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The general principle behind the marine cloud
brightening (MCB) climate engineering technique
is that seeding marine stratocumulus clouds with
substantial concentrations of roughly monodisperse
sub-micrometre-sized seawater particles might
significantly enhance cloud albedo and longevity,
thereby producing a cooling effect. This paper is
concerned with preliminary studies of the possible
beneficial application of MCB to three regional
issues: (1) recovery of polar ice loss, (2) weakening
of developing hurricanes and (3) elimination or
reduction of coral bleaching. The primary focus is
on Item 1. We focus discussion herein on advantages
associated with engaging in limited-area seeding,
regional effects rather than global; and the levels of
seeding that may be required to address changing
current and near-term conditions in the Arctic. We
also mention the possibility that MCB might be
capable of producing a localized cooling to help
stabilize the West Antarctic Ice Sheet.

1. Introduction
Two classic cloud physics studies [1,2] provided the
physical background for the formulation [3,4] of the
marine cloud brightening (MCB) climate engineering
technique. The idea behind MCB is to seed marine
stratocumulus clouds with substantial concentrations
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Figure 1. Ship-tracks over the Atlantic, 44◦N–50◦N by 5◦W–15◦W, west of the Bay of Biscay, France [15].

of roughly monodisperse, sub-micrometre seawater particles of sufficient salt mass to be activated
to form additional cloud droplets and therefore to enhance the cloud droplet concentration N, and
thus cloud albedo. Provided that the salt masses are not too high, the seeding could also enhance
cloud longevity, because the production of drizzle drops would be inhibited.

A significant number of papers on MCB (e.g. [5–13]) have been published. Most attention
has been focused on whether MCB—subject to various caveats, and resolution of technological
difficulties—might possibly produce a global cloud albedo change of significance. Opinion is
divided on this point. More specific work concerns the influence of MCB on rainfall, sea-ice cover
and other aspects of climate. Several general circulation model (GCM) computations indicate that
the associated cooling might be sufficient to balance global warming up to at least the carbon
dioxide-doubling point (CO2 × 2), while other work [14] indicates that the required value of N
may not be achievable.

Ship-tracks (figure 1), which are commonly observed in satellite photographs, provide
evidence supporting the contention that the albedo of maritime clouds can be appreciably
enhanced by seeding. The production of ship-tracks indicates that significant albedo enhancement
of some maritime clouds, can be produced, when seeded by sulfate emissions from ships.
They do not form everywhere. It is unclear whether sea-salt seeding via MCB spraying could
produce a similar degree of albedo enhancement, as field assessment of MCB will require
spray technology capable of producing copious quantities of roughly monodisperse 100–800 µm
diameter seawater spray micro-droplets. However, recent laboratory developments concerning
spray-particle production are encouraging (A. Neukermans 2014, personal communication).

2. Possible regional applications of marine cloud brightening
Solar radiation management (SRM) climate engineering techniques have been more-or-less
completely focused on global-scale issues. This has been the case with MCB since its inception.
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However, MCB differs from some other SRM strategies in that it could in principle also be
deployed on a much less than global scale, thus offering a range of regional applications. On
the one hand, it could possibly produce a localized ocean surface cooling, which could which
could be applied to mitigate, or even avert, certain regional consequences of warming, which are
being observed now, or which are predicted to occur in coming decades. On the other hand, MCB
could be found to have deleterious consequences.

The regional application which constitutes the primary focus of this paper is the maintenance
and restoration of Arctic and Antarctic sea ice. As part of that effort, we also present a new
idea outlining how a focused application of MCB in warm southern oceans might help avert the
collapse of the West Antarctic Ice Sheet. In addition to the above-mentioned primary work, we
also present modest extensions of our published work on MCB-induced reduction of the strength
of developing hurricanes and the preservation of coral reefs.

The studies outlined above have in common the MCB-induced reduction of sea surface
temperatures (SSTs) in selected regions. The fact that all three above-mentioned applications of
MCB involve reductions in SST does not indicate that other parameters do not play a significant
role. They unquestionably do—but they lay beyond the scope of this preliminary study.

The seeding areas covered in this earlier work ranged considerably from 100% of all suitable
maritime cloud regions [9–11] to the three areas containing the most extensive concentrations of
such clouds—off the West coasts of North and South America, and Africa [7,8,11]. These three
areas (combined) cover approximately 5% of the total oceanic area and were used in most of
the current computations outlined herein. Marine stratocumulus clouds cover about 20% of the
Earth’s surface, with the oceans covering 71% of the globe. The cloud location is variable.

The climate model employed in §2a–c is the Meteorological Office Unified Model 6.1
(HadGEM1) [16]. It is a fully coupled atmosphere–ocean model with an interactive sea-ice
parametrization. The atmosphere has 38 vertical levels up to 39 km and a horizontal grid of 1.25◦
of latitude by 1.875◦ of longitude. The ocean has 40 levels to a maximum depth of 5 km, and
the horizontal resolution of the ocean is 1◦ by 1◦ between 30◦ and the poles, with resolutions
gradually increasing to 1/3◦ meridionally between 30◦ and the equator. MCB was simulated by
forcing the cloud droplet number concentration, N, of all maritime stratocumulus clouds to be
375 per cc within the three regions mentioned earlier. A technique for producing this spray rate
has not yet been achieved. It is likely that the value of N required could be significantly smaller
in some circumstances.

The three simulations used in our current studies are (1) a control (CON) with carbon dioxide
levels held at a 2020 projected level of 440 ppm; (2) a climate change (CC) simulation, where the
carbon dioxide fraction increases by 1% p.a. until 2045, where it is held steady at 560 ppm for the
duration of the simulation, until 2090; and (3), an MCB simulation, which is the same as the [CC]
simulation except that it includes seeding in the three stratocumulus regions defined above. All
simulations were run for 70 model years with the final 20 years (2070–2090) used for analysis.

The studies outlined in §2a–c used three patches seeding (MCB3) as defined above. The
Antarctic portion of §2a used all-ocean (MCBA) seeding.

(a) Polar sea-ice maintenance or restoration via marine cloud brightening
Sea-ice coverage, averaged over consecutive years, is shrinking, as a consequence of the warming
caused by increasing atmospheric carbon dioxide concentrations [17,18]. This also causes a
positive feedback process to occur, because the melting of the (often snow-covered) sea ice
produces a decrease in surface reflectivity from roughly 90% to 10% [19]. This reduction
produces significant warming, with concomitant enhanced melting, which has recently been
quantified [20]. For the period 1979–2011, warming due to reduced albedo in the Arctic produced
a forcing of 6.4 ± 0.9 W m−2, equivalent to an increase in 0.21 ± 0.03 W m−2 averaged over
the globe.

Our MCB simulations showing the extent of the Arctic Ice Fields in June July, August (JJA) are
presented in figure 2. JJA is chosen to represent average seasonal changes, rather than the variable

 on December 2, 2014http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140053

.........................................................

control

(a) (b)

climate change MCB3 (3 region seeding)

Figure 2. (a) Western Arctic (North Pacific) and (b) Eastern Arctic (North Atlantic) summer sea ice extent (JJA) between 2070
and 2090 for three climatemodel simulations: control (CO2 = 440 ppm); climate change (CO2 = 560 ppm);MCB3 (three region
seeding, CO2 = 560 ppm).

September minimum, which as such, may not be as representative of the slower climatic changes.
In both the Northern and Southern Hemisphere winters, the CC scenario causes ice to retreat
with respect to the CON. The MCB simulations recover much of the winter ice extent lost by the
CC scenario. The majority of the winter ice loss in the CC simulation is in the North Pacific. By
contrast, MCB extends the extent of ice cover further south. MCB in the summer months produces
an ice-limit 50 km further south than the control in the Pacific, and close to the control in the
Atlantic Ocean (figure 2).

The relevance of the above findings is dependent upon the accuracy of sea-ice change values
generated in HadGEM1. The model does not generally produce significant changes in sea ice
as a result of small perturbations in radiative forcing. In the Northern Hemisphere, the summer
retreat in the CC simulation is 100 km greater than for MCB -CC, but only 50 km greater than
for the control. In the Southern Hemisphere summer, the ice limit is not significantly different
between the control, MCB and CC simulations (results not shown in this paper).

A previous full-ocean MCB study (fig. 8, [12]), an excerpt from which is reproduced here
in figure 3, shows that although increasing CO2 produces a maximum temperature rise at the
poles, MCB yields an equivalent maximum degree of cooling, or prevented warming, in the
Polar Regions.

A similar finding re polar temperatures and ice extent is elaborated upon and explained in
greater detail in [21], which examines the meridional heat flux as the mechanism for heat transfer
from the Tropics towards the Polar Regions, and a major factor in the Arctic Ice melt. The ice-
albedo feedback (e.g. [20]) has also been suggested as an increasingly important mechanism in
the loss of Arctic ice and is discussed below.

Other studies [9–11] have also examined the possibility that MCB might be able to slow or even
halt polar sea-ice loss. Rasch et al. [9] indicate that seeding 70% of maritime stratocumulus clouds
could halt the loss of Arctic sea ice caused by a CO2-doubling (from 355 to 710 ppmv), and in the
case of Antarctica increase the net sea-ice coverage. These GCM results indicate that MCB could
be significant in this regard. However, they were based on producing enough cooling to maintain
sea ice after compensating for warming from a doubling of CO2. This required cloud seeding
over a significant (variable) fraction of the Earth’s oceanic area, much of which is far away from
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Figure 3. Changes in average annual mean surface temperature due to increase in CO2 (2 × CO2 − 1 × CO2), MCB (2 ×
CO2 + CCN − 2 × CO2), and 2 × CO2 and MCB combined (2 × CO2 + CCN − 1 × CO2) for land (solid black), ocean
(dashed) and all regions (grey).

the Polar Regions. Consideration is now being given to the possible efficacy of seeding a much
smaller fraction of all marine clouds globally in more localized regions, either in the Tropics where
the greatest natural cloud density occurs, or close to the Poles, to which ocean currents may carry
cooler water most directly, to restore sea ice under current or near-term conditions.

In addition, it seems possible that methane release from the thawing of sub-sea permafrost,
arising from ocean-summer warming due to sea-ice retreat, could at some stage produce
a dangerous increase of atmospheric methane levels [22,23]. If so, a regional MCB seeding
programme could in principle produce a localized surface cooling which might prove to be
adequate to prevent further increase.

In the Antarctic, MCB 3-region seeding does not show an appreciable effect. All-ocean seeding
(MCBA) was also modelled for that region and is examined here. Figure 4 illustrates the net
change in ice cover after seeding 100% of all possible ocean clouds at 560 ppmv CO2. This extends
a similar, but less detailed, finding (fig. 2c,e, [9]) where significant increases in Antarctic ice cover
were also found at seeding levels of both 40% and 70% of all clouds, at 710 ppmv CO2 versus, a
control of 355 ppmv CO2.

In the South Polar Region shown in figure 4 (MCBA), the unobstructed Polar Vortex causes a
significant increase in ice cover within a large annular ring of ocean, some reduction in a second
ring closer to the continent including some areas of coastline, and local increases in ice cover in a
number of coastal areas, several of which contain major ice shelves [24]. Mass flux studies show
that two of the largest ice shelves, in the Ross and Weddell Seas, are actually increasing now
and that the most significant loss of mass is currently occurring from glaciers, principally those
draining into the Amundensen Sea [25]. The most important role of ice shelves with regard to sea
level appears to be to stabilize inland glaciers.

Two recent studies of the Thwaites Glacier Basin predict that the collapse of the West Antarctic
Ice Sheet is now inevitable [26,27]. The Thwaites Glacier is described as the lynchpin for the entire
West Antarctic Ice Sheet. The narrow neck of the glacier is supported by a marine ice shelf, located
in the Amundensen Sea.

Figure 4 shows the MCBA simulation, which produces a localized increase in sea ice in the
Amundensen Sea, which corresponds with the location of the ice shelf at the base of the Thwaites
Glacier (A in figure 4). This raises a general question as to whether the application of MCB could
achieve a sustained temperature reduction and/or increase in ice cover in key areas within that
region: and if so, whether a selective increase in localized sea-ice cover could be sufficient to delay
or avert such a collapse, and the concomitant increases in sea level which have been predicted.

The localized phenomena illustrated in figure 4 may or may not itself actually indicate a viable
approach to glacier preservation using MCB. However, the focus on one particular key ice shelf
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Figure 4. Marginal change in sea-ice cover for climate change (560 ppmv CO2) plus MCB All-Ocean seeding versus control
(440 ppmv CO2). The black line represents the furthest extent North of the ice edge in the simulation.

gives rise to another idea. The marine ice shelf supporting the Thwaites Glacier is reportedly
being eroded from underneath by warmer ocean currents. If MCB proves to be effective, and if
the ocean circulation patterns are stable, it may be possible to cool the ocean surface where the
warmer currents originate, using MCB in an almost ‘surgical’ manner at local or regional scales.

The arguments just presented must be considered provisional and further research is required
in order to determine whether MCB might be capable of producing a regionally directed cooling,
either alone or in concert with other global measures capable of restoring stability to Antarctic
ice sheets.

(b) Hurricane weakening via marine cloud brightening
Tropical cyclones (also named typhoons, hurricanes and cyclonic storms in various basins) are
major meteorological occurrences, but they are typically too small to be resolved in current
climate models. However, climate change is accepted as a possible reason for an observed
increase in the amount of power dissipated by North Atlantic hurricanes [28]. Much of this
increase in power is attributed to an increase in SSTs in the equatorial regions [29–32], although
some have argued that there may well be fewer storms, each of which dissipates a larger
amount of energy [33]. However, more than 98% of tropical cyclones’ formation occurs where
the SSTs are over 25.5◦C [34]. All these publications link an increase in intensity of tropical
cyclones with an increase of SSTs caused by global warming. Our hypothesis is that MCB
may prove capable of significantly lowering SSTs and hence reducing the energy available to
tropical cyclones, so reducing their power or intensity [35]. The cooler waters generated by the
cloud brightening are moved by existing currents around the globe and in particular into the
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Figure 5. Difference in number of days per year where the temperature is above 26◦C between: (a) [CC], (CO2 = 560 ppm) and
CON, (CO2 = 440 ppm) simulations and (b) climate change plus MCB (three region seeding, CO2 = 560 ppm) simulations. The
simulated displayed time span is 2070–2090 and the boxes show seven tropical cyclone basins.

hurricane development regions. An alternative or additional method of cooling surface waters
could be the ingenious downwelling mechanism advanced by Stephen Salter (2011, personal
communication).

We stress, however, that we recognize that the formation and development of hurricanes
involves much more complexity than is afforded by consideration only of SSTs. A rigorous
treatment of such development incorporates many other parameters. We do not regard our
arguments and assumptions as quantitatively precise. Results [30,31] indicate that under present
climatic conditions, an increase in SSTs does correlate well with tropical cyclone intensification.
Future climate change projections indicate that although the Atlantic SSTs will warm rapidly,
upper level tropospheric temperatures will also rise. Combined with increased vertical wind
shear, these two factors are detrimental to further hurricane intensification (e.g. [36]) and the
potential for future intensification is much more complicated than summarized here.

One approximate way of identifying a potential increase in the power of storms or duration
is to count the number of days per year where the SST is above 26◦C. The difference in this
number between the CC and CON simulations is shown in figure 5. Seven basins were chosen,
approximately encompassing the regions where the majority of these storms are generated. In
all seven basins, there is an increase in the number of days above 26◦C, which will result in

 on December 2, 2014http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140053

.........................................................

–1.0 –0.5 –0.2 –0.1 –0.05 –0.02 0.02 0.05 0.1 0.2 0.5 1.0

(a) (b)

87° W

12° N

16° N

20° N

24° N

81° W 75° W 69° W 63° W

Figure 6. (a) Difference in the 20-year average DHW (2.45*s.d. method) between the Climate Change (CO2 = 560 ppm) and
control (CO2 = 440 ppm) simulations between 2070 and 2090 for the Caribbean. (b) Difference in the 20-year average DHW
(2.45*s.d. method) between the Climate Change and MCB (three region seeding, CO2 = 560 ppm) simulations between 2070
and 2090 for the Caribbean.

more intense cyclones [33,34,36,37] and a larger global atmospheric meridional heat flux [21].
In the case of MCB and the control simulations, there is a notable reduction in the number of days
above 26◦C in three Indian Ocean basins. In the Eastern Pacific, the signal is mixed, with increases
and decreases near the coast. This is probably an unphysical result and is likely to be caused by
the poor resolution of the inter-tropical convergence zone. In the Western Pacific, the formation
regions for tropical cyclones have fewer days above the 26◦C limit. However, the coastal regions
are more regularly warmer, which could lead to intensification just before landfall. In the Atlantic,
African Easterly Waves are important in the formation of storms and they have more time to be
become tropical cyclones storms, fully developing in warmer coastal waters of the Gulf of Mexico
or Caribbean.

Thus, our basic idea regarding hurricane weakening, which as discussed above and in [33], is
to use MCB seeding of marine stratocumulus clouds to cool ocean surface waters in regions where
the genesis and early development of hurricanes occurs, or areas from which ocean currents
flow to them. Our preliminary GCM modelling indicates that judicious seeding of maritime
stratocumulus clouds, even in the three regions away from the hurricane development area, may
reduce significantly the number of days in a year where the SSTs are above the 26◦C limit. This
point is illustrated in figure 5. In all seven basins, there is an increase in the number of days
above 26◦C, which will result in more frequent and intense cyclones [28–34] and a larger global
atmospheric meridional heat flux [21].

The observationally based relationships between SST and maximum wind speed [37,38],
together with our computed MCB-based SST-reduction values, allow us to make rough estimates
of the associated hurricane category change. For parameter values used in our computations, a
1-category change is predicted. Much more work on this topic is required.

(c) Reduction of coral bleaching via marine cloud brightening
Increases in thermal stress—typically calculated as degree heating weeks (DHWs)—have been
accompanied by increases in coral bleaching events over the last few decades. This appears
to be linked in large measure with rising SSTs [39–41]. Continued warming and associated
increases in coral bleaching have been predicted throughout this century. Our GCM results [39]
suggested that under the CC simulation (double pre-industrial CO2 conditions), the increases in
coral bleaching in the three-reef regions studied (Caribbean, French Polynesia and Great Barrier
Reef) were eliminated when MCB was applied. Here, we show an example of the localized
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spatial impacts of MCB in reducing the thermal stress that would occur between the control
(CO2 = 440 ppm) and CC (CO2 = 560 ppm) simulations between years 2070 and 2090. Thermal
stress is the accumulation of heat stress above some temperature threshold over a 12-week
period [40]. It represents the time integral of any SST anomaly, which provides the source of
the stress to the coral. We applied a threshold of n × SDmax, where the empirical coefficient n,
following [41], is taken as 2.45 and SDmax is the standard deviation of the annual maxima over the
climatological period. The average thermal stress (DHW) was calculated for each of the 20-year
model runs.

In all three regions, Caribbean, Great Barrier Reef and Polynesia, there is an increase in DHW
in the Climate Change simulations. However, when MCB is applied, the DHWs are significantly
reduced in each case. This conclusion, for the Caribbean, is illustrated in figure 6.

3. Discussion: other issues related to marine cloud brightening and regionality
Most discussion of MCB to date has focused on producing a negative forcing of roughly 4 W m−2

necessary to counteract the effects of a doubling of CO2. The current additional net forcing above
a pre-industrial baseline is estimated at roughly 1.5 W m−2. The portion of that forcing which may
be responsible for the effects that are now beginning to be observed in the Arctic, Antarctic and
other regions might be of the order of 1 W m−2. If new CO2 emissions could be curtailed more
rapidly than has been anticipated, and the CO2 level could be rapidly stabilized at the low end of
the possible scenarios, we would still face effects of warming which are already being described
as inevitable and catastrophic. It might be possible to use MCB to address or even rectify such
regional issues.

The amount of seeding which would be required to produce a much smaller amount of
negative forcing is nonlinear, such that producing 25% as much cooling might only require
5–15% as much seeding [6]. At vastly reduced levels of seeding, it is also likely that any adverse
consequences—such as the perturbation of rainfall over terrestrial regions—which have been seen
when modelling a doubling of CO2, might also be vastly reduced or eliminated. Given the serious
consequences, which are already beginning to occur from observed warming, reduced seeding
scenarios deserve further study.

It may be useful to make some distinctions between the location of seeding, and the location of
the resulting reduction in regional SSTs, for various possible regional implementations of MCB.
For example, a localized seeding to reduce SSTs in proximity to a coral reef might represent
one end of a spectrum, while regional seeding in the vicinity of a cyclone basin to reduce SSTs
within that particular basin might represent a larger regional application. At the opposite end
of the spectrum, the examination of the Arctic has so far actually focused on the effects of
meridional heat transfer and the zonal amplification of global temperature effects, which appear
to disproportionately reduce temperatures in the Polar Regions as a result of seeding in warmer
geographically distant regions. One MCB seeding pattern, which has been modelled in relation to
the Arctic, is described as ‘three region seeding’, because there are three distinct regions of ocean
where seeding is expected to be most effective, but those three seeding regions are geographically
widely separated and far from the Arctic. By contrast, there may, hypothetically, be a secondary
approach to reducing SSTs in the Arctic, which might be more similar to localized applications.
Ocean clouds in various regions that are in closer proximity to the Arctic and located upstream
on prevailing currents could theoretically be seeded to reduce SSTs in the Arctic. In the Southern
Hemisphere, if a highly directed seeding aimed at selectively cooling ocean waters flowing
towards a particular ice shelf were to be effective, such a seeding regimen might have more in
common with the localized example of a coral reef, than with a three region seeding pattern
aimed at addressing Arctic sea ice.

Although we have focused herein—and also in previous MCB papers—on the production of a
cooling on planetary and regional scales, it is clear that the seeding of marine stratocumulus could
theoretically be modified to produce fewer, larger drops, which would be expected to produce a
warming, instead. This would have possible value only on regional scales. This idea has two
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possibly useful characteristics. (i) The advertent production of a localized warming could perhaps
be used to enhance rainfall in regions where it is particularly needed. (ii) The capacity to produce
a warming as well as a cooling adds to the flexibility of our cloud seeding technique, and perhaps
could be used to fine-tune the flows of heat, air and water. The capacity of MCB to produce—in
specified circumstances—a warming rather than a cooling, has been discussed by Alterskjær et al.
[14] and—in much less detail—by Latham [4,8].
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