particle orbitals centered on a grid of
points. The b-spline basis set provides an order-N speedup in
the calculation, where N is the number of atoms, but doubles
the memory requirement relative to an analytic, plane-waves
basis. The mesh size of this grid is decreased until the total
energy is converged to tenths of millirydberg/MgSiO3;. We use
a b-spline mesh factor of 0.8.

For the wave-function optimization part of our calculations,
a combination of energy and variance minimization was
used in a series of 20 optimizations in which the VMC
total energy was determined to a lo statistical accuracy of
0.05 eV /MgSiOj3 and the fluctuation among the VMC energies
after each optimization became less than 0.1 eV/MgSiOs.
The Jastrow factor which gave both lowest total energy and
smallest variance was chosen for use in the subsequent DMC
simulations.

A typical DMC simulation used 300-400 electron con-
figurations and collected statistics over 25 000 Monte Carlo
steps. The first 5000 steps were used to equilibrate the
simulation. The total energy of each supercell was obtained
by averaging the energies of the remaining 20 000 steps over
8 twists. The standard error § of the total energy was obtained
by 8§ = /02/M, where o is the energy variance of block
samples and M represents the uncorrelated samples [67]. The
DMC time step was determined by converging the total energy
with respect to changes in the time step. Our convergence
tests found that a time step of 0.001 Ha™' is sufficient for
0.05 eV/MgSiO; accuracy. The VMC and DMC simulations
were performed with the GPU version of QMCPACK [67—69].

III. RESULTS AND DISCUSSION

A. Enthalpy and volume

In our simulations, both the MPC-corrected and uncor-
rected QMC total energies as a function of simulation cell
size are quite linear (Fig. 2). All QMC results hereafter
are from DMC simulations unless stated otherwise. Two
linear equations were used to fit the MPC-corrected and
uncorrected total energies synchronously. The equations are
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FIG. 2. (Color online) The extrapolation to infinite-size QMC
total energy using the MPC-corrected and uncorrected finite-size total
energies. All the total energies are the eight-twist-averaged results.
Nygsio, is the number of formula units in the supercell used in the
QMC simulation. Here the volume is 41.19 Al /MgSiO; for Pv and
41.15 A% /MgSiO; for PPv.

EY" = E;Y +k/N for MPC corrected energies and

inf

ENr = EfoT 4 k"' /N for uncorrected energies, where
k is the slope and N is the number of the MgSiO; formula.
E; and Ej e were kept equal to each other during the fitting
process using the least-squares method and they are our final
infinite-size QMC total energy, which is the static energy in
Eq. (4). The error of the infinite-size energy was taken to be
the same as that of the largest-supercell-size case.

At a given temperature, the Vinet equation of state [Eq. (3)]
was used to fit the Helmholtz free energies as a function
of volume. Both the DFT and QMC results are well fit
(Fig. 3). The predicted equilibrium volume, bulk modulus, and
its pressure derivative from QMC simulations at 300 K are
all in good agreement with experimental results (Table III),
both for Pv and PPv. This indicates QMC is better than the
GGA because all the equilibrium volumes predicted by this
and previous GGA calculations are larger than experimental
data, and the bulk moduli predicted by the GGA are smaller
than experiments. With the increase of temperature, the
bulk modulus decreases whereas its derivative with pressure
increases (Fig. 4).
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FIG. 3. (Color online) QMC and DFT Helmholtz free energies
of MgSiO;3 Pv and PPv at 300 K; the error bars of QMC results are
covered by the symbols. The dashed and solid lines are the fits of the
Vinet equation of state.
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B. P-V-T equation of state

The thermal equation of state can be calculated by P =
—(0F/0V)r from the Helmholtz free energy Eq. (3). The
comparison between the computed thermal equations of state
and previous experimental data for both Pv and PPv phases
are determined in Fig. 5. The shading of the QMC curves
in Fig. 5 indicates the width of the standard deviation of
volume as a function of pressure caused by the statistical
errors of QMC energies. These comparisons indicate our QMC
simulations and LDA calculations predicted a better P-V-T
relationship than GGA calculations for both Pv and PPv. The
LDA calculations for PPv were taken from Ref. [29] where
the comparison with experiments was not checked.

We also calculated the volume differences between MgSiO3
perovskite and post-perovskite phases as a function of pressure
and compared them with some available experimental data in
Fig. 6. The comparison indicates that our QMC results are
in good agreement with experiments [84]. At lower mantle
conditions, our Pv-PPv volume difference is much closer to
experiment than DFT.

C. Phase boundary

In thermodynamics, the Gibbs free energy G is defined
as G = F + PV. At a fixed temperature, a phase transition
occurs when the Gibbs free energy of the current phase
becomes greater than that of another phase with the change of
pressure. Because of the uncertainty of static total energy from
QMC simulations, we could only predict a range of transition
pressures as shown in Fig. 7. All error bars below and in the
figures are 1o values. Due to the fact that Gibbs free energy
differences between MgSiO3 Pv and PPv are very small, the
range of transition pressures from QMC simulations is wide.
In spite of that, the QMC predicted transition pressures still has
obvious deviations from those predicted by DFT calculations
for MgSiO3 Pv and PPv phases. In the static state, we obtained
a Pv-PPv phase-transition pressure of 91.2 GPa from GGA
results and 101.0 & 4.6 GPa from QMC results. Again, we
see the transition pressure predicted by this DFT calculation is
different from previous DFT studies. At 2000 K, we obtained
a Pv-PPv phase-transition pressure of 107.1 GPa from DFT
(GGA) results and 117.5 & 4.8 GPa from QMC.

At any temperature in the range of 0 to 4500 K, the Pv-PPv
transition pressure predicted by our DFT computations with
the WC exchange-correlation functional [35] is always smaller
than that predicted by our QMC calculations (Fig. 8), and
it falls between the LDA and GGA boundaries predicted
by Tsuchiya et al. [27]. The Pv-to-PPv transition pressure
predicted by QHA within LDA from Ref. [29] is much lower
than that reported in experimental studies and other calcula-
tions. The Clapeyron slope is obtained as 8.4 & 0.8 MPa K~!
based on samples in the QMC phase-transition boundary in
the temperature range 500-4500 K. It has been proposed
that there is double crossing of the Pv-PPv phase boundary
along the geotherm [37,38]. Our results are consistent with
double crossing for pure MgSiO3 (Fig. 8) but do not require
double crossing. However, Fe partitions into PPv, and thus
stabilizes the PPv phase [30,77]. Depending on the exact shape
of the two-phase region, the double crossing can still give a
seismic signature [39]. Although some LSDA + U studies for
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TABLE III. Equation-of-state parameters of perovskite and post-perovskite. The uncertainties of QMC thermodynamic quantities were
propagated from the errors of QMC static energies via a linearized Taylor expansion.

Fy (eV/MgSiO;) Vo (A3/MgSiO;) K, (GPa) K}
Pv
—3113.61(3) 40.36(8) 270(14) 3.9(4) QMG, static, this work
—3113.23(3) 40.88(10) 258(15) 4.0(4) QMC, 300 K, this work
—3109.90 41.20 239.4 4.1 GGA (WC), static, this work
—3109.54 41.79 226.6 42 GGA (WC), 300 K, this work
40.5 259 4.01 LDA, static, Ref. [25]
41.03 247 3.97 LDA, 300 K, Refs. [24,25]
40.2 266 42 LDA, static, Ref. [23]
40.85 259.8 4.14 LDA, 300 K, Ref. [17]
41.85 230.1 4.06 GGA, 300 K, Ref. [17]
41.02 248 3.9 LDA, 300 K, Ref. [27]
41.03 246 4.0 LDA, 300 K, Ref. [29]
38.53 271 3.74 LDA, static, Ref. [30]
40.78 232 3.86 GGA, static, Ref. [30]
40.58-40.83 246-272 3.65-4.00 Expt., Refs. [15,70-77]
PPv
—3113.38(3) 40.51(8) 232(9) 4.1(3) QMG, static, this work
—3113.00(3) 41.08(9) 221(10) 4.2(3) QMC, 300 K, this work
—3109.67 41.19 205.0 4.6 GGA (WC), static, this work
—3109.31 41.85 192.3 47 GGA (WC), 300 K, this work
40.73 231.9 443 LDA, 300 K, Ref. [17]
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FIG. 4. (Color online) Vinet equation-of-state parameters based on QMC static energies and DFPT vibrational energies as a function of
temperature for (a—d) perovskite and (e-h) post-perovskite. The shading of the curves indicates 1o width of the uncertainties.
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FIG. 5. (Color online) Thermal equations of state of (a) per-
ovskite and (b) post-perovskite at three temperatures. The static LDA
results of Pv are taken from Ref. [23], and the finite-temperature
LDA results of Pv are taken from Ref. [24]. The LDA results of PPv
are taken from Ref. [29]. The experimental results of Pv are taken
from Refs. [23,71,76,77,80-85] at 300 K and from Refs. [81,82,84]
at 2000 K. The experimental results of PPv are taken from
Refs. [16,77-79,84] at 300 K and Refs. [79,84] at 2000 K. The
shading width of QMC results indicates 20 statistical errors at the
given pressure.

(Mg 9375F€0.0625)S103 suggest that Fe incorporation has only
a marginal effect on the high-spin Pv-to-PPv phase-transition
pressure [86,87], they only considered 6.25% iron substitution.
Our GGA+U calculation for pure antiferromagnetic FeSiO3
shows that the PPv phase has a static enthalpy 0.14 eV /FeSiO,

0-44
— 0.2-: QMC (This work)
o — DFT(GGA,WC,This work)
(%]
oo 0.0 e Exp.
=
-
<
>
LS|
-0.8 I

0 20 40 60 80 100 120 140 160 180
Pressure (GPa)

FIG. 6. (Color online) Volume differences between perovskite
and post-perovskite phases in our DFT and QMC calculations and
their comparison with experiments [84] at 300 K. The shading width
indicates 20 statistical errors at the given pressure.
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FIG. 7. (Color online) Gibbs free energy difference between
MgSiO; perovskite and post-perovskite phases in static state and at
2000 K. The shading width of the QMC results indicates 1o statistic
errors at the given pressure. The triangle data of LDA results are
from Refs. [17,27,28,30] and the square data of GGA results are
from Refs. [17,27].

lower than the Pv phase at 100 GPa, and at 0 GPa, PPv
FeSiOs still has a static enthalpy 0.10 eV /FeSiO; lower than
Pv FeSiOs. In our MgSiOj; calculations, the vibrational energy
of Pvis about 0.09 eV /MgSiO; lower than that of PPv between
0 and 200 GPa at 4000 K. The vibrational energy difference
between the Pv and PPv phases is highly dependent on
temperature. Generally, the lower the temperature, the smaller
the difference. Iron is thus expected to partition into PPv
and further increase its stability under Earth’s lower mantle
conditions.

QMC(This work) /
4000+ DFT(GGA,WC, This work) y
e Exp.(Pv) _ /
A Exp.(PPv) - g
3000+ P
< L e
%) e ., - 8- "0 -g
E g 7 —--TT7 ® 3
§ 20004 __ - --- 8
g. - Average Geotherm ©
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1000{ —— DFT(LDA,C2) o
- - - DFT(GGA,C2) 8
1- - - DFT(LDA,C3) - oo
0 T T T T T T

20 40 60 80 100 120 140
Pressure(GPa)

FIG. 8. (Color online) Phase diagram of MgSiO; under lower
mantle pressure conditions. The black solid line and shaded area
showing the lo error band show the Pv-PPv boundaries from our
DFT (WC) and QMC computations, respectively. The shading of
QMC results indicates 1o statistic errors. The DFT C1, C2, and
C3 curves are taken from Refs. [17], [27], and [29], respectively.
The pressure in the D” layer of the lower mantle falls between the
vertical dashed line and solid line of the core-mantle boundary. The
experimental results are taken from Ref. [17]. The average geotherm
is from Ref. [88].
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FIG. 9. (Color online) The thermal pressures averaged over vol-
ume from 27.8 to 44.5 A3/MgSiO; as a function of temperature.

D. Thermodynamic properties
The thermal pressure is defined as [89,90]

Pn(V,T) = P(V,T)— P(V,0). 5)

For either phase of Pv and PPv, the averaged thermal pressure
over volume as a function of temperature is quite linear at
temperatures larger than 1000 K (Fig. 9). The slopes of the
linear parts of thermal pressure curves are 7.74 MPa K~! for
Pv and 7.65 MPa K~! for PPv.

The thermal expansivity o« is calculated from thermal
pressure as

a = (9Pn/dT)v/Kr, (6)

where K7 = —V(dP/9dV)r can be obtained from the thermal
equation of state. In the next part of this section, the related
thermal equation of state is derived based on QMC static
energies and DFPT vibrational energies. The obtained thermal
expansivities in this work fall in the region of previous models
which were derived from experimental data (Fig. 10).
The Griineisen ratio y is calculated by
_ aK T % (7)
V= cy

where Cy is the constant-volume heat capacity obtained from
phonon calculations. The Griineisen ratios both for Pv and PPv
fall in the region of previous models (Fig. 11).

IV. CONCLUSION

We have presented QMC computations of MgSiO3; equa-
tions of state and stability for both perovskite and post-
perovskite. Our results showed that the QMC computations
give not only good equations of state but also a reasonable
Pv-PPv phase boundary for MgSiO3; under lower mantle
conditions. For this iron-free silicate, the predicted QMC
Pv-PPv phase boundary may have a double crossing of the
geotherm, which would lead to a second Pv phase region
just above the core-mantle boundary. However, we could
not conclude that this double-crossing will exist in the
lower mantle, since the presence of Fe could change the
Pv-PPv phase boundary dramatically [30,77]. The accuracy of
QMC computations in this three-component system has been
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FIG. 10. (Color online) Temperature and pressure dependence of
the thermal expansion for (a, b) perovskite and (c, d) post-perovskite.
The shading of the curves indicates 1o width of the uncertainties.
The references for all the models and DFT calculations are Ref. [91],
(a) M1; Ref. [84], (a) M2, (c) M1, (d) M1; Ref. [83], (a) M3, (b) M4;
Ref. [74], (a) M4; Ref. [25], (a) LDA; Ref. [92], (b) M1; Ref. [93],
(b) M2; Ref. [94], (b) M3; Ref. [24], (b) LDA; Ref. [79], (c) M2,
(d) M2; Ref. [95], (c) M3; and Ref. [29], (c) LDA.
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FIG. 11. (Color online) Griineisen ratio as a function of pressure
for (a) perovskite and (b) post-perovskite. The shading of the curves
indicates 1o width of the uncertainties. The references for all the
models and DFT calculations are Ref. [96], (a) M1 and M2; Ref. [29],
(a, b) LDA; and Ref. [79], (b) M1.
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demonstrated. It indicates that it is possible to further study
the equations of state of the iron-bearing silicate (Fe,Mg)SiO3
using QMC simulations.
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