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The behavior of electron-rich alkenes in rhodium-catalysed C-H activation/annulation reactions is investigated. Vinyl acetate

emerges as a convenient acetylene equivalent, facilitating the synthesis of fifteen 3,4-unsubstituted isoquinolones, as well as select

heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.

Isoquinolin-1(2H)ones are of significant interest, due to

their prevalence in alkaloidal natural products and synthetic

therapeutic agents.
1
Most routes for the assembly of the heter-

ocyclic skeleton require ortho-difunctionalised benzene start-

ing materials from which the heterocyclic ring is elaborated.
2

A more general and efficient approach would involve annula-

tion of the heterocyclic ring to a monofunctionalised arene

starting material. Examples of such approaches include intra-

molecular Friedel-Crafts reactions of benzamidoalkyl acetals,
3

thermal rearrangement (>250 °C) of cinnamoyl azides,
4
or

multi-step approaches involving reaction of ortho-lithiated

benzamide derivatives with -dicarbonyl compounds.
5

Recent advances in C-H activation/annulation reactions
6
fa-

cilitate the construction of a variety of benzo-fused heterocy-

cles by insertion of alkenes or alkynes into cyclometallated

intermediates generated from educts such as benzamides,
7,8

aryl imines,
9
and anilides.

10
Specifically relevant to the current

study, annulation of benzamides with alkynes under rhodium

catalysis in the presence of an external oxidant (usually two

equivalents of a copper(II) salt) generates isoquinolinones.
7

This approach is characterised by the relatively harsh condi-

tions required for C-H activation and the generation of large

quantities of metal waste, and has been superceded by the

introduction of benzoyl hydroxamic acids and derivatives as

substrates by Fagnou and Glorius.8 Here, the hydroxamate

function acts both as a superior directing group for C-H activa-

tion (facilitating milder reaction conditions and the use of less-

reactive alkene substrates) and an ‘internal’ oxidant, whereby

cleavage of the N-O bond replaces the use of external co-

oxidants in maintaining the active rhodium(III) oxidation state.

To date, the alkynes and alkenes used to intercept the ar-

ylmetal species in the aforementioned reactions have been

either electronically neutral or electron-deficient. The only

exception to this is a single example of the annulation of an

enol ether (dihydrofuran) to N-(pivaloyloxy)benzamide under

rhodium(III) catalysis.
8b

We were inspired to investigate the

behaviour of electron-rich vinyl esters, enol ethers and en-

amides more generally, since (depending on the regiochemical

preferences of the annulation reactions) these simple starting

materials could be employed as new enolate or acyl anion

equivalents in C-H activation chemistry. We describe the

outcomes of this work below, in which vinyl acetate, a cheap

bulk chemical, behaves as an acetylene equivalent to facilitate

the synthesis of a range of 3,4-unsubstituted isoquinolin-

1(2H)ones and related heterocycle-fused pyridones.

We first examined the behavior of vinyl acetate with a range

of benzoyl hydroxamate derivatives 1-4a, based on the reac-

tion conditions adopted by Fagnou and Glorius.
8b-c

As shown

in Table 1, the reaction of benzohydroxamic acid 1 produced

isoquinolone 5a in 26% yield, but the reaction of N-

methoxybenzamide 2 failed to produce any of the expected

product. Both N-(acetoxy)- and N-(pivaloyloxy)benzamide (3

and 4a) reacted to give isoquinolone 5a with encouraging

yields of 79% and 69% respectively (entries 3 and 4, Table 1).

We suspected therefore that in the reaction in entry 1, sub-

strate 1 was being acylated by vinyl acetate, generating the

more reactive substrate 3 in situ. A subsequent
1
H NMR study

confirmed the formation of N-(acetoxy)benzamide 3 in the

reaction mixture prior to the appearance of the isoquinolone 5.
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Table 1. Isoquinolone formation by annulation with vinyl

acetate.
a

entry reactant R
temp
oC

isolated

yield %

conversion
1H NMR

5a 6 %

1 1 H 60 26 17

2 2 Me 60 0 0

3 3 Ac 60 79 15

4 4a Piv 60 69 11

5 4a Piv 25 87b 0

6 4a Piv 45 87 0

7c 4a Piv 45 86c 0

aSee Supporting Information. b72 h. cUsing vinyl laurate in

place of vinyl acetate.

We focused on pivaloyl hydroxamate 4a for further optimi-

zation. A significant by-product observed in entries 1, 3 and 4

was methyl phenyl carbamate 6, arising from Lossen rear-

rangement of the N-benzoyl hydroxamates and trapping of the

resulting isocyanate by methanol. Control experiments

showed this reaction only occurred in the presence of

[Cp*RhCl2]2, suggesting the rearrangement of an N-metallated

hydroxamic acid intermediate.
11

The Lossen rearrangement

was substantially retarded at lower temperatures, and carrying

out the annulation at r.t. over 72 hours or, more usefully, at 45
o
C for 16 hours, gave in each case an 87% yield of isoquino-

lone 5 with no traces of 6 visible in the crude NMR (entries 5,

6). Less volatile esters such as vinyl laurate may be substituted

for vinyl acetate (entry 7), but substitution on the vinyl group

was less well tolerated (see Supporting Information).

The product isoquinolone 5a presumably arises by elimina-

tion of acetic acid from a dihydroisoquinolone intermediate,

and is the synthetic equivalent of a direct hydroxamate/alkyne

annulation reaction using acetylene as the alkyne. To our

knowledge, the use of gaseous alkynes in C-H activa-

tion/annulation reactions has not been investigated. Given the

hazards and operational difficulties associated with such a

process, the availability of a cheap and convenient synthetic

equivalent such as vinyl acetate would be of significant utili-

ty.
12

Importantly, the potential value of our process is under-

scored by the wide occurrence of 3,4-unsubstituted isoquin-

olones in biologically active materials.
1
We therefore sought to

establish the scope of the reaction utilising a broad range of

substrates, the results of which are summarised in Scheme 1.

Under the optimized conditions, hydroxamic esters 4b-d,

bearing electron-withdrawing groups reacted to give the corre-

sponding isoquinolones in excellent yields ranging from 71-

99% (5b-d). Halogens were well tolerated, with 6-iodo-, bro-

mo- and fluoroisoquinolones 5e-5g being formed in reasona-

ble to good yields (68-83%). Interestingly, introduction of an

electron-rich para-methoxy group resulted in a low yield of 5h

(31%) and significant quantities of the carbamate arising from

Lossen rearrangement were seen. Carrying out the reaction at

lower temperature/higher concentration returned a 63% yield.

Scheme 1. Substrate scope of the C-H activation/-

annulation with vinyl acetate.
a, b

aSee Supporting Information. bMeOH (0.4 M), 30 °C. cThe regioi-

someric ratio was determined by 1H NMR analysis.

In order to investigate regiochemical effects in non-

symmetrically-substituted substrates, compounds 4i-4o were

prepared. As expected, in the reactions of substrates 4i and 4j,

C-H activation occurred at the less-hindered position para-

rather than meta- to the phenyl/N-Boc substituent, giving 5i

and 5j as single regioisomers. However, the meta-methoxy

derivative 4k gave a 98% yield of a 2:3 mixture of regioiso-

mers 5k(i):5k(ii), while the protocatechuic acid derivatives 4l

and 4m furnished exclusively the contiguously-substituted

regioisomers 5l and 5m; the higher selectivity presumably

reflects the reduced steric demands of these cyclic

ethers/acetals. The reaction of meta-fluorinated substrate 4n

produced an inseparable mixture of regioisomers favouring the

contiguously substituted product (71%, 5n(i):5n(ii), 2:1). The

ortho-directing effect of strongly electronegative substituents

on rhodium-mediated C-H activation has been noted previous-

ly
13

and in this case is almost certainly a kinetic preference

given the likely irreversibility of the C-H insertion step under

these conditions.
8b

Consistent with the requirement for a

strongly electronegative substituent to exert this effect, substi-

tuting the fluorine for a bromine atom gave predominantly the

7-bromoisoquinolone by reaction at the less-hindered site.

The utility of the approach was further demonstrated in the

synthesis of isoquinolone 5p, an intermediate in the synthesis

of the hepatitis C protease inhibitor MK-1220.
14

The four-step

discovery chemistry route to 5p involves a high temperature

(250
o
C) rearrangement of a cinnamoyl azide, and proceeds in
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overall 35% yield. The optimized process route delivers the

material in overall 55% yield but requires five steps. By ap-

plication of our standard conditions, commercially-available

acid 7 was converted to the desired isoquinolone in an opti-

mised 85% yield as a single regioisomer in just three steps

(Scheme 2). Overall, the annulation reaction was successful

across 16 substrates with an average yield of 77%.

Scheme 2. Synthesis of intermediate for MK-1220.
14

aSee Supporting Information for conditions.

Having established a robust synthetic approach to isoquin-

olones, we attempted to apply the methodology to heterocyclic

systems (Scheme 3). Reactions of (benzo)thiophene deriva-

tives 8a and 8b proved successful, albeit in lower yields com-

pared with the benzenoid systems (9a 49% and 9b 64%).

Benzofuranyl and N-methylindolyl substrates 8c and 8d dis-

played poorer reactivity, the former requiring 48h to reach

completion in 38% yield, and the latter giving only 16% of 9d.

A recent study highlighted large rate differences in rhodium-

mediated C-H activation reactions of various (hetero)aryl

imines, and similar variance appears to apply to substrates 8.
15

Scheme 3. Heterocyclic substrate scope.
a

aSee Supporting Information. bReaction time 48 h.

Nicotinamide derivative 8e returned only unreacted starting

material, as did N-oxide 8f (despite the known enhanced reac-

tivity of such substrates in C-H activation
16
), potentially sug-

gesting detrimental co-ordination of the rhodium. Consistent

with this, the quinoline-3-carboxylic acid-derived 8g, wherein

dative coordination would be disfavoured by the C8 hydrogen,

gave benzo[b][1,6]naphthyridin-1(2H)-one 9g in 51% yield.

We were interested to probe the regiochemistry of the annu-

lation reactions. Since we had been unable to observe any

intermediates en route to the isoquinolones, we studied the

reactions of vinyl ethers, in the hope that aromatizing elimina-

tion might be slowed. Indeed, reaction of butyl vinyl ether led

to a 3:1 mixture of dihydroisoquinolones 10a and 10b (Table

2, entry 1; regiochemistry confirmed by NOESY studies).

Table 2. Alkene substrate scope.
a

entry alkene products

1b

2

3

4

aSee Supporting Information. b Reaction at 30 oC with 5 equiva-

lents of alkene. c Conditions as described by Fagnou et al.8b d

NMR yield using internal standard (mesitylene).

The predominant formation of benzylic ether 10a rather

than aminoacetal 10b was surprising in view of Fagnou’s re-

port that dihydrofuran gave the aminoacetal 11b as the sole

product.
8b
We therefore repeated Fagnou’s reaction, attaining a

near identical yield of the reported single regioisomer, but

whose identity was shown by NOESY and X-ray crystallo-

graphic studies (see Supporting Information) to be benzylic

ether 11a. Thus, after structural reassignment of Fagnou’s

result, the regiochemical behaviour of enol ethers is such as to

consistently favour the benzylic ether products. However, the

reaction of N-Boc-dihydropyrrole gave hemiaminal 12 as a

single regioisomer, whose structure was also confirmed crys-

tallographically (see Supporting Information). This suggests

the regiochemistry is not solely governed by electronic factors.

While reaction of selectively isotopically-labelled vinyl ace-
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tate would allow unambiguous assignment of the regiochemi-

cal outcome, such compounds are not known in the literature

and despite extensive efforts we were unable to identify a suit-

able synthetic route. However, we prepared O-vinyl-N,N’-

diisopropyl carbamate 13a which, although less reactive than

vinyl acetate, did produce isoquinolone 5a in 49% yield. The

selectively monodeuterated variant 13b (prepared by directed

lithiation of 13a and deuterium quenching; 87% D-

incorporation), gave a reproducibly poor yield of 5a but we

were able to confirm spectroscopically incorporation of deu-

terium almost exclusively at the C3-position (85% D-

incorporation; >97% regioselectivity). This suggests two

competing factors govern the regiochemistry of reaction with

electron-rich alkenes (Figure 1): electronic factors favour for-

mation of intermediate 14 by migration of rhodium to the

more electron-rich carbon of enol ethers. However, where

coordinating groups are present on the heteroatom, the regio-

chemistry is reversed, possibly by formation of a competing

co-ordinatively saturated complex 15.
17

Figure 1. Regiochemical preferences in alkene insertion.

In summary, a facile method for the preparation of 3,4-

unsubstitued isoquinolones by rhodium-catalysed C-H activa-

tion/annulation has been established, using vinyl acetate as a

cheap and safe alternative to acetylene. The reaction is highly

efficient and tolerant of a broad range of aromatic substituents.

The regiochemical preferences of arylrhodium complexes for

insertion to electron-rich alkenes has been probed for the first

time. The synthetic utility of vinylic esters as acetylene

equivalents will have broader applicability in C-H activation

chemistry and further studies will be reported in due course.
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