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Abstract 

The oscillations of free-falling drops with size range from pL to µL have been used to measure the 

transient shear viscosity and the dynamic surface tension of shear-thinning fluids on the timescale of 

10-5 – 10-2 s. The method is first validated with Newtonian fluids. For a given surface tension, the 

lower and upper limits for accurate measurement of the viscosity are determined as a function of drop 

size. The dynamic properties of two types of shear-thinning fluids with varying viscoelasticity are 

reported: aqueous suspensions of the antifungal drug griseofulvin and of the OLED material PEDOT: 

PSS. In both cases, the free-falling drop retains the high-shear viscosity. 
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1. Introduction 

The oscillatory motion of a drop is a classical problem in fluid mechanics which has been studied for 

more than a century.1-6 The technological importance of drop oscillations has been explored in 

applications such as sprays, inkjet printing, nuclear physics and meteorology.7-10 Lord Rayleigh was 

the first to investigate mathematically the free oscillations of a drop and he derived a solution for 

small amplitude, axisymmetric oscillations of an inviscid and incompressible drop free from the 

influence of an outer fluid.1 The instantaneous deformation of the droplet about its spherical shape is 

described by an infinite series of orthogonal surface spherical harmonics, i.e. the natural oscillation 

modes. The axisymmetric form is   
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where Pl(cosθ) are the Legendre polynomials of the order l, al(t) is the instantaneous amplitude of the 

l
th mode of oscillation, and θ is the polar angle of a spherical coordinate system with its origin at the 

centre of the spherical drop. For small amplitude oscillations, a0 is the equilibrium radius of the 

droplet, r0. The linear solution of the problem shows that the angular frequency Ωl of the lth oscillation 

mode is given by 
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where σ and ρ are the fluid’s surface tension and density, respectively. 

Later, more generalised linear analyses were developed which included the viscosity of the 

droplet and viscous effects of an outer fluid. Lamb obtained an irrotational solution for an oscillating 

drop with low viscosity and small oscillation amplitude.2 The amplitude of the lth mode decays away 

exponentially with a decay time, τl, and an angular frequency of oscillation, Ωl*, given by  
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and 2* )(1 −Ω−Ω=Ω llll τ  ,                                       (4) 

where µ is the viscosity of the fluid. The effect of viscous dissipation is to reduce the oscillation 

frequency from the Rayleigh frequency. Prosperetti pointed out that the approximation given by Eqs. 

(2)–(4) is valid for Ohnesorge number Oh = µ/(ρσr0)
1/2 of < 0.1.4  

The oscillating drop (OD) method has attracted great interest over decades for the determination 
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of the dynamic surface tension (DST) and viscosity of fluids. One approach is to look at free-falling 

drop immediately after its formation from orifice.11-15 Trinh et al.
13

 and Hiller and Kowalewski14 

studied freely oscillating drops with small oscillation amplitudes experimentally and validated the OD 

theory within the linear approximation for the fundamental mode. Stückrad et al. used the OD method 

to determine the temporal development of the DST of heptanol-water solutions and interpreted the 

results by a diffusion-controlled adsorption mechanism.15 Becker et al. experimentally and 

theoretically investigated the nonlinear dynamics of viscous droplets with large initial amplitudes of 

oscillation, exceeding 10% of the drop radius for the fundamental mode. They found that nonlinear 

effects were most evident for higher oscillation modes (l > 2) while the fundamental mode conformed 

to the linear theory even for initial amplitudes exceeding 50% of the drop radius.16 Matsumoto et al. 

developed a precise OD method based on levitated drops. 17 

The classical OD work cited above was restricted to Newtonian liquids. In recent years, the 

dynamic properties of complex fluids, such as polymer solutions, colloids, emulsions, gels and foams, 

have become of great interest both in fundamental research and for industrial applications involving 

jets, sprays and coatings. Khismatullin and Nadim6 and Brenn and Teichtmeister18 have developed 

theoretical treatments of oscillating viscoelastic drops and the latter authors recently reported a 

proof-of-concept experiment to measure polymer relaxation times in viscoelastic levitated drops. This 

approach is very promising for studying rheological properties of fluids close to equilibrium. The 

viscosity of complex fluids frequently depends not only on the rate of strain (non-Newtonian 

behaviour) but also on the shear history (thixotropy or rheopexy). Particle-laden fluids, such as oral 

pharmaceuticals and paints, are formulated to have a yield stress to prevent sedimentation during 

storage. Viscoelasticity may also be desirable to inhibit splashing on impact or the formation of fine 

aerosols. For such fluids, steady-state or low-amplitude oscillating shear measurements may not 

reflect the rheological behavior of a fluid under the conditions encountered during processing or final 

application. A particular example is the behavior of drops formed in a jet or a spray, where the fluid 

changes from the high-shear environment of a nozzle to the low-shear environment of a free drop over 

a period of microseconds to milliseconds. To predict the behavior of such droplets in flight or during 

impact, one needs to understand how the rheology evolves following a step-change in shear. The 

typical mechanical response of commercial rheometer switching between a high shear rate of, say, 

1000 s-1 and low shear rate of 0.1 s-1 is a few tenths of a second, which is too slow to capture the 
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rheological behavior of drops in applications such as inkjet printing or spray painting. From a 

fundamental perspective, it is also desirable to have a direct measurement of transient shear viscosity 

of a fluid after a shear quench in order to understand the relationship between microstructure and 

macroscopic flow properties, for example, the network recovery in a colloidal suspension. Here we 

show that the OD method can be used to determine the transient shear viscosity of shear-thinning 

fluids on the timescale of a few tens of microseconds (for picolitre droplets) to a few tens of 

milliseconds (for microlitre drops) after the fluid leaves the high-shear environment inside the pipe 

and forms a drop in the low-shear environment of free space. Since the droplets themselves are used 

to interrogate the rheology, the shear history can be identical to that in a desired application. The DST 

of the complex fluids is simultaneously determined on the same timescale.  

In this paper, we first validate our method with Newtonian fluids in order to define the lower 

and upper limits for viscosity measurements on drops of different sizes. We then measure dynamic 

properties of two practical examples of shear-thinning fluids: aqueous PEDOT:PSS solutions, used in 

the manufacture of organic electronic devices, and colloidal suspensions of a drug for use in 

pharmaceutical manufacturing. We show that the OD method is an effective rheometer for measuring 

the low amplitude dynamic viscosity in the period immediately after ejection from a nozzle and can 

be used to study thixotropy over much shorter timescales than in conventional rheometers. 

2. Experimental Methods 

2.1 Dispensing and visualisation system for µL drops  

The µL drops are generated by liquid dispensing technology (LDT). A schematic diagram of the 

experimental arrangement for dispensing and visualisation of µL drops is shown in Fig. 1(a). The 

sample fluid is fed from a reservoir into a rotary piston pump head (IVEK-3A) driven by a digital 

servo drive (Allen-Bradley, Ultra3000) and rotary motor (Allen-Bradley, MPL-A230) controlled by 

Ultraware software. During the pump ejection cycle, the fluid is dispensed through a 15-cm long 

PTFE tube (Zeus) cut at a right angle to form a nozzle. AWG-15 tubing is used with an inner diameter 

of 1.45±0.05 mm and an outer diameter of 2.25±0.05 mm. The motor control parameters are adjusted 

to eject a single drop during each stroke of the piston. The stroke length is varied to control the drop 

volume. A Leica CLS 100× illuminator is used as a light source. It is collimated through a singlet lens 

with a focal length of 80 mm and a clear aperture of 20 mm. The drop formation and oscillation are 
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recorded by a high-speed CMOS camera (Photron FASTCAM-APX RS) with a Cosmicar television 

lens. The typical image size is 400 × 1024 pixels with a fixed frame rate of 2000 fps. The shutter 

exposure time of the CMOS camera is set to 5 µs. The camera is triggered via software. The output 

TTL signal from the camera is sent to the motor drive to start the pump. Measurements on drops were 

taken over approximately 8 different nozzle heights and the oscillation curves were stitched together 

over the overlapped position of the droplet from the images. A 3-mm diameter sapphire ball (tolerance 

of 2 µm) is used to calibrate the image and to check for image distortion. The apparent diameter of the 

sphere varied by less than ±1 µm over the central 80% of field of view of the camera; only this area 

was used in the data analysis.  
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(a) (b) 

FIG. 1 Schematic of the experimental arrangement for liquid dispensing and drop visualisation of (a) µL drop, and (b) pL 

droplet.  

Ultra-pure water (Milli-Q A-10, Millipore) was used to calibrate the pump stroke volume, which 

is equal to the volume of a drop. For a fixed stroke length, we discard the first few drops and then 

count the pump strokes to generate 10 water drops. The drops are collected in a narrow-mouth glass 

bottle and weighted immediately with an analytical balance with readability of 0.1 mg. From the 

known density of water at the ambient temperature, the drop volume and hence the stroke volume can 

be determined. Figure 2 shows the measured stroke volume as a function of the nominal stroke length, 

measured with a digital dial meter (resolution of 0.01 mm) installed on the pump head. The data are 

fitted to a straight line through the origin with a slope of 2.55 ±0.01 µL/mm. Repeatability of 0.1% is 

obtainable once the stroke length is established. 

2.2 Dispensing and visualisation system for pL droplets  
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Figure 1(b) shows a schematic diagram of the experimental arrangement for dispensing and 

visualization of pL droplets with a stroboscopic technique. Droplets with a typical volume of 100 pL 

are generated by a piezoelectric drop-on-demand (DoD) print-head (Microfab MJ-ABP-01, Horizon 

Instruments) controlled by a driver unit (Microfab CT-M3-02). The sample fluid is fed from a 

pressurised reservoir to a nozzle of diameter 40 or 80 µm until the meniscus of the fluid is observed at 

the orifice. A bipolar waveform is generally used and adjusted to eliminate satellites.  

0 2 4 6 8 10 12
0

5

10

15

20

25

30

 

 

S
tr

o
k
e

 v
o

lu
m

e
 /

µL

Nominal stroke length /mm

 

FIG. 2. Calibration of the stroke volume of water drops against stroke length. Solid square: experimental data. Line: linear fit 

through origin. 

Shadowgraphs of the droplet are obtained with back illumination. The fast oscillatory motion of 

the droplet is visualized either with an ultra-high speed camera or with stroboscopic imaging. In the 

former case, a long duration (~ 2 ms), high-power, flash lamp illuminates the droplets through a light 

pipe with a lens, adjustable iris and light diffuser. A Shimadzu HPV-1 ultra-high-speed camera 

(EPSRC Engineering Instrument Pool) is used to record magnified images via a Navitar ×12 telescope 

with a ×10, 0.28 NA, Mitutoyo objective lens. The Shimadzu HPV-1 software is first primed for 

external trigger. A manual trigger is then applied to a pulse/delay generator which in turn triggers the 

Microfab drive controller, the Adept Electronics CU-500 flash power supply and controller and the 

HPV-1 camera. The HPV-1 exposure time used was 0.5 µs at both 1Mfps and 500kfps. The HPV-1 

camera records a maximum of 102 frames at rates up to 106 fps. The pixel size was calibrated from 

images of long wires of known width of 104 µm. Droplets in flight were imaged until either the 

droplet exited the field of view of the camera or until the maximum number of frames of the 

high-speed camera had been recorded. 

 For the stroboscopic imaging, a blue LED is used as illuminator. A TTL signal generator triggers 
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the Microfab drive and, through a delay box, a CMOS camera (CamRecord CR450x3). A 12× zoom 

lens (LaVision) with attached 2× lens and 2× adapter tube is used as an image magnifier with spatial 

resolution of 1 µm. The image is calibrated with a calibration plate with array of dots 50 µm apart 

(LaVision) which gives us image resolution of 0.52 µm/pixel. For the imaging of droplets in flight, 

the camera exposure time is set to 1 µs. The resolution of the delay box is 0.1% of its range, i.e. 1 µs, 

which determines the temporal resolution of the strobe system. The delay is scanned to generate a 

pseudo-cinematographic sequence in which each frame is taken on a different drop.  

2.3 Image analysis  

The shape, volume and speed of the droplet were analysed through Matlab code with an edge 

detection algorithm using a Sobel operator. The reproducibility of drops was checked by stroboscopic 

imaging. For a fixed time delay, the position of the drop/droplets is within one pixel. The relative 

standard deviation of the measured drop volume is 0.5% for µL drops and 2% for pL droplets, which 

is mainly associated with image resolution and contrast. 

2.4 Sample preparation and characterisation 

Newtonian aqueous solutions were prepared with 1 wt% and 1.5 wt% hydroxyethyl cellulose (HEC, 

Aldrich, weight average molar mass Mw ~250,000 g mol-1), 2.5 wt% hydroxypropyl cellulose 

(HPC-ssl, Nisso, Mw ~ 40,000 g mol-1), and 5 wt% and 7 wt% hydroxypropyl cellulose ( HPC-sl, 

Nisso, M w ~ 100,000 g mol-1). An AR 2000 rheometer (TA instrument) with a cone-plate geometry 

was used to measure the steady-state shear viscosity as a function of shear rate in the range 1–1500 s-1. 

The equilibrium surface tension of the sample was measured by drop-shape analysis (FTA200, First 

Ten Ångstroms) with an accuracy of 0.5 mN m-1. The density of the sample was derived from the 

mass of the sample in a 10-mL volumetric flask weighed by an analytical balance with readability of 

0.1 mg. All measurements are performed under room temperature of 21±1 °C. TABLE I shows the 

average shear viscosity over the shear rate of 1–1500 s-1, equilibrium surface tension and density of 

the Newtonian fluids. The viscosity of the cellulose solutions was almost independent of shear rate 

with an absolute variation of < 3 mPa s for HEC and < 0.7 mPa s for HPC fluids. HEC and HPC 

samples are surface-active and have a constant surface tension of 64.7±0.5 mN m-1 and 44.5±0.5 mN 

m-1, respectively. For the oscillating drop measurement, HEC and HPC-sl solutions were used for the 

µL drops, while HPC-ssl solution and ultrapure water were used for pL droplets. The density, surface 
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tension and viscosity of water at 21 °C were obtained from Perry’s Chemical Engineer Handbook.  

TABLE I. Measured physical properties of cellulose solutions with different concentration  

Sample µ / mPa s σeq / mN m−1 a ρ / kg m-3 b 

1% HEC 14±2 64.7 1003 

1.5% HEC 27±3 64.7 1007 

2.5% HPC-ssl 2.9±0.4 44.5 1002 

5% HPC-sl 16.5±0.7 44.5 1005 

7% HPC-sl 44.9±0.5 44.5 1010 

a ±0.5 mN m−1; b ±2 kg m-3 

The aqueous colloidal suspension contains HPC-ssl as a binder and viscosity modifier, fumed 

silica (DHK SiN20, Wacker) as a suspending agent, a surfactant (Tween 80, also known as 

polysorbate 80, Aldrich) as a dispersant and Griseofulvin (GF) (Shanghai Tech, micronised) as a 

model active pharmaceutical ingredient (API). Master formulae were first prepared. The soluble 

components (100 g, 20%wt HPCssl/water and 20 g, 10%wt Tween80/water) were stirred by magnetic 

bars at 40 °C until the solids were virtually dissolved. The master silica dispersion (200 g, 5% wt 

silica/water) was stirred with a magnetic bar for 2 hours at the rate of 500 rpm and then with an 

overhead mixer for 5 min at the rate of 1000 rpm. The silica suspension was then put into a bath 

sonicator for 30 min and stirred with a magnetic bar at the rate of 500 rpm for a further 5 hours. The 

master formulae were left for at least 12 h before final model colloidal suspensions were prepared. To 

make 50 g of the final colloidal suspension, the griseofulvin was weighed and wetted by the correct 

amount of the master Tween 80 solution and 2/3 of the required water. Under stirring, the appropriate 

amount of HPCssl and silica master formulae and finally the remaining water were gradually added. 

The suspension was stirred for a further 2 hours and sonicated for 15 min. All samples were weighed 

by a balance with an accuracy of 10 mg. Four suspensions were prepared with compositions shown in 

TABLE II. The suspension stability was checked by observation of the sedimentation rate of 7 mL of 

fluid in a 16-mm diameter sealed bottle over 5 days. Formulation GF-1, with the lowest SiN20 

loading, is least stable with a sedimentation rate of 0.12 mm/hour, followed by GF-3 at 0.05 mm/hour. 

GF-2 and GF-4, with higher SiN20 loading, showed no sediment after 5 days. Before oscillating drop 

measurements, all suspensions were constantly stirred by a magnetic bar at a speed of 200 rpm. 

Measurements on the colloidal suspension were performed within one week of preparation and at 

room temperature of 21±1 °C. 
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TABLE II. Shear viscosity, µ, and density, ρ, of the colloidal suspensions. Compositions are given in wt% 

Sample HPC-

ssl 

SiN20 Tween 

80 

GF µ @ 0.1 s-1 

/mPa s 

µ @ 1500 s-1 

/mPa s 

ρ /kg m-3 a 

GF-1 7 0.5 0.5 5 0.27×103 23 1028 

GF-2 5 1.7 0.5 20 9.3×103 39 1078 

GF-3 5.5 1.5 0.5 15 3.8×103 30 1062 

GF-4 7 2.5 0.5 5 17×103 31 1040 

a ±2 kg m-3 

The steady-state shear viscosities are shown in Fig. 3(a). The high viscosity at low shear rate is 

associated with the formation of a hydrogen-bonded network between neighboring silica particles. 

The higher the SiN20 loading, the higher the viscosity at low shear. As the shear rate increases, the 

fumed silica network breaks down and the viscosity first decreases and then levels off at a shear rate 

of 1000 s-1. The four suspension samples have a similar high shear viscosity. The steady-state shear 

viscosities at shear rates of 0.1 s-1 and 1500 s-1 are listed in TABLE II. The viscosity of the colloidal 

suspension GF-2 was checked over two weeks, showing no significant change. The dynamic 

viscosities, µ′, of sample GF-2, -3 and -4 are shown in Fig. 3(b), with an oscillatory frequency sweep 

at strain amplitude below 0.4% to remain in the linear viscoelastic region, where µ′= G′′/ω, G′′ is loss 

modulus and ω is angular frequency. The linearity was checked at frequencies of 1 and 100 rad s-1. We 

examined the Cox-Merz Rule19 which correlates steady-state shear rheology with oscillating shear 

rheology at the same frequency. The steady-state viscosity is lower than the oscillatory equivalents 

which may be due to a larger loss of ‘structure’ at higher deformation.20 
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FIG. 3. (a) Steady-state shear viscosity of model pharmaceutical suspensions: GF-1 (solid square), GF-2 (open square), 

GF-3 (open circle) and GF-4 (solid triangle).(b) Dynamic shear viscosity of model pharmaceutical suspensions under 

oscillating shear, with abscissa in units of angular frequency: GF-2 (open square), GF-3 (solid circle) and GF-4 (solid 

triangle). For comparison, the steady-state shear viscosity of GF-3 (open circle) is also shown with the abscissa in units of 

shear rate. 

We applied a two-step “peak-hold-flow” procedure with fast sampling in the rheometer to study 

the thixotropy of the model suspensions when the shear was switched from a high shear rate of 1500 

s-1 to a low shear rate of 0.1 s-1. This process mimics the shear history of a drop from the nozzle (high 

shear) to drop break-off (low shear). The response of the viscosity (Fig. 4) represents the recovery of 

the suspension network. Figure 4(a) shows how the viscosity responds for the first 10 s after the 

switch in shear rate. It takes about 200 ms for the rheometer motor to stabilize after the step in the 

shear rate. The viscosity data are very noisy for 1 s after the switch (Fig. 4(a)). By the time that the 

noise died away, the viscosity of the suspensions has recovered to some extent. GF-1, with the lowest 

SiN20 loading, recovers most slowly. Figure 4(b) shows the viscosity over a longer period after the 

switch in shear rate. All samples showed transient peaks in the viscosity response within ~100s after 

the switch the reason for which is not clear. Suspensions GF-1, -2 and -3 eventually relaxed to the 

equilibrium state, while GF-4 (with the highest SiN20 loading) quickly relaxed after the initial spike 

in viscosity and then slowly rebuilt its structure. Thus, all four suspensions are thixotropic, with the 
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fastest recovery of the network structure of GF-3 and GF-4. 
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FIG. 4. Viscosity response of colloidal suspensions to a switch in shear rate: viscosities of GF-1 (solid square), GF-2 (open 

square), GF-3 (open circle) and GF-4 (solid triangle). Variation in shear rate with time is shown by the dashed lines. (a) is the 

zoom-in of (b).  

 The equilibrium surface tensions of 0.5 wt% Tween 80, 5 wt% HPC-ssl, the mixture of 5 wt% 

HPC-ssl and 0.5 wt% Tween 80, and the colloidal suspensions were measured by drop-shape analysis 

(FTA 200). The samples that contain Tween 80 and a low GF loading (<5%) have equilibrium surface 

tension of 40.2 ±0.5 mN m-1 which is determined by the surfactant. 5 % HPC-ssl has an equilibrium 

surface tension of 44.5 ±0.5 mN m-1. For higher GF loadings (GF-2 and -3), the apparent value of the 

surface tension is unexpectedly low; the value may be an experimental artifact arising from the high 
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solids content or may reflect weak surface activity of the GF particles. 

The dynamic surface tension (DST) of 0.5 wt% Tween 80, 5 wt% HPC-ssl and the mixture of 

5 wt% HPC-ssl and 0.5 wt% Tween 80 was measured by a maximum-bubble-pressure (MBP) 

tensiometer (SITA Dyno Messtechnik GmbH) for the bubble lifetime ranging from 15 ms to 2 s, 

shown in Fig. 5. The repeatability of the tensiometer is 0.5 mN m-1. The tensiometer corrects for 

viscous and aerodynamic effects for fluids with the same viscosity as water, which in our case, is 

approximately the same as 0.5 wt% Tween 80. The DST of 5% HPC-ssl with and without Tween 80 is 

similar at short times, which indicates Tween 80 initially is not an important factor in lowering the 

DST. The apparent increase in the DST of 5% HPC-ssl and the mixture of 5% HPC-ssl and 0.5% 

Tween 80 at short times of < 200 ms is an artifact arising from the higher viscosity of the fluids (7 

times that of the water calibration sample): absolute values of DST obtained from the Sita MBP 

tensiometer are not reliable for viscous complex fluids.  
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FIG. 5. Dynamic surface tension by maximum bubble pressure for 0.5 wt% Tween 80 (triangle), 5 wt% HPC-ssl (solid 

square) and the mixture of 5 wt% HPC-ssl and 0.5 wt% Tween 80 (open square). 

 The experiments with pL droplets used a commercial aqueous polymer dispersion 

poly(3,4-ethylenedioxythiophene): polystyrene-sulphonate (PEDOT:PSS, Heraeus Clevios). 0.7 wt% 

PEDOT:PSS was mixed with 0.06 wt% Dynol 607 surfactant (Air Products). The DST at 21°C 

approaches a constant value of 30 ± 2 mN m-1 at bubble lifetime of 15 s (Sita Pro-line 15 bubble 

tensiometer). Rheological measurements were performed at 25 °C with a parallel plate rotational 

rheometer at shear rates up to 4×104 s-1 and with a piezo axial vibrator (for details, see ref. 21). The 

shear viscosity falls from about 25 mPa s at a low shear rate of 1 s-1 to about 3.5 mPa s at the highest 
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measured shear rates of 4×104 s-1. The relaxation time, λ, is estimated from (µ0+µ∞)/2 when λγ′=1,22 

i.e. at a shear rate λ-1, where µ0 is the viscosity in the initial Newtonian region, µ∞ the viscosity in the 

second Newtonian region at high shear rates, and γ′ the shear rate. The relaxation time estimated by 

this method is about 10-3 s, showing weak elasticity.21 

3. Results   

The viscosity of the model suspensions is both shear and time-dependent. The transient viscosity of 

the fluids, which affects the jet/drop break-up and impact, depends on the shear history, which cannot 

be replicated on a commercial rheometer. Similarly, commercial instruments such as the MBP 

tensiometer cannot reliably measure the DST of viscous fluids on the relevant timescales 

(microsecond to milliseconds). Here we demonstrate that the oscillation of the free-falling drop in the 

LDT or DoD inkjet systems can itself be used to determine the transient viscosity and dynamic 

surface tension of the complex fluid on the timescale of a few tens of µs or ms, with the precise shear 

history experienced in a commercial application. 

 The deformation of a free-falling drop from its spherical shape is described by an infinite series 

of orthogonal surface spherical harmonics in Eq. 1. Expanding the Legendre polynomials up to the 4th 

order yields the following expression for the radius of the drop: 
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where al is the instantaneous amplitude of the lth oscillation mode normalized by a0. The oscillation 

modes conserve volume to first order in al and thus for small amplitude oscillations a0 = r0, the 

unperturbed drop radius. For larger oscillations one has to consider higher order terms and a0 then 

varies with time according to a0(t)
3= r0

3 /[1+3Σal(t) 
2/(2l+1)].1 We assume in our analysis that we can 

replace a0 with r0. We measure the polar (up-down) and equatorial (left-right) dimension of the drop, 

which are sensitive only to the even-order modes of oscillation. Equation (5) leads to a polar length 

D1 = 2r0[1+a2(t)+a4(t)] and an equatorial length D2 =2r0[1−a2(t)/2+3a4(t)/8]. The oscillation amplitude 

of the fundamental (l = 2) mode, a2(t), can be calculated from  

a2 = (3D1–8D2+10r0)/(14r0),                                                  (6) 

and of the 4th order, a4(t), from  

a4 = 2(D1+2D2 –6r0)/(7r0).                                                                                (7) 
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If a4(t) is negligibly small, the amplitude of the fundamental mode a2(t) becomes  

a2 = (D1–D2)/(3r0).                                                         (8) 

The drop radius r0 is determined from the drop volume in the LDT system or from the average value 

of D1 and D2 in the drop-on-demand inkjet system, where the error in |D1 –D2| is less than one pixel 

with a typical image resolution of 0.5 µm/pixel. 

We fit the dimensionless oscillation amplitude a2(t) to the functional form 

222 ]/2sin[)/exp()0()( bTttata ++−⋅= φπτ ,                                   (9) 

where a2(0) is the oscillation amplitude at t = 0 (which is generally defined as the time when the 

recoiling ligament is readsorbed by the drop), τ is the oscillation decay time and T is the oscillation 

period from which we obtain Ω* = 2π/T. φ is the phase angle, b2 is the eccentricity of the drop, which 

arises from imaging distortion or oblation of the droplets due to hydrodynamic effects. The oscillation 

amplitude of the 4th order mode decays 5 times faster than the fundamental mode according to Eq. (3). 

In our experiments, the 4th order mode is either negligibly small or is damped too quickly to use for 

the accurate determination of fluid properties. Once we know Ω* and τ, we can calculate the dynamic 

surface tension and viscosity using Eqs. (2)-(4).   

 As our Newtonian fluids have well-defined surface tensions and shear viscosities, we first verify 

our experimental method by determining the surface tensions and viscosities of the Newtonian fluids 

by the OD method and comparing these values with those measured by a commercial tensiometer and 

rheometer. We then characterise the dynamic surface tension and transient viscosity of the drops 

formed from the non-Newtonian fluids.  

3.1 Newtonian µL drops 

The LDT system was used to generate 15.3-µL drops of 1% and 1.5% HEC solutions and of 5% and 

7% HPC-sl solutions. An error of 0.4% in drop volume is expected from the pump repeatability and 

the error in the density measurement used to determine the drop volume. The calculated drop radius is 

1.540±0.002 mm. The oscillations of the drop were tracked until the oscillation amplitude was close 

to the image resolution.  

 For the Newtonian fluids, we analysed the oscillation amplitude from the point where a4 reached 

the noise level to the point where a2 reached the noise level. In this interval, a2 takes the simple form 

of (D1–D2)/(3r0). Figure 6 shows the oscillation amplitude of the fundamental mode averaged over 
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2–10 drops for each sample. The initial oscillation amplitude, a2(0), is less than 10% of the drop 

radius for which a linear theory is expected to hold.15, 16 The surface tension and viscosity of the fluid 

were derived from Eqs. (2)-(4), respectively, on the assumption that they were invariant over the 

measured time interval. TABLE III compares the values of σ and µ obtained from oscillating drops 

with those measured by a commercial tensiometer and rheometer. The measurement errors are mainly 

propagated from 0.2% error in density, 0.13% error in drop radius, 0.5% error (maximum) in 

oscillation period, and 3% error (maximum) in decay time. As the drop radius is determined from the 

pump stroke volume rather than from an image with a typical resolution of 20 µm/pixel, the relative 

errors in surface tension and viscosity are significantly lower than for the picolitre droplets discussed 

below.             
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FIG. 6. Oscillation amplitude of 2nd order mode for aqueous solutions of (a) 1% HEC, (b) 1.5% HEC, (c) 5% HPC-sl, (d) 7% 

HPC-sl. The lines are fits to Eq. (9). 

TABLE III. Physical properties of Newtonian aqueous solutions obtained by a commercial tensiometer and rheometer, and 

the measured surface tension and viscosity by the oscillating drop method 

Steady-state Oscillating drop 
Sample ρ /kg m-3 

 
σeq/mN m-1 a  µ/mPa s σ/mN m-1 µ / mPa s 

1% HEC 1003 64.7 14±2 66.2±0.4 14.2±0.3 

1.5% HEC 1007 64.7 27±3 66.3±0.7 31.3±0.9 

5% HPC-sl 1005 44.5 16.5±0.7 45.1±0.4 14.9±0.4 

7% HPC-sl 1010 44.5 44.9±0.5 43.2±0.4 34.3±0.6 

a ±0.5 mN m-1 
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 The surface tension obtained by the OD method agrees with the tensiometric values for the HEC 

and HPC-sl samples to within experimental error (at the level of 2 standard deviations). The 

viscosities obtained by the OD method are also in agreement with the steady-state values except for 

7% HPC-sl. The discrepancy in the 7% HPC-sl measurement may be due to the neglect of vorticity in 

the irrotational approximation that leads to Eqs. (2) and (3). The first three samples in TABLE III have 

an Ohnesorge number, Oh = µ/(ρσr0)
1/2 of ≤ 0.1. Prosperetti has shown that vorticity is generated in a 

viscous droplet by the free-moving surface during drop formation and that the irrotational 

approximation applies only when Oh < 0.1.4 For the 7% HPC-sl solution, Oh = 0.17, which falls 

outside this range. Prosperetti found that, when vorticity is included, the decay rate of the oscillations 

is about 1.3 times slower than the irrotational result for Oh ≈ 0.2. Consequently the viscosity 

determined by Eq. (3) will be ~1.3 times lower than true value, in agreement with our measurements. 

3.2 Newtonian pL drop 

The LDT device produces drops with µL volumes and timescales of a few tens of ms. Inkjets, on 

the other hand, eject much smaller droplets (pL volumes) at higher speeds and consequently the 

relevant timescales for the transient viscosity and surface tension are much shorter (tens of µs). To 

validate our imaging method for small droplets, we studied free-falling droplets (typical speed 0.5 m 

s-1) of water and 2.5 % HPC-ssl generated by a Microfab DoD dispensing system with an 80-µm 

orifice. Figure 7 shows the oscillating water drop during the first three and half periods of 

measurement. To establish whether or not it is safe to neglect higher order modes, we calculated the 

fundamental oscillation amplitude, a2 in two different ways: a2-1 is determined from Eq. (8) 

(neglecting the 4th-order mode) and a2-2 from Eq. (6) (allowing for the 4th-order mode). We also 

determined the 4th order oscillation amplitude, a4, from Eq. (7). When a4 approaches zero, a2-1 is 

expected to be equal to a2-2. Figure 8 shows the experimental oscillation amplitudes of the two fluids 

and the best fit of a2-2 to a damped sine function. The 4th order results are offset for clarity. For water, 

the 4th order oscillation amplitude is negligibly small, the best fits for the oscillation period, T, and 

decay constant, τ, for a2-1 and a2-2 are indistinguishable. For example, the properties obtained from a2-1 

and a2-2 are T = 39.70 ± 0.08 µs and 39.66 ± 0.08 µs, respectively, and τ = 164 ± 7 µs and 163 ± 8 µs, 

respectively. The 4th order mode oscillation has a slightly higher amplitude for the HPC-ssl drop but 

the difference between the best fits to a2-1 and a2-2 is still within the error level. Using the oscillation 
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amplitude a2-2, we obtain T = 58.3 ± 0.2 µs and τ = 76.4 ± 3.4 µs for the 2.5 % HPC-ssl droplet. Oh = 

0.02 and 0.08 for water and 2.5% HPC-ssl, respectively, which meets the criteria of Oh < 0.1 for the 

irrotational approximation to apply. The initial amplitude of oscillation in the fundamental mode is 

approximately 25% of the drop radius, where non-linear effects are expected to be negligible.16 The 

surface tensions and viscosities derived from Eqs. (2)-(4) are listed in TABLE IV; the values obtained 

from the oscillating drop are in good agreement with those obtained from a commercial tensiometer 

and rheometer. The dominant contribution to the error in the DST is the radius, since it appears to the 

third power in Eq. (2), and the dominant contributions to the error in the viscosity are the radius 

(which appears to the second power in Eq. (3)) and the decay time. The measurement errors are 

mainly propagated from 1.7% error in drop radius and 5% error in decay time.      

 

 

FIG. 7. Strobe images of water droplet with a radius of 28.2±0.5 µm. Time interval between frames = 20 µs. 
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FIG. 8. Oscillation amplitude of 2nd and 4th order modes, a2-1 (open circle), a2-2 (solid circle) and a4 (open triangle) for (a) 

water droplet of radius 28.2±0.5 µm; (b) 2.5% HPC-ssl droplet of radius 30.5±0.5 µm. The solid lines are fits of a2-2 to Eq. 9. 

The dashed line is the zero for the 4th order mode, shown offset for clarity.  

TABLE IV. Physical properties of water and 2.5% HPC-ssl obtained by a commercial tensiometer and rheometer, and the 

measured surface tension and viscosity by oscillating drop (OD)  

a ±0.5 µm; b ±0.5 mN m-1 

3.3 Non-Newtonian µL drops  

The experiments described above were designed to validate our experimental rig with Newtonian 

fluids. In this and the following section we apply the methodology to colloidal suspensions with 

complex rheology, showing both strong shear-thinning and time-dependent behaviour. We first look at 

a pharmaceutical formulation for printing drugs onto placebo tablets. The ‘Liquid Dispensing 

Technology’ uses microlitre drops (~3 mm in diameter) ejected at low velocities which then accelerate 

under gravity before landing on a tablet less than 1 cm away from the nozzle. For the experiments 

here, we selected a stroke length to give a drop volume of approximately 18.8 µL and a drop radius of 

1.650±0.002 mm. Figure 9 shows an image sequence of falling drop of sample GF-3 with 1.5 ms 

Steady-state Oscillating drop Sample Radius 

/µm a 

ρ /kg 

m-3 σeq /mN m-1 b η /mPa s σ /mN m-1 η /mPa s 

Water 28.2 998 72.4 0.980 70±4 0.97±0.04 

2.5% HPC-ssl 30.5 1002 44.5 2.9±0.4 42±2 2.4±0.1 
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between images. We start measuring the oscillation amplitude about 3 ms after drop break-off, once 

the recoiling ligament has been readsorbed by the drop. Figure 10 plots the amplitudes of the 

fundamental oscillation, a2-2, and the 4th-order oscillation, a4, for suspension GF-4. For these complex 

fluids, the amplitude of the 4th-order mode is significant for the first 20 ms, so it is preferable to use 

a2-2 to determine the viscosity and surface tension, rather than the simplified formula for a2-1 which 

neglects higher order oscillations. We illustrate the discrepancy by calculating the DST from both a2-2 

and a2-1. The respective surface tensions are 44.1±0.5 mN m-1 and 48.4±0.5 mN m-1; the difference 

between the two values is well outside the calculated errors, with a2-1 significantly overestimating the 

DST.  

 

 

FIG. 9. Sequence of images of an 18.8-µL drop of a GF-3 suspension with a time interval of 1.5 ms between frames. 
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FIG. 10. 2nd and 4th order of oscillation amplitude of GF-4 suspension droplet. , a2-1 (open circle), a2-2 (solid circle) and a4 

(open triangle). The 4th order results were offset for clarity. The dashed line is the zero for the 4th order mode, shown offset 

for clarity.  

The surface tension and viscosity for the four griseofulvin formulations obtained from a2-2 and Eqs. 

(2)-(4) are listed in TABLE V. As Tween 80 in suspensions initially (within a second) is not an 
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important factor in lowering the DST, we expect that the DST of all four suspensions on the measured 

timescale will be determined by the surface activity of the HPC and have a value of 44.5±0.5 mN m-1 

as measured in Sec. 2.4. The surface tensions from the oscillating drop measurements are in 

reasonable agreement with this value for GF-1 and GF-4. However, for the drops with higher solid 

loading suspension (GF-2 and GF-3), the OD measurements give surface tensions up to 3.5 mN m-1 

higher. 

TABLE V also lists the steady-state viscosities at a low shear rate (0.1 s–1) and at a high shear rate 

(1000 s–1) of these strongly shear-thinning materials. The transient viscosities of all four suspensions 

are close to the high shear viscosities and one to three orders of magnitude less than the low shear 

viscosities. We note that according to the measured viscosity, the Ohnseorge number varies from 0.08 

(GF-1) to 0.15 (GF-2). According to Prosperetti’s analysis, the neglect of vorticity will lead to a 

systematic error of much less than 30% in the determination of the viscosity, even in the worst case 

(GF-2). We have neglected the role of elasticity (G′) on the shape oscillations, to which we will return 

at the end of the discussion. 

TABLE V. Dynamic surface tensions and viscosities of Griseofulvin suspensions. 

Steady-state Oscillating drop 

Sample 
Density  

/kg m-3 
µ @ 0.1 s-1 

/mPa s 

µ @ 1500 s-1 

/mPa s 
σ /mN m-1 µ /mPas 

GF-1 1028 0.27×103 23 43.0±0.5 23±1 

GF-2 1078 9.3×103 39 47.9±0.7 44±2 

GF-3 1062 3.8×103 30 47.0±0.7 36±2 

GF-4 1040 17×103 31 44.1±0.5 30±1 

3.4 Non-Newtonian pL droplets 

The sample solution for inkjet applications is a commercial formulation used in the printing of 

light-emitting displays. It is an aqueous suspension of 0.7 wt% PEDOT:PSS containing 0.06 wt% of 

the surfactant Dynol 607. The fluid was jetted at 21°C from a piezoelectric MicroFab print-head with 

a nominal diameter of 40 µm. The drop speed was about 4 m s-1, towards the lower end of speeds used 

in commercial processes. Figure 11 shows the oscillation curves of a droplet 52.6 µm in diameter 

taken at frame rate of 1 MHz. Given the limited number of frames we can record, we commenced 
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measurement about 50 µs after drop formation, when the ligament had fully recoiled and the 4th order 

oscillation had been damped to noise level. Consequently, we analyse the oscillation with the simpler 

form, a2-1 = (D1–D2)/(3r0). The oscillation amplitude when we start recording is less than 5% of the 

drop radius, well within the linear regime. The best fit of the experimental data to a damped sine 

function yields T = 36.6±0.1 µs and τ = 37.5±1.2 µs. Thus at 1 MHz frame rate, we can follow just 

under 3 full periods of oscillation. The dynamic surface tension and transient viscosity from Eqs. 

(2)-(4) are 68 ± 3 mN m–1 and 3.7 ± 0.4 mPa s, respectively. Note that these are average values over 

the time period of 50–150 µs after drop formation. The DST is much higher than the equilibrium 

value of 30 mN m-1. The transient viscosity is close to the high-shear viscosity (3.5 mPa s at a shear 

rate of 5×104 s-1) and much lower than the low-shear viscosity (25 mPa s at 1 s-1).  
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FIG. 11. Oscillation amplitude, a2-1, of the fundamental mode for an 0.7% PEDOT:PSS solution. The line is a best fit to Eq. 

(9). 

4. Discussion 

4.1 Droplet oscillation in Newtonian fluids 

The simplest model that can be used practically to model the free-oscillation of viscous drops is that 

of Lamb, in which the oscillation frequency and decay rate are given by Eqs. (2)-(4). Consequently, 

the surface tension and shear viscosity (both taken as constants) can be deduced from experimental 

measurements of the decay of the fundamental (l = 2) oscillation. Even for Newtonian fluids, however, 

there is a question of whether we can neglect higher-order oscillation modes, use a linear theory or 

neglect vorticity. For non-Newtonian formulations, additional complexities may arise from bulk 
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viscoelasticity and surface rheology. Consequently, it is important to validate our methodology first 

with Newtonian fluids before proceeding to real formulations with complex rheology. 

 Our measurement protocol, which measures the polar and equatorial dimensions of the drop, is 

sensitive only to even order modes of oscillation (l = 2, 4, …). The higher the order, the more rapidly 

the modes are damped (Eq. (3)). In particular, we note that the l = 6 mode is damped 2.4 times faster 

than the l = 4 mode so measuring the amplitude of the l = 4 mode will tell us when higher order 

modes may be safely neglected. We used two different formulae to determine the (time-varying) 

amplitude, a2, of the fundamental mode, one of which allowed for the l = 4 oscillation and one which 

neglected it. We also measured the amplitude of the 4th-order mode, a4. We found that for Newtonian 

fluids of both µL and pL drops, the fourth-order oscillation rapidly fell to noise level and that there 

was no significant difference between the two methods of analyzing the fundamental mode. 

For the µL drops, the initial amplitude of oscillation (after retraction of the ligament following 

break-off of the drop) is less than 10% of the drop radius, so the linear theory is expected to work well.  

For the pL drops, we tested initial amplitudes up to 25% of the drop radius and found that the linear 

theory still gave a good fit to the experimental data with surface tensions and viscosities in agreement 

with the equilibrium values. This result also agrees with the conclusion of Becker et al. that nonlinear 

effects were most evident for higher oscillation modes (l > 2).16 

 The neglect of vorticity in Lamb’s analysis was investigated by Prosperetti,4 who showed that the 

irrotational approximation only held at low Ohnesorge numbers, Oh < 0.1. For Oh = 0.2, Lamb’s 

formula overestimates the viscosity by about 30%. For the µL drops, we obtained good agreement 

between the shear rheometer and the oscillating drop (using the irrotational approximation) when Oh 

< 0.1 but at higher viscosity (Oh = 0.17) the OD method underestimated the shear viscosity by a 

quarter, in qualitative agreement with Prosperetti’s predictions.  

If we take Oh = 0.1 as the measurement upper limit for the use of the Eqs. (2)-(4), we obtain the 

constraint that the decay time τ should be ≥ 0.9T. Solutions with higher values of Oh can still be 

measured, but the viscosity derived from Eq. (3) is only a qualitative guide – which may be all that is 

needed to distinguish between the high and low-shear behavior of non-Newtonian fluids. The 

viscosity cannot, however, be increased without limit. There is a critical Ohnesorge number of 0.57 
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where the oscillation frequency becomes zero and one no longer has an oscillating drop (Eq. (4)). 

The lower limit on Oh is set more by practical than theoretical constraints. If τ >> T, then one 

needs to observe a large number of oscillations in order to determine τ accurately, which leads to a 

number of technical problems associated with the large field of view (and hence low pixel resolution), 

evaporation of volatile fluids during the measurement time, or the limited distance between the nozzle 

and the sample (when measurements are made on working machines). Low viscosity drops are also 

more prone to long-lived, high-order oscillations and non-axisymmetric deformations arising from 

asymmetric detachment (cf. ‘tail-hooking’ in inkjet printing). For ease of study, we recommend 

working with Oh > 0.03, i.e. τ < 3T. Figure 12 plots the viscosities corresponding to Oh = 0.03 and 

0.1 as a function of drop size, for a typical surface tension of 45 mN m-1 and density of 1×103 kg m-3. 

For fundamental studies, the nozzle size should be selected so that the expected value of the fluid 

viscosity lies between the two curves. For practical applications, the viscosity will be dictated by the 

application. The viscosities in inkjet printing may exceed the upper line in Fig. 12, in which case 

Lamb’s equations will only give approximate values. Corrections for higher Oh are given in ref. 18.  
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FIG. 12. Lower (dashed line) and upper (solid line) limit of viscosity of fluid for OD measurements for a surface tension of 

45 mN m-1 and density of 1×103 kg m-3 as a function of drop radius, r0. 

4.2 µL drops of a pharmaceutical suspension 

Having validated our experimental methodology on Newtonian fluids, we applied the technique to 

two complex fluids of industrial relevance. The first is a suspension of an active pharmaceutical 

ingredient (API) for use in the manufacture of pharmaceutical tablets by the LDT process. Four 
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formulations with a mass fraction of API between 5 and 20% were studied. All four suspensions 

exhibit strong shear thinning, with a low-shear (0.1 s–1) viscosity of 0.3–20 Pa s and a high shear 

viscosity around 0.03 Pa s. Each suspension contains the surface-active polymer, HPC, at a high 

concentration (> 5wt%), so we would expect the dynamic surface tension (DST) to be close to the 

equilibrium value of 44.5 mN m–1, which is indeed what we found experimentally from analysis of 

droplet oscillations. The higher order oscillations were more pronounced for the pharmaceutical 

suspensions than for the Newtonian HEC solutions and it was necessary to allow for the fourth-order 

mode in calculating the fundamental amplitude of oscillation, a2. The first 5 ms after drop break-off 

are also likely to have a significant influence from modes with l > 4.   

For the two formulations with the highest concentrations of the API (GF-2 and GF-3), the DST is 

3 mN m–1 higher than the equilibrium value, which is a significant difference based on our estimated 

errors. The suspension with the highest low-shear viscosity (GF-4), however, shows good agreement 

between the dynamic and equilibrium surface tensions. The reason for the small discrepancy for GF-2 

and GF-3 is unclear. 

In measurements of DST, reference is often made to the ‘surface age’ so it is helpful to consider 

what we mean by surface age in the context of OD measurements. We first estimate the mean surface 

expansion rate, θ , during drop formation from the surface area, A0, of a pendant drop of 8 mm2 to a 

full drop at break-off of A = 32 mm2 occurring over a growth period of about 40 ms, i.e. θ = 

ln(A/A0)/∆t ≈ 34 s-1. For a steady-state expansion, the surface age is given approximately by 1/(2θ).23 

Consequently the surface age for a freshly created drop is ~15 ms. Once the drop has been formed, the 

percentage of newly created or destroyed surface (upon deviation from spherical) is small, so the 

surface age evolves at a similar rate as real time. The experimental measurements (see Fig. 10) were 

acquired from 2 to 30 ms after drop break-up i.e. at a surface age of approximately 17–45 ms. The 

average surface age corresponding to our measurement of the DST is thus about 30 ms. Turning to Fig. 

5, we see that at surface age of 30 ms, the surfactant does not affect the DST of HPC solutions.  

In order to understand the transient viscosity data, we consider the shear history of the fluid from 

inside the nozzle to the oscillating droplet. On the assumption of parabolic flow inside the nozzle, the 

average shear rate during the ejection of the drop is ~ 1×103 s-1. Consequently, the fluid viscosity is 

close to the high shear rate plateau in Fig. 3(a) (µ ~ 30 mPa s). After the fluid leaves the nozzle, the 

droplet is no longer subject to wall stress and the shear rates inside the oscillating droplet are rather 



26 
 

low: an estimate of the velocity gradients inside the oscillating drop give shear rates well below 1 

s–1.24 The corresponding viscosities under steady shear are 0.1–10 Pa s. Figure 4 gives information 

about the thixotropy of the fluid. Although there are no reliable measurements for the first 200 ms 

after the transition from high to low shear in the rheometer, it is clear that the time taken to rebuild the 

network of colloidal silica (many seconds) is long compared to the droplet age in the OD experiment 

(~ 30 ms).The suspension viscosities measured by the OD method agree to within experimental 

precision with the high-shear viscosities measured in the shear rheometer. They are much lower than 

the low-shear viscosities. They are also lower than the dynamic viscosity, µ′, of ~ 200 mPas measured 

by oscillatory rheology for GF-2, -3 and -4 at an oscillation frequency of 200 rad s-1, which 

corresponds to the oscillation period of the droplets of the order of 30 ms. The most probable 

explanation for these results is that the network of colloidal silica that is responsible for the high 

viscosity at low shear rates is destroyed in the high-shear environment of the nozzle and does not have 

time to rebuild on the timescale of the OD experiment.  

The practical relevance of this observation is that behavior of the droplet during a LDT tablet 

printing process and impact and spreading on the pharmaceutical tablet (typically < 20 ms after drop 

formation) will be characterized by the high shear viscosity of the suspension and it is therefore this 

property that needs to be measured in formulating a new drug suspension. 

4.3 pL droplets of an inkjet formulation for organic electronics 

The second complex fluid we studied is an aqueous suspension of an organic electronic material 

(PEDOT:PSS) used in the manufacture of displays by inkjet printing. The formulation also contains a 

nonionic surfactant as a dispersant and wetting aid. The drop radius is two orders of magnitude 

smaller than those used in the LDT process and the oscillation period is three orders of magnitude 

shorter. This suspension is also shear-thinning, with the shear viscosity decreasing by an order of 

magnitude between shear rates of 1 s–1 and 104 s–1. There are two salient results from the OD 

measurements: first, the DST is much closer to that of pure water than to the equilibrium surface 

tension of the suspension; second, the transient shear viscosity is characteristic of the high-shear 

viscosity, not the low-shear viscosity. We discuss each of these results in turn. 

  Dynol 607 (2, 5, 8, 11-tetramethyl 6 doecyn-5,8-diol ethoxylate) is a non-ionic gemini surfactant  

with a molecular weight of 310 g mol-1. Its solubility in water is 0.032 wt%,25 corresponding to a 
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solution concentration of about 1 mM. It does not form micelles.25 The amount of Dynol 607 (0.06%) 

in the formulation exceeds the solubility limit, but some of the surfactant will be used to stabilise the 

PEDOT:PSS particles. For a nonionic surfactant with two branched chains, the maximum surface 

excess (corresponding to the minimum surface tension) is estimated to be Γmax ≈ 2 × 10-6 mol m-2. If 

adsorption is diffusion-controlled, the diffusion time τd is defined as the mean time taken by a 

surfactant molecule to diffuse a distance given by the depletion length Γ/c,26 where c is the bulk 

surfactant concentration:  
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Γ

D
dτ

.    (10)  

A typical diffusion coefficient, D, for a low molecular weight surfactant in water is D = 5 × 10-10 m2 

s-1, giving a value τd = 4 ms. The time taken for a freshly formed surface to reach equilibrium is about 

5τd, i.e. ~20 ms. The surface expansion rate during drop formation is of the order of 105 s-1, giving a 

surface age of the freshly created drop of < 5 µs, which is negligible when compared to the drop flight 

time. The average surface age during the OD measurement is ~ 0.1 ms which is much shorter than 

surfactant diffusion time, τd = 4 ms. Consequently, on the time-scale of the measurement, the 

surfactant does not have time to form an appreciable fraction of a monolayer and the resulting DST is 

close to that of pure water.      

Within the nozzle, the PEDOT:PSS suspension is subject to high shear rates (>105 s–1) and the 

droplet then emerges into a low shear environment. The velocity gradients within the oscillating drop 

are small (≤ 10 s–1). The angular frequency of the oscillation is ~ 105 s–1 so the Cox-Merz Rule would 

predict a high shear viscosity. Unfortunately, we have no measurements on the thixotropy of the 

PEDOT:PSS suspensions on any timescale of relevance to inkjet printing. The PEDOT:PSS viscosity 

measured by the OD method is in agreement with the high rather than low shear viscosity.  

4.4 Role of elasticity 

Both the griseofulvin and PEDOT:PSS suspensions are viscoelastic at low shear. We have focused on 

the viscous contribution to the droplet oscillation, but what of elasticity? There is only a limited 

amount of work on elastic effects on drop oscillation. In 2001, Khismatullin and Nadim provided a 

detailed analysis of drop oscillations for the Jeffreys constitutive equation,6 though most of the 

analysis concerned the simpler Maxwell Model. Recently, Brenn and Teichtmeister extended the work 
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of Khismatullin and Nadim with the objective of using the OD method to determine the deformation 

retardation time, λ2, which appears in the Jeffreys equation.18 While there is, a priori, no good reason 

why either of these models should accurately represent the colloidal suspensions studied here, the 

analysis of Khismatullin and Nadim does provide some useful insights into the present results. These 

authors define their Reynolds number as Re=ρΩlr0
2
/µ and divide their asymptotic analysis into the 

high and low Re limits. For our fluids, Re = 30–40 >> 1 and Oh ~ 0.1 for both the griseofulvin and 

PEDOT:PSS suspensions (using the high-shear viscosity for µ). Khismatullin and Nadim numerically 

evaluated their expressions for oscillation frequency for a particular high Re (~241) and showed that 

the frequency was only very weakly dependent on the Deborah number De = λΩl (where the 

relaxation time λ = µ/G′ in the Maxwell model). Consequently, elasticity does not significantly affect 

our determination of the dynamic surface tension from Lamb’s formula.  

The influence of elasticity on the decay rate is more significant: for a Maxwell fluid the decay 

time increases substantially with increasing De even at high Re , 6  

,
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                                                      (11) 

Since it is only the portion of the stress that is in phase with the velocity that dampens the motion and 

therefore the viscosity that appears in the Lamb solution is µ′, the real part of the complex viscosity. 

Consequently, for a Maxwell fluid the neglect of elasticity will underestimate both the low frequency 

viscosity and the modulus of the complex viscosity by (1+De2). A quantitative application of 

viscoelastic models to the data from our suspensions is complicated by the uncertainty in the 

interpretation of the relaxation times (λ1 and λ2, in the Jeffreys equation) for fluids where the 

non-Newtonian and thixotropic behavior arises from the breakdown and subsequent recovery of a 

particle network. The Jeffreys equation may not be the appropriate constitutive relationship. Fig. 4 

shows that the time taken to rebuild the network of colloidal silica is long compared to the timescale 

in the OD experiment. Thus an interpretation of the OD data that neglects the effects of elasticity is 

consistent for the drug formulation in this paper, but there is clearly a need to explore further the 

influence of viscoelastic effects on drop oscillation in fluids that reversibly gel.18  

5. Conclusion 
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The oscillating drop method provides a direct measurement of the dynamic surface tension and 

transient shear viscosity in drops formed in manufacturing processes involving nozzles or jets. We 

have used Newtonian fluids to validate experimental rigs for measuring oscillations of both µL and pL 

drops (corresponding to mm and 40-µm diameters) and established the range of Ohnesorge numbers 

(µ/(ρσr0)
1/2) over which accurate determination of the constitutive properties is practical. These limits 

correspond to a decay time, τ, for oscillation that is between 0.9 and three times the period of 

oscillation, T. The timescale for dynamic property measurement ranges from 10-5 to 10-2 s for drop 

volumes in the pL to µL range. We have shown that the oscillating drop method can also be applied 

successfully to complex fluids, showing strong shear-thinning and, in one case, a yield stress. The 

dynamic surface tension of the droplets can be understood in terms of the composition of the fluids 

and the rate of mass transfer of surface-active species to the nascent surface of the drops. The transient 

viscosities of the droplets were in all cases characteristic of the high shear rather than low shear 

rheology. 
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