
This is a repository copy of Runtime virtual machine recontextualization for clouds.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/82336/

Version: Accepted Version

Proceedings Paper:
Armstrong, D, Djemame, K, Espling, D et al. (2 more authors) (2013) Runtime virtual 
machine recontextualization for clouds. In: Caragiannis, I, (ed.) Euro-Par 2012: Parallel 
Processing Workshops. Revised Selected Papers. Euro-Par 2012, 27-31 Aug 2012, 
Rhodes Islands, Greece. Lecture notes in computer science . Springer , 567 - 576. ISBN 
978-3-642-36948-3 

https://doi.org/10.1007/978-3-642-36949-0_66

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Runtime Virtual Machine Recontextualization

for Clouds

Django Armstrong1, Daniel Espling2, Johan Tordsson2, Karim Djemame1, and
Erik Elmroth2

1 University of Leeds, United Kingdom,
2 Ume̊a University, Sweden

Abstract

We extend cloud application contextualization, i.e. the dynamic configuration
of a VM upon initialization, to leverage the full potential of cloud hosting by
introducing the idea of recontextualization. We present a runtime cloud recon-
textualization mechanism to allow VM images and instances to be dynamically
re-configured without restarts or downtime. The mechanism is applicable to all
aspects of configuring a VM from virtual hardware to multi-tier software stacks,
without the need to customize the guest VM. We present our work via a use case:
the reconfiguration of a cross-cloud migratable monitoring service in a dynamic
cloud environment. We discuss the details of the interoperable recontextualization
mechanism, its architecture and demonstrate a proof of concept implementation
through a performance evaluation. The results of this evaluation show that the
solution performs adequately with an overhead of 18% of the total migration
time, illustrating the feasibility of the solution.

1 Introduction

Infrastructure as a Service (IaaS) clouds are commonly based on virtualized
hardware platforms executing and orchestrating self-contained Virtual Machines
(VMs), which are comprised of multiple virtual devices. Several VM instances
can be started using the same master disk image and each new VM instance is
uniquely configured, contextualized, with instance specific settings prior to (or at
the early stages of) VM execution.

The life-cycle of a cloud application is comprised of three individual phases
as shown in Figure 1. The Construction phase refers to the development of a
cloud application making use of platform services and dividing that application
into a set of VM images. In the Deployment phase a constructed application is
deployed on to suitable infrastructure and finally in the Operation phase the
cloud application is executed. The application can be configured with general
settings in the Construction phase and contextualized with settings specific to
the provider environment in the Deployment phase. Recontextualization offers
dynamic reconfiguration of any kind of setting in the Operation phase.

Recent work on IaaS systems have a lot in common with the vision of
autonomic computing, as outlined by Kephart and Chess [9]. One of the major



OperationDeploymentConstruction
Develop
Compose
Configure

Select Provider

Contextualize
Deploy

Optimize / Schedule
Execute
Recontextualize

Fig. 1. The life-cycle of a cloud application.

aspects of autonomic computing that has yet to be realized is self-configuration,
the automated configuration and adjustment of systems and components. Our
earlier work on contextualization [1] presents a mechanism for boot-time self-
configuration of VMs. This work extends state of the art and our earlier efforts
by introducing runtime recontextualization, enabling adaptation of VM behavior
in response to internal changes in the application to which the VM belongs or to
external changes affecting the execution environment of the VM.

The contributions of this paper are: i) The development of an architecture
and mechanism for the purpose of recontextualization. ii) An implementation
and evaluation of a recontextualization system. iii) Practical experiences with
hypervisor interoperability. The rest of this paper is organized as follows: Section 2
outlines the problem to be solved, a set of requirements and an illustrative scenario
of recontexualization for application monitoring. Section 3 discusses different
approaches considered for runtime recontextualization. Section 4 presents our
proposed solution for recontextualization of VMs including an evaluation of the
approach. Finally, a conclusion and future work are presented in Section 5.

2 Problem Statement and Requirements

A motivational factor behind the need for runtime recontextualization stems from
VM migration in clouds [3,14]. Using migration, a VM can be transferred from
one physical host to another without explicitly shutting down and subsequently
restarting the VM [4]. The entire state of the VM, including e.g., memory pages,
are transferred to the new host and the VM can resume its execution from its
state prior to migration. As a consequence, no contextualization is triggered
again when the VM is resumed.

As presented in [6], there are several different cloud scenarios:

– Bursting - The partial or full migration of an application to a third party
IaaS provider, for example when local resources are near exhaustion.

– Federation - The migration of an applications workload between a group
of cooperating IaaS providers, e.g., when a single provider’s resources are
insufficient for application redundancy.

– Brokering - The migration of an application’s VMs, e.g., for the purpose of
maintaining an agreed QoS when a broker is used to select appropriate IaaS
providers.



In all these cloud scenarios VM migration is a necessity, e.g., for the purpose
of consolidating resources and maintaining levels of Quality of Service (QoS).
These scenarios can be used to define the requirements for any potential recontex-
tualization mechanism. Using them we have identified the following requirements
as the most important:

i. A triggering mechanism for recontextualization on VM migration.
ii. A secure process to gather and recreate contextualization data after migration.
iii. A hypervisor agnostic solution that maintains IaaS provider interoperability.
iv. An approach that limits the pervasive nature of the solution and minimizes

modifications at the IaaS level.

Each of these scenarios require recontextualization at runtime. In the Bursting
scenario, if an IaaS provider is not obligated to divulge third party providers
used for outsourcing of computational resources, an application may end up
deployed on to a third party’s infrastructure that requires the use of their local
infrastructure services. A dynamic federation of IaaS providers created during
negotiation time that alters during the operation phase requires infrastructure
services to be discovered dynamically. The same is applicable in the case of a
Broker, knowledge of an IaaS provider local infrastructure services is not available
during deployment until after the Broker has selected an appropriate provider.

Specifically, the lack of knowledge on the attributes of an IaaS provider’s local
infrastructure service available during deployment time, motivates our work. An
example of such a service that exhibits configuration issues is application-level
monitoring. In the scenarios, the monitoring service endpoint attribute of an
application is not available for a contextualization system to use to configure
monitoring probes during the deployment phase of a cloud application’s life cycle.
When an attribute is available there is the possibility that it can change over the
operation of the application. These issues motivate the need for a mechanism to
fetch configuration data during application operation and provide new context
to application dependencies, thus recontextualization.

Recontextualization can be used to adapt to any system changes, including
making newly migrated VMs operate properly in the (potentially different) system
environment of a new host and adapt to different application middleware services
at the PaaS level through the dynamic binding of APIs enabling the execution of
site specific code, the latter of which is out of scope for this paper. In the following
section, we illustrate recontextualization with service-level monitoring [7] as an
example scenario.

2.1 Example Scenario

A typical cloud application must be continually monitored during runtime, and a
sample configuration for application monitoring is shown in Figure 2. Monitoring
data can be used for several purposes, e.g., for automatic application scaling or to
assess the likelihood of breaching its Service Level Agreement (SLA). Application
level metrics (also called Key Performance Indicators) are sent from inside the
VM to an external monitoring endpoint for processing.



S
er

vi
ce

 E
nd

po
in

t

Monitoring Service

KPI
Processor

Probe Data

Virtual Machine 1

Monitoring
Probe

Application

IaaS Provider
Virtual Machine 2

Monitoring
Probe

Application

Virtual Machine n

Monitoring
Probe

Application

Application Manager

Fig. 2. Monitoring applications in a IaaS provider.

Each monitoring probe that gathers KPI data must be configured with the
endpoint of the monitoring service. The endpoint can be associated with a IaaS
specific service or a service running at a remote location and depends on what
entity within connected clouds has control over application management. When
deploying to a IaaS provider, the endpoint for the monitoring service is configured
using contextualization in the Deployment phase. However, in a multi-site scenario
the VM may be migrated to another site during runtime, and VMs migrating
from one site to another must therefore be dynamically recontextualized with
this information in the Operation phase.

3 Recontextualization Approaches

As far as we are aware no previous approach supporting recontextualization
exists, but instead several different approaches used for contextualization have
been considered for use in recontextualization. Keahey and Freeman [8] present
fundamental work on contextualization in virtual clusters. Recontextualization is
mentioned but deemed out of scope for their work.

The recontextualization procedure has two major obstacles that have to be
dealt with by any approach; how is recontextualization triggered and where
can the necessary information be found? Below are some alternatives for re-
contextualization, listed and discussed, from the perspective of the above two
challenges.

Contextualized direct addressing is based on a known endpoint address that
is specified in the initial contextualization phase, as described by Armstrong
et al. in [1]. A similar approach is used for Puppet [13], a mass-machine con-
figuration tool for HPC-like environments. During operations, this endpoint
address is queried for the remaining, updated context information. Further-
more, this approach is interoperable and requires no host and hypervisor
modifications, but requires that the end point address is constant when the
VM is migrated to other domains. This approach offers no procedure for
triggering a new phase of recontextualization, and has to rely on periodically
querying the endpoint for updated information.



Hypervisor network proxying also relies on periodically querying an external
endpoint address for context information, but in this method a standard
virtual network address is used and the hypervisor (and associated virtual
network management) is responsible for routing this call to a host specific
endpoint. This approach, used by Clayman et al. in [5], is transparent to
the VM but requires modifications to a hypervisor.

Hypervisor interaction from the guest can be used to offer contextualization
straight from the hypervisor itself, using e.g. a customized API both to react
to changes in context information and to transfer new information. However,
this solution requires modifications both to hypervisor and guest operating
system software and would require considerable standardization to be widely
available, due to compatibility of virtual hardware APIs between hypervisor
technologies.

Dynamic virtual device mounting is based on dynamically mounting virtual
media containing newly generated content in a running VM via the reuse of
existing hypervisor interfaces and procedures [1]. Interoperability is achieved
by reusing existing drivers for removable media such as USB disks or CD-
ROM drives. Recontextualization can be detected by the guest OS by reacting
to events triggered when new USB or CD-ROM media is available.

We find the dynamic virtual device mounting to be the most promising
solution due to the inherent interoperability and support in all major operating
system. The ability to manage virtual devices is also offered by the Libvirt
API [11], inferring that there is fundamental support for these operations in
most major hypervisors. The following section describes our recontextualization
solution in more detail.

4 A Recontextualization Solution

In this section, an implementation of a system for runtime recontextualization is
described, followed by an evaluation to validate the suggested approach. The idea
is to use virtual device mounting techniques in response to migration events and
thus enable automatic self-configuration of newly acquired VMs. The following
subsections discuss the mechanism, architecture, and evaluation in more detail.

4.1 Mechanism

Figure 3 illustrates the recontextualization approach used in the implementation.
Each VM is assigned a virtual CD-ROM device for contextualization on which
the host-specific contextualization data can be found. When a VM is migrated
from one host to another events are triggered by the hypervisor. In response to
these events, the recontextualizer software triggers a detachment of the virtual
device mounted with contextualization information, and once the migration is
completed a new virtual device with context information relevant for the new
host is automatically attached to the VM as it resumes operation after migration.



Virtual Machine

Host A Host B

(1) Detach (3) Attach

(2)

Migrate

Device A

Host A
Context

Device B

Host B
Context

Virtual Machine

Fig. 3. Recontextualization approach overview.

Event support including migrations is present in several hypervisors, including
Xen [2] and KVM [10]. The Libvirt API makes a unified approach to VM
management available and includes event support. An initial version of the
recontextualization system was implemented using KVM with QEMU [12] specific
events and control APIs, and the second version was implemented using Libvirt
to make the solution hypervisor independent. Libvirt provides a number of
event types that can be monitored via a callback: i) Started, ii) Suspended, iii)
Resumed, iv) Stopped, and v) Shutdown. Upon receiving an event callback details
are returned on the specific cause of the event, for example the shutting down of
VM on a host machine triggered by migration terminating successfully.

4.2 Architecture

The architecture of the implemented system is shown in Figure 4. Up-to-date
context data is dynamically bundled as ISO images on the host. The recontex-
tualizer, implemented in Python, manages the attachment and detachment of
virtual CD-ROM devices inside a VM that contain the data held within the
ISO image in response to events from the hypervisor. The Python Libvirt API
bindings are used to access the Libvirtd daemon for the purpose of abstracting
the specifics of the underlying hypervisor and improve interoperability.

Virtual Machine n

Hypervisor (e.g KVM, XEN)

Libvirtd

Recontextualizer

Context Data

HostImage service

ISO
Image

EventAttach
Detach

Fig. 4. Architecture overview.



4.3 Evaluation

A series of tests to evaluate the feasibility of the approach have been performed.
For all tests, Libvirt version 0.9.9 is used to monitor and manage the VMs.
QEMU-KVM version 1.0.50 and Xen version 4.0.0 are used as hypervisors, both
running on the same hardware using CentOS 5.5 (final) with kernel version
2.6.32.24. The hosts used in these tests are on the same subnet, have shared
storage and are comprised of a quad core Intel Xeon X3430 CPU @ 2.40GHz,
4GB DDR3 @ 1333MHz, 1GBit NIC and a 250GB 7200RPM WD RE3 HDD.

The results of the evaluation are shown in Figure ??. The first set of bars illus-
trate the time to migrate a VM from one host to another with recontextualization
running and context data attached, and the second set of columns illustrate
the same migrations with recontextualization turned off and no virtual devices
mounted. The third column illustrates the time spent within the recontextualizer
software during the tests from the first column, measured from when the event for
migration is received in the recontextualizer until the devices has been removed
and reattached. The values shown are the averages from ten runs, and all columns
have error bars with the (marginal) standard deviations which are all in the 0.03
to 0.07s range.

Based on the evaluation we conclude that the recontextualization process
adds about an 18% overhead using either hypervisor compared to doing normal
migrations. For KVM, most of the extra time required for recontextualization
is spent outside the bounds of our component, likely associated with processing
events and extra overhead imposed by preparing migration with virtual devices
attached. In the case of Xen the device management functionality in Libvirt
proved unreliable, and we therefore have to bypass the Libvirt API and rely on
sub-process calls from the recontextualizer to Xen using the xm utility. This
workaround is likely to increase the time needed for recontextualization in the
Xen case.

There are four major phases associated with the recontextualization process.
First, information about the VM corresponding to the event is resolved using
Libvirt when the migration event is received. In the second phase, any current
virtual contextualization device is identified and detached. Third, new contextual-
ization information is prepared and bundled into a virtual device (ISO9660) image.
Finally, the new virtual device is attached to the VM. A detailed breakdown of
the time spent in different phases of recontextualization is presented in Figure ??.
The above mentioned workaround for Xen interactions affects the second and
fourth phase (detaching and attaching of devices), most likely increasing the time
required for processing. In the first and third phases Xen requires significantly
longer time than KVM despite the VMs being managed using the same calls in
the Libvirt API, indicating performance flaws either in the link between Libvirt
and Xen or in the core of Xen itself.

4.4 Practical Experiences

When creating the system a vast number of bugs and shortcomings both with
Libvirt and the underlying hypervisors were experienced. It turned out that



migrating VMs using KVM with USB devices attached periodically caused
the migration to fail without any indicative error of the root cause. It was
discovered after looking through the source code of qemu-kvm (due to a lack of
documentation) that support for migration with USB devices is still to be fully
implemented. To overcome this issue the use of a virtual CD-ROM device as
a replacement was explored. Unfortunately this approach has the drawback of
needing the guest OS to be configured to automatically re-mount the ISO image.
We used autofs within our Debian guest VM for the purpose of testing. For
other operating systems such as Windows that natively support the automatic
mounting of CD-ROMs this would not be a problem. Using this device type in
our system worked with KVM but Xen would not reliably release media mounted
within a VM, causing the recontextualizer to fail in its attempt to provide new
context data. To combat this issue we forced the removal of the entire CD-ROM
device, reattaching another with a different ISO image.

In addition to the above, two further issues were experienced with Libvirt’s
support of Xen regarding events and the detaching of devices. We initially tried
to use a Hardware-assisted Virtualization (HVM) guest but found that Libvirt
would not propagate any VM events from the hypervisor through its API. After
discovering this issue we tried using a Paravirtualised (PV) Xen guest but found
that only start and stop events were available. This has had the negative effect
of altering the logic of the recontextualizer, where by detaching and attaching
devices incurs unnecessary overhead when a virtual machine starts, while for KVM
this only occurs after migration. At the same time an issue was experienced with
forcing the detachment of mounted devices in Xen via the Libvirt API. Support
for the “–force” flag is available in Libvirt but the underlying implementation
does not pass this to the hypervisor. To overcome this problem a workaround
was implemented to issue the detach command directly to Xen via system calls
to the xm command.

5 Conclusion and Future Work

We have shown that recontextualization is a feasible solution to the problem of
using multiple cloud sites concurrently. This has been achieved by selecting an
appropriate mechanism and evaluating its implementation. Our approach, based
on automatic mounting of dynamically generated images as virtual devices, is
highly interoperable supporting a variety of hypervisors and virtually all guest
operating systems. Apart from CD-ROM mounting routines, which are standard
in most operating systems, no custom software is required inside the guest VM
to make the contextualization data available.

Future work includes creating a unified mechanism for contextualization and
recontextualization and integrating the solution with major software projects. In
addition, recontextualization mechanisms for the dynamic binding of PaaS APIs
will be explored. Finally, further studies and improvements on the suggested ap-
proach will be evaluated to reduce the overhead imposed by recontextualization.



6 Acknowledgments

The research that led to these results is partially supported by the European
Commission’s Seventh Framework Programme (FP7/2001-2013) under grant
agreement no. 257115 (OPTIMIS). We would also like to thank Tomas Forsman
for technical assistance and expertize.

References

1. Armstrong, D., Djemame, K., Nair, S., Tordsson, J., and Ziegler, W. To-
wards a contextualization solution for cloud platform services. In Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International Conference
on (2011), IEEE, pp. 328–331.

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neuge-

bauer, R., Pratt, I., and Warfield, A. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev. 37, 5 (2003), 164 – 177.

3. Bradford, R., Kotsovinos, E., Feldmann, A., and Schiöberg, H. Live wide-
area migration of virtual machines including local persistent state. In Proceedings
of the 3rd international conference on Virtual execution environments (June 2007),
ACM, pp. 169–179.

4. Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I.,

and Warfield, A. Live migration of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume
2 (May 2005), USENIX Association, pp. 273–286.

5. Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero Merino, L.,

Vaquero, L., Nagin, K., and Rochwerger, B. Monitoring Service Clouds
in the Future Internet. In Towards the Future Internet - Emerging Trends from
European Research (Amsterdam, The Netherlands, 2010), IOS Press, pp. 115–126.

6. Ferrer, A., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A.,

Zsigri, C., Sirvent, R., Guitart, J., Badia, R., Djemame, K., Ziegler, W.,

Dimitrakos, T., Nair, S., Kousiouris, G., Konstanteli, K., Varvarigou, T.,

Hudzia, B., Kipp, A., Wesner, S., Corrales, M., Forgó, N., and Sharif, T.

amd Sheridan, C. OPTIMIS: a holistic approach to cloud service provisioning.
Future Generation Computer Systems (2011).

7. Katsaros, G., Gallizo, G., Kübert, R., Wang, T., Oriol Fito, J., and

Henriksson, D. AMulti-level Architecture for Collecting and Managing Monitoring
Information in Cloud Environments. In CLOSER 2011: International Conference
on Cloud Computing and Services Science (CLOSER) (Noordwijkerhout, The
Netherlands, May 2011).

8. Keahey, K., and Freeman, T. Contextualization: Providing One-Click Virtual
Clusters. In Proceedings of the 4th IEEE International Conference on eScience
(ESCIENCE ’08) (Washington, DC, USA, 2008), IEEE, pp. 301 – 308.

9. Kephart, J., and Chess, D. The vision of autonomic computing. Computer 36, 1
(2003), 41–50.

10. Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. kvm: the Linux
virtual machine monitor. In Proceedings of the Linux Symposium (2007), vol. 1,
pp. 225–230.

11. libvirt development team. Libvirt: The virtualization API. http://libvirt.
org/, February 2012.



12. qemu development team. QEMU - An open source machine emulator and
virtualizer. http://www.qemu.org, February 2012.

13. Turnbull, J. Pulling strings with puppet: configuration management made easy.
Springer, 2008.

14. Wood, T., Ramakrishnan, K. K., Shenoy, P., and van der Merwe, J. Cloud-
Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.
In Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments (2011), ACM, pp. 121–132.


	Runtime Virtual Machine Recontextualization for Clouds

