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The Schrödinger wave equation

◮ An expression of energy conservation:

[

−
~
2

2m

∂2

∂z2
+ V (z)

]

ψ(z) = Eψ(z) (1)

◮ Kinetic energy:

T̂ψ(z) = −
~
2

2m

∂2

∂z2
ψ(z) (2)

◮ Potential energy:

V̂ψ(z) = V (z)ψ(z) (3)

◮ Total energy (Hamiltonian):

Ĥψ(z) = [T̂ + V̂ ]ψ(z) = Eψ(z) (4)
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Example: infinite quantum well

For very simple systems, we can sometimes find an analytical
solution.

V (z) = ∞

lw

V (z) = 0 V (z) = ∞

The infinite well represents an electron trapped between
impenetrable barriers. Inside the well, V (z) = 0:

−
~
2

2m

∂2

∂z2
ψ(z) = Eψ(z) (5)
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Solution for infinite quantum well

◮ Inside the well, electron is free:

ψ(z) = A sin kz + B cos kz (6)

◮ Wavefunctions must decay to
zero at boundaries:
ψ(0) = ψ(lw ) = 0.

◮ Therefore B = 0.

◮ Only valid solutions are sine
waves with:

ψn(z) = A sin

(

πn

lw
z

)

(7)
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Corresponding energies:

En =
~
2π2n2

2ml2w
(8)
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Solution for infinite quantum well

◮ Probability of finding electron in region (a, b) is:

P(a, b) =

∫ b

a

ψ∗(z)ψ(z) dz (9)

◮ Probability of finding electron somewhere in well must be 1.
Can use this to find the amplitude of wavefunction:
A =

√

(2/lw )

◮ Therefore, complete expression for wavefunction in infinite
well is:

ψn(z) =

√

2

lw
sin

(

πnz

lw

)

(10)
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Toward more complex systems. . .

There is no analytical solution for complex systems like THz
QCLs. We can, however, use some “ingredients” of the solution:

◮ Specify a potential profile V (z) and effective mass m∗

◮ Specify boundary conditions ψ(0) and ψ(∞)

◮ Find amplitude of wavefunctions at each point!

A numerical (sampling) approach is needed!
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Example: World record 1 W THz QCL

Recently demonstrated (at Leeds!): THz QCL with 1 W output
power.

◮ 4 GaAs wells with
Al0.16Ga0.84As barriers

◮ Layer thicknesses (barriers in
bold, 3× 1016 cm−3 doped layer
underlined):
52/103/17/107.5/36/88/39.5/
172 Å

◮ External electric field of
7.6 kV cm−1.

◮ Periodic system

L. Li et al., Electron. Lett. 50, 309 (2014)

9 / 41



Confining potential

◮ Band-offset between GaAs and
Al0.16Ga0.84As is given by:

∆VCB = 0.67× Eg (11)

where bandgap is:

Eg = (1.426 + 1.247x) eV (12)

and x = 0.16 is alloy
composition

◮ Therefore, can compute
confining potential using
∆VCB = 133.8meV

◮ Wells are strongly coupled!
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Effect of bias voltage

Now, we can add on the effect of the
external electric field. The simplest
model assumes that the field inside
the structure is constant (and
identical to the external field):

V (z) → V (z) + qF (z − z0) (13)

This gives a constant potential
gradient throughout the structure

0 100 200 300 400 500 600
Position [Å]

0

50

100

150

200

Po
te

nt
ia

l [
m

eV
]

Note that this does not account for internal charge or variation in
permittivity between materials! We’ll address this later using
Poisson’s equation.

11 / 41



Boundary conditions for QCLs

◮ QCLs are multi-period devices.

◮ Therefore, wavefunctions do not
decay to zero at edge of period!

◮ Option 1: “pad” the structure
to allow “soft” decay into
barrier. Used for density-matrix
solvers

◮ Option 2: Solve several periods
of structure to allow “leakage”
between periods. Used for rate
equations
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The finite-difference approximation

We can solve differential equations numerically using the
finite-difference (FD) approximation:

df

dz
≈

∆f

∆z
=

f (z + δz)− f (z − δz)

2δz
(14)

f (z + δz)

f (z − δz)

∆f

∆z

z + δzz − δz
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Second derivatives

Repeat the process to find second derivative. . .

d2f

dz2
≈

df
dz

∣

∣

z+δz
− df

dz

∣

∣

z−δz

2δz
(15)

∴
d2f

dz2
≈

f (z + 2δz)− 2f (z) + f (z − 2δz)

(2δz)2
(16)

Can tidy up by making transform 2δz → δz

d2f

dz2
≈

f (z + δz)− 2f (z) + f (z − δz)

(δz)2
(17)
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Finite difference: summary

We can use a neater notation, f (z + iδz) = fi :

df

dz

∣

∣

∣

∣

i

≈
fi+1 − fi−1

2δz
(18)

d2f

dz2

∣

∣

∣

∣

i

≈
fi+1 − 2fi + fi−1

(δz)2
(19)

It is now possible to split a function f (z) up into a set of samples
fi and compute the derivatives at each point.
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Discretizing the Schrödinger equation

Start from analytical form:

−
~
2

2m∗

∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) (20)

Replace ψ(z) and V (z) with samples at points i :

−
~
2

2m∗

∂2ψ

∂z2

∣

∣

∣

∣

i

+ Viψi = Eψi (21)

Now substitute FD approximation for the derivative:

−
~
2

2m∗

[

ψi+1 − 2ψi + ψi−1

(δz)2

]

+ Viψi = Eψi (22)

The “shape” of the wave function at any point is determined by

the mass, energy and confining potential
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Matrix formulation

Can rearrange the discrete SE by gathering together wave function
samples at each point:

−
~
2

2m∗(δz)2
ψi+1 +

[

~
2

m∗(δz)2
+ Vi

]

ψi −
~
2

2m∗(δz)2
ψi−1 = Eψi

(23)
More compact notation:

ai ψi−1 + bi ψi + ci ψi+1 = Eψi , (24)

where:

ai+1 = ci = −
~
2

2m∗(δz)2
and bi =

~
2

m∗(δz)2
+ Vi (25)
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Matrix formulation

ai ψi−1 + bi ψi + ci ψi+1 = Eψi , (26)

Now, taking the standard boundary conditions,1 ψ0 = ψN+1 = 0
We have a system of linear equations for wave function at each
point:

b1ψ1 + c1ψ2 = Eψ1 (27)

a2ψ1 + b2ψ2 + c2ψ3 = Eψ2

. . .

aN−1ψN−2 + bN−1ψN−1 + cN−1ψN = EψN−1

aNψN−1 + bNψN = EψN

recall that simulation domain for a QCL includes “padding” or multiple periods
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Matrix formulation

This system of equations can be represented more succinctly in
matrix form:

H ψ = E ψ (28)

where H is a matrix containing all the coefficients:

H =

















b1 c1 0 · · · 0
a2 b2 c2 · · · 0

0
. . .

. . .
. . . 0

... · · · aN−1 bN−1 cN−1

0 · · · 0 aN bN

















(29)

and ψ is a column-vector containing all the samples of the wave
function in their correct order:

ψT = {ψ1, ψ2, · · · , ψN} (30)
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Matrix formulation: summary

We have converted the Schrödinger equation into a matrix
eigenvalue problem:

H ψ = E ψ (31)

◮ Eigenvalues: E

◮ Eigenvectors: ψ

H is symmetrical and tridiagonal. This problem can be solved
extremely rapidly as follows:

1. Compute the potential V (z) and take samples at a set of
points Vi

2. Create the Hamiltonian matrix H by using the appropriate
value of ai , bi or ci for each element.

3. Send the matrix to an eigenvalue solver. Free software
libraries such as the GNU Scientific Library, LAPACK or
Armadillo include excellent solvers!
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Solution for 1 W THz QCL

Using padded structure:

◮ Lasing transition: 〈u|l〉 =
14.5meV (3.63 THz)

◮ (Expected 3.4THz)

◮ Extraction transition: 38.4meV
◮ (Expected 36meV)
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High-energy states (pink) include unbound continuum states.
Physically realistic?
Solver gives pretty good results, although energies are slightly high.
Is something missing?
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Variable effective mass

Effective mass is larger in Al0.16Ga0.84As barriers. This could
explain the overestimated energy!

m∗ = (0.067 + 0.083x)m0 = 0.080m0 (32)

Can define a spatially dependent effective mass for the QCL m∗(z).

−
~
2

2

∂

∂z

1

m∗(z)

∂

∂z
ψ(z) + V (z)ψ(z) = Eψ(z) (33)
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After applying FD approximation, matrix elements become:

ai+1 = ci = −
~
2

2m∗

i+ 1
2

(δz)2
(34)

bi =
~
2

2(δz)2





1

m∗

i+ 1
2

+
1

m∗

i− 1
2



+ Vi (35)

◮ H is still a tridiagonal symmetric matrix, so the solution
method is exactly the same!

◮ The half-integer masses (m∗

i+ 1
2

etc.) are just the average of

the adjacent samples
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Solution for 1 W THz QCL (variable mass)

◮ Lasing transition: 〈u|l〉 =
14.0meV (3.5 THz)

◮ (Expected 3.4THz)

◮ Extraction transition: 37.1meV
◮ (Expected 36meV)
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Variable effective mass gives better results with no penalty in
speed of solution!
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Band nonparabolicity effects

As electrons gain energy, their dispersion is influenced by the
valence band as well as the conduction band.

E

0

E ∝ k
2 + βk4

E ∝ k
2

k
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Band nonparabolicity effects

Dispersion is modelled more accurately by energy-dependent
effective mass:

m∗(E ) = m∗(0)[1 + α(E − V )] (36)

where α ≈ 1/Eg

◮ α = 0.7 eV−1 in GaAs. Not very important for low-energy
states

◮ . . . but very significant effect for high-energy electrons or
narrow-gap materials (InSb: α = 5.6 eV−1)
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Schrödinger equation with nonparabolicity

Non-parabolic effects result in an energy-dependent Hamiltonian:

−
~
2

2

∂

∂z

1

m∗(z ,E )

∂

∂z
ψ(z) + V (z)ψ(z) = Eψ(z) (37)

◮ Masses and matrix elements ai (E ), bi (E ) and ci (E ) now
energy dependent!

◮ Cannot solve nonlinear matrix eigenvalue problem directly:

H(E ) ψ = E ψ (38)

◮ Instead, iteratively search for energies for which:

det [E I− H(E )] = 0 (39)
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Schrödinger equation with nonparabolicity

Other approaches include:

◮ linearizing the eigenvalue problem2

◮ applying a Taylor expansion for 1/m∗(E )3

◮ two-band models4

Alternatively, use multi-band k · p model

Cooper et al., DOI: 10.1063/1.3512981
Le et al., DOI: 10.1002/mop.23976
Ma et al., DOI: 10.1063/1.4817795
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Solution for 1 W THz QCL (variable mass)

◮ Lasing transition: 〈u|l〉 =
14.2meV (3.5 THz)

◮ (Expected 3.4THz)

◮ Extraction transition: 36.7meV
◮ (Expected 36meV)
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Non-parabolic effective mass improves result for high-energy
phonon transition without affecting low-energy lasing transition
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Poisson’s equation

Poisson’s equation including variable permittivity ǫ(z):

∂

∂z

[

ǫ(z)
∂

∂z
V (z)

]

= −ρ(z) (40)

where ρ(z) is charge profile (accounts for modulation doping).

ρ(z) = q

(

n
∑

i=1

Niψ
∗

i (z)ψi (z)− d(z)

)

(41)

where
∑n

i=1 Ni = N.
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Poisson’s equation

Need to know populations of subbands Ni

◮ For a full calculation, we need electron transport model.
Beyond the scope of this lecture!

◮ Approximate solution: ignore high-energy (pink) states

◮ Assume equal population in low-energy states
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Self-consistent solutions

Poisson and Schrödinger solutions are intrinsically coupled. . .
◮ Poisson equation calculates potential using electron

distribution.
◮ Schrödinger equation calculates electron distribution using

potential.
◮ Need to solve iteratively

Add resulting
potential to
band edge

Solve Poisson’s
equation

Solve Schrodinger’s
equation for band
edge potential

Solve Schrodinger’s
equation for new

potential

Has energy
converged?

No

Yes

end
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Self-consistent solutions

◮ Self-consistent solution
performed iteratively.

◮ Convergence within 3 iterations
(a bit slower than simple
Schrödinger solution!)

◮ Full transport model can take
much longer! Care needed to
avoid instability.
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Solution for 1 W THz QCL (variable mass)

◮ Band bending effects appear

◮ Lasing transition: 〈u|l〉 =
13.6meV (3.4 THz)

◮ (Expected 3.4THz)

◮ Extraction transition: 37.2meV
◮ (Expected 36meV) 0 200 400 600 800 1000 1200
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Self-consistent (non-parabolic) solver gives correct result for lasing
transition! Slower, but probably worth it!

35 / 41



Shameless advertising!

All these numerical methods are discussed in full in the 4th edition
of “Quantum Wells, Wires and Dots”, P. Harrison and
A. Valavanis, Wiley (expected 2015).

◮ New free and open source
software library (beta testers
wanted!)

◮ New end-of-chapter examples

◮ Thermal modelling

◮ Non-parabolic dispersion

◮ Density-matrix calculations
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Free software example

QWWAD simulation suite is based on simple scripts, which tie
together programs that solve specific physical problems.
The full non-parabolic, self-consistent solver is implemented using
the following code snippets

1 # Def i n e padded QCL s t r u c t u r e : width , a l l o y , dop ing
2 ca t > s . r << EOF
3 400 0 .16 0
4 103 0 0
5 17 0 .16 0
6 107 .5 0 0
7 36 0 .16 0
8 88 0 0
9 39 .5 0 .16 0

10 172 0 3e16
11 400 0 .16 0
12 EOF

sourceforge.net/projects/qwwad
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1 # Genera te samp les o f a l l o y p o t e n t i a l a t each po i n t
2 f i n d h e t e r o s t r u c t u r e
3

4 # Compute p o t e n t i a l , mass and p e r m i t t i v i t y a t each
po i n t

5 e f x v
6

7 # Find an e s t ima t e o f the f i e l d e f f e c t ( assume no
cha rge )

8 f i n d p o i s s o n p o t e n t i a l −−uncharged −− f i e l d 7 . 6

sourceforge.net/projects/qwwad
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1 # So l v e Po i s son and Sch r o ed i n g e r e qua t i o n s i t e r a t i v e l y
2 f o r I i n ‘ seq 1 9 ‘ ; do
3

4 # Use non−p a r a b o l i c SE s o l v e r , w i th max . 5 subbands
5 e f s s −−s o l v e r matr ix−t a y l o r−nonpa r a b o l i c −−nst−max 5
6

7 d e n s i t y i n p u t # Est imate subband p o pu l a t i o n s
8 c h a r g e d e n s i t y # Compute cha rge p r o f i l e
9

10 f i n d p o i s s o n p o t e n t i a l −− f i e l d 7 . 6
11 done

sourceforge.net/projects/qwwad
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Conclusions

◮ Numerical methods are required for solving the Schrödinger
equation in QCLs

◮ Boundary conditions are not trivial for QCLs!

◮ Matrix methods are fast, accurate and reliable

◮ It is important to account for spatially varying (and
nonparabolic) effective mass

◮ Self-consistent Poisson–Schrödinger solution is also important

◮ Our free software is available online. . . textbook coming soon!
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